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SUMMARY OF THE LAPLACE TRANFORM

The Laplace Transform of a function f (), 7>0 is defined as

[}

[ (0]=7(5)= j e £(1) d,

0

where se C, with Re(s) sufficiently large for the integral to converge.

The Laplace Transform is a linear operation

Llaf(t)+bg(t)]=aLl] f(r)]+bL[g(r)]-

Laplace Transforms of Common Functions

, ﬁ(tn): :+1
£(1)=§, E(a)=%, 5(;):%2, E(;Z):S%, £(ﬁ):si4,....
. E(e‘”)zﬁ | “”)=Sia
o [(cosat)= e L(sinar)= szjaz
e [L(coshat)= 22 L(sinhar) = A2 ilaz

Laplace Transforms of Derivatives
o L[x(0)]=%()
o L[5(1)]=5%()-x(0)
o L[(1)]= %) - sx(0)~£(0)

. E[x(t)] = s3f(t)—s2x(0) —sx(0)—x(0)
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Laplace Transforms Theorems

1% Shift Theorem

Lle f(0)]=Tls+a) or £[e"E(r)]=F(s~a)

274 Shift Theorem
Llf(t=a)]=e® f(s). t>a or L] f(t+a)]=e®f(s), t>—a.

E[H(t—a)f(t—a)]ze_“sf(s) or E[H(t+a)f(t+a)]=e“s]7(s)

Multiplication by "

Division by ¢
5{@} = Jmf(a) do

t
provided that lim [Mj exists and the integral converges.
t—0 t

Initial/Final value theorem

lim[ f(¢)]=lim[s f(s)]| and lim[f(¢)]=1im[sf(s)]

t—0 §—>00 t—o0 s—0
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The Impulse Function / The Dirac Function

1.

N

w

§(t—c):{°° =L, 50):{«» t=0

0 r#c 0 r=#0

b
1 a<c<b
J- d(r—c) dt:{ a=c

0 otherwise

0 otherwise

’ _ {f(a) a<c<b
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Question 1

Use Laplace transforms to solve the differential equation

@—2)(:4, t>20,
dt

subject to the initial condition x =1 at t =0.

, x=3e%-2
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Question 2

Use Laplace transforms to solve the differential equation
ﬂ+2y=10e3% x>0,
dx

subject to the boundary condition y=6 at x=0.
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Question 3

Use Laplace transforms to solve the differential equation

ﬂ—4)2:26:2’C+e4x, x>0,
dx

subject to the boundary condition y =0 at x=0.

Question 4
Use Laplace transforms to solve the differential equation
d’y . dy

— 2 3 42y=2e* x>0,
dx? dx ’

subject to the boundary conditions y =35, ? =7 at x=0.
X

y=2e"+4e"
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Question 5

Use Laplace transforms to solve the differential equation

e dz

—=2=—+10z=10e",
dt dt
) o, . .. dz
subject to the initial conditions z=0, z =1 at r=0.
t

y =e* +cos 3t +sin 3t
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Question 6
Use Laplace transforms to solve the differential equation
d? y

?—4);:240052)(, x=20,

subject to the boundary conditions y =3, % =4 at x=0.
X

[ L ly=4e®+2¢2*~3cos2x

%}"*F aloa , x>o | 2o, y=3 aiu P S
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Question 7
Use Laplace transforms to solve the differential equation
d’y _dy

?4—554‘6)):361‘4'6,

subject to the initial conditions y =4, % =—=17 att=0.
t

y —e H+7e 1 61-4
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Question 8

By using Laplace transforms, or otherwise, solve the following simultaneous
differential equations, subject to the initial conditions x=-1, y=2 at r=0.
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Question 9

ﬂ+y=e_t and —-x=e .
dt dt

Use Laplace transformations to solve the above simultaneous differential equations,
subject to the initial conditions x=0, y=0 at#=0.

