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Fourier Transform Summary

Definitions

1

o A= F W= [ et ax

O IR(C R

Useful Results

o F[f(x)]=ikf (k)

o Fler)])=i 7 W]

Shift Results
. f[f(x+c)] =eikcf(k)

o FF(kve)|=e f(x)

Convolution Theorem

F{f*el(x)} = V27 F[ £ (x)]F[ 2(x)]

where [f>!<g]()C)=J:oo f(x=vy)g(y) dy

Parseval’s Theorem

[ 10em @ = [ wew o o [ poif o - Jiwf o
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FINDING FOURIER
TRANSFORMS

and
INVERSES
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Question 1
f(x)=e*, x>0,
where a is a positive constant.

Find the Fourier transform of f(x).
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Question 2

1 |x|<la
f(x)= 1
0 |x|>§a

where a is a positive constant.

Find the Fourier transform of f (x).
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Question 3

f(x)=

1 0<x<2
0 otherwise

Find the Fourier transform of f(x).

Question 4

where @ is a positive constant.

Find the Fourier transform of f (x).

A rr
f(k)—\/;smca)
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Question 5

The function f (x) is defined in terms of the positive constant a, by

o
f(x)z 1 ; |x|£a

0 |x|>a

Find the Fourier transform of f (x).

}"[f(X)]:f(k):\/%ale[l—cos(ak)] = \/Z—xsincz (%ka)
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Question 6

where m 1is a positive constant.

Find the Fourier transform of f (x).
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Question 7

Find, by direct integration, the Fourier transform of f (x).
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Question 8

The triangle function A, (x) is defined as

(n+x) -n<x<0

=N| —

(n—x) O<x<n

) :N|_

otherwise

where n is a positive constant.

a) Sketch the graph of A, (x).

b) Show that the Fourier transform of A, (x) is

\/;—7[ sinc? (% kn) A

proof
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Question 9

The function f is defined by

fx)=e M,
where a is a positive constant.

Find the Fourier transform of f (x).
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Question 10
The function f is defined by

standard results about j

Created by T. Madas

l, x#0.
X

£ (x)

(o)

sin ax

dx.

0 X

a) Determine the Fourier transform of f(x), assuming without proof any

b) By introducing the converging factor e_g‘x‘ and letting £ —> 0, invert the
answer of part (a) to obtain f .
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Question 11

The impulse function J(x) is defined by

W
a) Determine
i .. Fle(x)]
ii. ... }"[5(x—a)] , where a is a positive constant.

iii. .. 77'[5(k)].

b) Use the above results to deduce F[1] and F ra [1].

-

—ika F—ll:g(k):l —_

f[ﬁ(x)] =

F[ﬁ(x—a

1
)] :Ee
F1)=v27 8(k)|.|F ' [1]=v27 & (x)

-
3

ﬁ

B

.
‘‘‘‘‘
T
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Question 12

The signum function sign(x) is defined by

1 x>0
1 x<O

sign (x) = {_

el

By introducing the converging factor e ~"! and letting € — 0, determine the Fourier

transform of sign (x).
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Question 13
The Unit function U(x) is defined by

Ux)=1.

By introducing the converging factor e_glxl and letting £ — 0, determine the Fourier
transform of U(x).

You may assume that &(7) = 1 lim[ £ } :

T -0 52 +t2

FU(x)]=27 5(k)
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Question 14
The Unit function U(x) is defined by

U(x)=1.

By introducing the converging factor e_glk' and letting € —» 0, find F -1 [U(k)] .

You may assume that §(¢) = 1 lim[ £ } .

T €50 52 +t2

FU(k)]=27 8(x)
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Question 15

The function g(x) has Fourier transform given by
g (k)=—isign(k).

By introducing the converging factor e_glk' and letting € —» 0, find F -1 [g (k):l .

' lew]=y2 2
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Question 16
The Heaviside function H(x) is defined by

1 x=20

H(x):{ 0 x<0

£

By introducing the converging factor e “* and letting £ — 0, determine the Fourier

transform of H(x).

You may assume that J(7) = A lim[ £ } :

T €50 52 +t2

FH(o]= ﬁ{w(k)—ﬂ
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Question 17

The impulse function &§(x) is defined by

0 x#0

5(x)={°° x=0

a) Determine the inverse Fourier transform of the impulse function F 3 [5 (k)] ,

and use it to deduce the Fourier transform of f (x)=1.

b) Find directly the Fourier transform of f(x)=1, by introducing the converging

factor e_g‘x‘ and letting € —> 0.

Fli]=v2z 5(k)
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Question 18
The function f is defined by

()_. )= 1 x>0
f)C—Slgnx—_1 £ <0

a) By introducing the converging factor e_g‘x‘ and letting € — 0, find the Fourier
transform of f .

b) By introducing the converging factor e_g‘x‘ and letting € — 0, find the Fourier
transform of g(x)=1.