, |x=—cosht+sint+cost, y=cosht+sint—cost

\
OU g .t
at - i
: . | ST © 50 ) xe0, Y=o
A . )%=y Y

Trty=¢
et p 3
ol g=2  WiE-l= SA+ 1B 4+3(2C+D)

T= 5+5430cx)

2 A = —Gdk +lsk tont
e
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Question 10

dx

& b _3
dt

3
—=X.
a2

x+%y and

Use Laplace transformations to solve the above simultaneous differential equations,
subject to the initial conditions x=1, y=3 at t=0.

x=eX+re¥, y= 3e2t+%te2t
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Question 11

@:y+2e_t and ﬂ+2x—3y=0.
dt dt

Use Laplace transformations to solve the above simultaneous differential equations,
subject to the initial conditions x=0, y=1 at t=0.

1 t

—e e, y= —4te " +3e7 -2

x=4te”
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Question 12

2 2
d—lesﬂ—9y+22ef and d—2y=2x+e3f
dt dt dt

The functions x= f(z) and y=g(r) satisfy the above simultaneous differential

equations, subject to the initial conditions

x=2, y=-3, @:10, ﬂz—l at r=0.
dt dt

a) By using Laplace transforms, show that

—35° +11s* +90s> — 3845 +198

(s—l)(s—3) ’

(s*-30s+18)7

where y = E[g(t)].

b) Given further that s*=305+18 is a factor of —3s> +11s* +90s% —384s+198 h
find expressions for x and y.

x=4e¥-2¢', y=e¥—4¢
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Question 13

Use Laplace transforms to solve the differential equation

d’x
—+x=f(1),
7 ()

given further that x=1, % =1at r=0, and
t

0 t<0
f(t)=4t 0<t<x
/4 1>7

x=t+cost—(r—7)H(r—7)+sin(t—=7)H(t - 7)
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Question 14

Use Laplace transforms to solve the differential equation

2
d—;+2@+5x=5(t—2),
dt dt

given further that x=0, @:1 at 1=0.

dt

x=e | sin2r—e* sin(2t—4)H(t—2)}
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Question 15

Use Laplace transforms to solve the differential equation

2
d—;+4@+3x=25(t—6),
dt dt

given further that x=0, @=2 at 1=0.

dt
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Question 16

Use Laplace transforms to solve the differential equation

dzy
_+y:f ),
e (2)

given further that y=0, % =latr=0,and f (t) is a known function which has a
t

Laplace transform.

You may leave the final answer containing a convolution type integral.

y=sint+j f(u)sin(t—u) du
0

Created by T. Madas



Created by T. Madas
Question 17

d*x _dx
—+2—+2x=f(1).
5 2o +2x= (1)

a) Use Laplace transforms to solve the above differential equation, given further

that x=0, ?:0 at t=0, and~ f(r) is. a known function which has a
1

Laplace transform.

You may leave the answer containing a convolution type integral.

b) If f(r)=e* find x=x(t) explicitly.

1 2
10°

t
x:I f(t—u)e™ sinu dul, x=—%e_t[3sint+cost]+
0
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Question 18

Use Laplace transforms to solve the differential equation

d’x
—+16x=f (1),
7 (1)

given further that x=0, % =1atr=0, and
t

f(t)— cosdt O0Lt<rx
1 o t>7

[You may find the Laplace transform of tsin4t useful in this question.]

1

x(1)=

=

8

sin4t+<tsin4t —

1

8

(t—7) H(t—7x) sin4t
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Question 19

Use Laplace transforms to solve the differential equation

d’x  dx
—+4—+4x=f(1),
A A= £(0)

given further that x=0, ?:O at r=0, and
t

0 t<0
f(t)=4t 0<t<2
0 t>2

0 t<0

x(t)= -1+ (t+1)e™ 0<1<2

1 +1+¢* (31-5) | 2
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Question 1

j te * cost dt.
0

Given that the above integral is finite, use Laplace transform techniques to find its
exact value.

83
25
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Question 2

J- xe ¥sin2x dx.
0

Given that the above integral is finite, use Laplace transform techniques to find its
exact value.