You may assume that J(¢)= ‘4 lirn[ £ } .

T >0 ,92 +12

¢) Hence determine the Fourier transform of the Heaviside function H (x) )

1 x=20

H(x):{ 0 x<0

F[sign(x)]= —%\E AF[)=V27 8(k)|, ]—"[H(x)]zﬁ{ﬂ'd(k)—i}
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Question 19

The Fourier transforms of the functions f (x) and g (x) are

F(k)=8(k) cand  §(k)=—,

ik
where §(x) denotes the impulse function.
Find simplified expressions for f (x) and g(x), and use them to show that

PG (e L.

where H(x) denotes the Heaviside function.
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Question 20
The function f is defined by

f(x):smax, 050
X

Find the Fourier transform of f (x), stating clearly any results used.

2 i<a
; 2
sin ax
}-[ X }_ z |k|=a
8
0 k| >a
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Question 21

Given that [ is a non zero constant, show that

proof
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Question 22

The Gaussian function f(x) is defined by

where A and @ are positive constants.

Find the Fourier transform of f(x).

2
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Question 23
The function f is defined by

2+a’
where a is a positive constant.

Use contour integration to find the Fourier transform of f (x).

{(@ -
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Question 24
The function f is defined by

2

f(x)=xe" , xeR.

Find the Fourier transform of f (x), stating clearly any results used.
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Question 25
The function f is defined by

X2 +a*
where a is a positive constant.

Use contour integration to find the Fourier transform of f (x).
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Question 26

Find the inverse Fourier transform of

where o and t are positive constants.

7= [ —kzazt} 1 X
c = €X —
2o Pl 42

proof
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Question 27

The Fourier transform f (k). of function f(x) is

A 2 a
f(k)_\/; a’+ k>’

where a is a positive constant.

Use contour integration to find an expression for f(x).
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Question 28
The function f is defined by

1

2’
(x2+a2)

where a is a positive constant.

Use contour integration to find the Fourier transform of f(x).
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VARIOUS PROBLEMS
on

FOURIER
TRANSFORMS
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Question 1

Find the Fourier transform of an arbitrary function f(x) if
i. f(x) iseven.
ii. f(x) is odd.

Give the answers as a simplified integral form.

f(k)=\/%j0wf(x)cosm dx|, f(k)=—i\/%j:f(x)sinkx dx

Question 2

Use the definition of the Fourier transform, of an absolutely integrable function f (x),

to show that
FIF(x)] = ikF[ f(x)].

proof
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Question 3

The Fourier transform of an absolutely integrable function f (x), is denoted by (k).

Show that

Flxs(x)] = is 7 (0)].

dk

proof

Question 4

Given that ¢ is a constant show that

Flf(x+c)]=e“F[f(x)].

proof
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Question 5

Given that ¢ is a constant show that
FH F(k+e)] = f(x),
where f (k)= f[f(x):l

proof
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Question 6

Given that ¢ is a constant prove the validity of the two shift theorems
a) F[f(x+c)] =" F[f(x)].
b) F [ f(k+c)] = r(x).

Note that f (k)= F[f(x)].

proof
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Question 7

The convolution [ f * g](x), of two functions f(x) and g(x) is defined as

[f*g](X):J_m flx=y)g(y) dy.

Show that

FLr8l(x)} = a2z F[f(x)]F[(x)] = V27 f (k)& (k).

proof
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Question 8

It is given that ¢ is a constant and f (k)= .’F[f(x)] ;
a) Prove the validity of the inversion shift theorem
}"l[f(k+c)] = e f(x).
b) Hence determine an expression for

f'_l l:e—(k—a)2 :l ’

where a is a positive constant.

Tl 1 12
]-"_l[e ) } = —e¢ ¢ [cosax+isinax]
V2
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Question 9

The convolution theorem for two functions f(x) and g(x) asserts that

Flr#gl(x)} = N2z F[ £ (x)]F[s(x)].

where

[f*g](x):f F(x=y)g(y) dy.

a) Starting from the convolution theorem prove Parseval’s Theorem

j_]h(y)\z dy. = J:

b) Use Parseval’s Theorem to evaluate

“ o
,[) X2+Cl2 dx.

You may assume thatif f(x)= e, then f(k)= \/z
z

a’+k?
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Question 10

The convolution [ f * g](x), of two functions f(x) and g(x) is defined as

[f*g](x):f Fa=y)e(y) dy.

a) Show that
FALr#&l(} = N2z F[ ()] F[2(x)] = V27 f (k)& (k).

b) Hence prove Parseval’s Theorem

c¢) Use Parseval’s Theorem to evaluate

/ L dx.
0 (x2+a2)(x2+b2)

You may assume that if f(x)= e ,then f (k)= \/z
w

a
a’+k?

T
Zab(a +b)
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APPLICATIONS
of

FOURIER
TRANSFORMS
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Question 1
The function @ = @(x,y) satisfies Laplace’s equation in Cartesian coordinates
% 9%

ax2 +ay—2:0.

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation for @(k,y), where @(k,y) is the Fourier transform of

@(x,y) with respect to x.

_2_ ¢:0
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Question 2

The function @ = ¢(x,y) satisfies Laplace’s equation in Cartesian coordinates,

in the part of the x-y plane for which y >0.

It is further given that

o o(x,y)>0 as X2 4 y? — oo
1
7 |)C|<1

* x0)= 0 |x[>1

Use Fourier transforms to show that

[

1
¢(X,y)—ﬂ_ 0

and hence deduce the value of ¢(-_|'1,0) .
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Question 3

The Airy function Ai(x) satisfies the differential equation

dzy
—=—xy=0.
dx’®

Use Fourier transforms to show that
Ai(x) :ljw cos(%t3 +xt) dr,
0
for suitable boundary conditions.
You may assume that F| x f(x)]= i%{}"[f(x):l}.

proof
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Question 4

The function ¥ =y (x,y) satisfies Laplace’s equation in Cartesian coordinates,

in the part of the x-y plane for which y >0.

It is further given that
o y(x.0)=5(x)

o Y(xy)—0 asx*+y* 5w

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

2 2
T\x"+y
, |proof
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Question 5

The function u =u(x,t) satisfies the partial differential equation

ou 1% 3

220,
ot 3ax3

It is further given that
* u(x,0)=0(x)

 u(xt)—>0 as |x|—>oo

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

Fr gF
TA T

u(x,1)=—
3 3

where the Ai(x) is the Airy function, defined as

proof
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Question 6
The function @ = @(x, y) satisfies Laplace’s equation in Cartesian coordinates,
’p d°p

in the part of the x-y plane for which x>0 andy >0.

It is further given that

1
1+x2

* ¢(x.0)=

o 9(xy)—0 as x*+y* S

. %[¢(x,0)]=0

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

y+1
o(xy)=——"".
x“+(y+1)

proof
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Question 7

The function @ =®(x,y) satisfies Laplace’s equation in Cartesian coordinates,

’® 9’D
2t oz =0
ox~ dy

in the part of the x-y plane for which y >0.

It is further given that
o ®(x,0)=6(x)

o D(x,y) >0 asx’+y* Seo

Use Fourier transforms to find the solution of the above partial differential equation
and hence show that

a0 T

1 2"
§(x) = lim —(1+y—2J :

proof
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Question 8

The function y = y(x) satisfies the differential equation
d
i dy=1(x).
dx

where f(x) is a given function and A is areal constant.

Use Fourier transforms to show that

proof
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Question 9

The function @ = ¢(x,y) satisfies Laplace’s equation in Cartesian coordinates,

in the semi-infinite region of the x-y plane for which y >0.

It is further given that
* 9(x,0)=f(x)
e ¢(xy)—0 as x> +y?

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

y [ f(x-u)
b)) =2 DY g
o(x,y) ) . iy s

, |proof

rﬂﬁ N Eﬂ“:o ) Y4B SRR TH oo = [ Slhg)= [ Lxg || @ me oo THEREM)
o o= Loy N )
o day—>o K VT o 4@ A Yo' Aucton

8@ - M
booreng. 4@ - s1HY
Fogeal g L [T M aion) &

TRUNG THE ot TRANSRPM of Te PDA. N 2
SILR]FLE] - TFle]

= W g F g o

= %‘\&%:m :L’“ﬂ, Hoxh de - J’_')Z.:{S St b dtj
THS A STDAID 2" cp0rR ) AS & IS TRAATD A3 A Cacm], [SENS Dk j
_ Ee " ée ._ )
& By = AR LB | it v teR, 4 B ¥ 5 j R,
N EINAL

BNES h{ lmL‘? EL;] i
<18 ra) = J_‘Efé"” o *‘(msbw w\bﬂ”f
=&y = < ~W?€{nq B Fkiﬁ+\§=?%

APRY T Towotey_awomod o)« £0) — Sl = L)

A oo A TFENS o 50 o bea) 4 JERT s o
s A¥)=o

- O - 30 AL ZHENING © THE QA)WWW INURBION)

= 30- & = B ae & by - Flbag)

= by frg - j €00 3G du g ey x wre

WA

— Py - L( gm] abﬁ ™ Y

To_INUET uk R0k AT e COWCUTIR) THOPEM

ST~ @ 31301

= Feea] - Flloo]x e = Wy - F [ fe gl A BN ey
- = 50w = = Fla] « H - & =2 [° i(iau

= d ) =
— Wy = v fa /A ey

= ety = G 06T I0]

Created by T. Madas



Created by T. Madas

Question 10

The function @ = ¢(x,y) satisfies Laplace’s equation in Cartesian coordinates,

2 2
a_gqa_gzo,
ox° dy

in the semi-infinite region of the x-y plane for which y >0.
It is further given that for a given function f = f (x)
0 0
° x,0) [=— X
5L 0) =5 [ ()]
o 2, .2
P(x,y) 20 as \/x"+y° >0

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

LN A G

T X—u

—0Q

¢(x,0)=

proof

[ solution overleaf |
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Question 11

The function @ = @(x, y) satisfies Laplace’s equation in Cartesian coordinates,

2 2
a—f+a—f=0, —c0< x<oo, y20.
ox“ dy

It is further given that

= 9(x,y) >0 as yx*+y? S oo
= (p(x,O) = H(x) , the Heaviside function.

Use Fourier transforms to show that

(p(x,y):l+larctan .
2 y

You may assume that

proof
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Question 12

The function u =u (x, y) satisfies Laplace’s equation in Cartesian coordinates,

Su ou_

¥+8y2 =0, =co<x<oo, 0O<y<l.

It is further given that
= (x,O) =0

e )2 ()
where f(—x)=f(x) and f(x) >0 as x—> oo

a) Use Fourier transforms to show that

M(X,y)—\/%j f (k) coskx sinhky ik f(k)zf[f(x)].

sinh k

b) Given that f (x)=6(x) show further that

u(x,y) = sinxry
’ 2[coshzx+cosy]
You may assume without proof
cos Ausinh Bu bl sin(B7/C) ,0<B<C.
A sinh Cu 2C | cosh(Az/C)+cos(Bm/C)
proof
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Question 13

The function ¥ =y (x,y) satisfies Laplace’s equation in Cartesian coordinates,

2 2
oY OV
x> oy?

in the part of the x-y plane for which y >0.

It is further given that
" y(x0)=r(x)
= y(x,y) >0 asy/x’+y? 5o

¢) Use Fourier transforms to convert the above partial differential equation into
an ordinary differential equation and hence show that

d) Evaluate the above integral for ...
i f(x)=1.
ii. ...f(x)=sgnx
i, ... £(x)=H(x)

commenting further whether these answers are consistent.

‘//(x’)’):l > V/(X,y)=%arctan(§] , W(x,y)=%+%arctan(§}

[ solution overleaf ]
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Question 14

The function 8= 6(x,t) satisfies the heat equation in one spatial dimension,

0°60 1 06
—_— = —oo<x<00,t20,
ox: o’ ot

where o is a positive constant.

Given further that 6(x,0) = f (x), use Fourier transforms to convert the above partial

differential equation into an ordinary differential equation and hence show that

1 22 2
H(x,t)zzgﬁj f(x—u) exp(;Gz] du .

proof
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Question 15

The function u =u(x,y) satisfies Laplace’s equation in Cartesian coordinates,

Pu 0 _

2

in the part of the x-y plane for which x>0 and y >0.
It is further given that
= u(0,y)=0
s u(x,y) >0 asa/x’+y? oo
= u(x,0)=71(x), f(0)=0, f(x) >0 as x >

Use Fourier transforms to show that

proof

[ solution overleaf ]
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Question 16

The function T =T (x,t) satisfies the heat equation in one spatial dimension,

?0_100

02 __at , x20,120,
X (o}

where o is a positive constant.

It is further given that
* T(x0)=r(x)
e T(0,)=0
o T(x)—>0 as x>0

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

S
b
S
<
S
7]
7]
S
3
Q
=y
1)

LN
PR W
(¢)]

g
| |
Il

proof
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Question 17

The function f = f(x) satisfies the integral equation

where f(x) =0 as x = oo

Use Fourier transforms to find the solution of the above integral equation.

You may assume that .7-"{ 21 2}zl\/ge_ak.
x“+a a\?2
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Question 18

The function f = f(x) satisfies the integral equation

1
1+x2’

J:f(x—u)f(u) du =

where f(x) =0 as x >0

Use Fourier transforms to find the solution of the above integral equation.

You may assume that

j C(;Skx dxz%fre‘k‘.
o Xx +1
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Question 19

The function f = f(x) satisfies the integral equation
—1x? P —|x—u
e 7 X :%j‘_ e | ‘f(u) du,

where f(x) =0 as x >0

Use Fourier transforms to find the solution of the above integral equation.

You may assume that

e Fle® =
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