2
169
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Question 3

Given that the above integral is finite, use Laplace transform techniques to find its

exact value.

In3
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Question 4

Given that the above integral is finite, use Laplace transform techniques to find its
exact value.

(SRR
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Question 5

W=

X .
e 3 sinx
— dx.

Given that the above integral is finite, use Laplace transform techniques to find its
exact value.
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Question 6

Given that the above integral is finite, use Laplace transform techniques to find its
exact value.

In2
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Question 7

cosbx—cos4x
—— dx.
0 X

Given that the above integral is finite, use Laplace transform techniques to find its
exact value.

In

(V]| )
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Question 8

j e ®sinx dx, a>0.
0

Given that the value of the above integral is zero, use Laplace transform techniques to
find the value of a.
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Question 9

Use Laplace transforms techniques to show that
e 2
j ue™ erf(u) du = %\/5
0

You may assume that

proof
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0 t
_l‘ .
e sinu
J‘ j‘ —— du dt.
0 0 u

Given that the above integral is finite, use Laplace transform techniques to find its
exact value.

Question 10

&8
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Question 11

e ¥sin’ x

dx.

Given that the above integral is finite, use Laplace transform techniques to find its
exact value.

1
41n5

Created by T. Madas



Created by T. Madas

Question 12

(oo}
e_ﬁx sinh x sin x

dx.

X

Given that the above integral is finite, use Laplace transform techniques to find its
exact value.

o[y
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Question 13

Jz .

< 8
OI
=
(i)
&
1]
o=

proof
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Question 14

proof
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Question 15
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Question 16

f(t)sjow xcos(tx3) dx .

By considering the Laplace transform of f (), show that

o 5 s 7‘[\/§
IO xcos(x ) dx——gr(%).

proof

Created by T. Madas



Created by T. Madas

Question 17

iz

exp(—\/l§ tan x) — exp(—\/g tan x)
I = dx .
sin2x
0
Use Laplace transforms to show that
I=1m3.

proof

e
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Question 18

sin’ x

dx.

Given that the above integral is finite, use Laplace transform techniques to find its
exact value.

(SR
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Question 19

The Exponential integral function Ei(z) is defined as

Ei(t)sj S du,1>0.
¢ u

By considering the Laplace transform of Ei(z), show that

j 2te”'Bi(t) dt = Ind4-1.
0

proof
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Question 20

, x (14 x) sin(In x) Iy

In x

Given that the above integral is finite, use Laplace transform techniques to find its
exact value.

&N
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Question 1
Use Laplace transforms to solve the following differential equation
d*y

dy
—— 422 4y =0, 0+)=1, 7)=0.
XA y(0+) y(7)
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Question 2
Use Laplace transforms to solve the following differential equation
d’y  dy

dy
t—+—+4ty=0, 0)=1, —(0)=0.
A v(0) (0

y(1)=70(21)
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Question 3

Use Laplace transforms to solve the following differential equation

d*y  dy dy
——x—+y=1, y(0)=1, —(0)=2.
2ty y(0) dx( )
y(x)=2x+1
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Question 4

The function u =u (1, y) satisfies the partial differential equation

ou du
—+ =

—+y— , 120, >0,
ot "~ dy 4 Y

subject to the following conditions

i u(0,y)=1+y*, y>0.
ii. u(7,0)=1, ¢20.
Use Laplace transforms in ¢ to show that

u(t,y)=1+y=ye '+ yze_Zt.
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Question 5

The function z = z(x,t) satisfies the partial differential equation

ou 0z
—=2—"+z, x20, =20,
ax ot

subject to the following conditions
i z(x0)=6e7", x>0.

ii. z(x,7), is bounded forall x>0 and #>0.

Find the solution of partial differential equation by using Laplace transforms.
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Question 6
0(x)=8sin(27x), 0<x<1

The above equation represents the temperature distribution @ °C, maintained along

the 1 m length of a thin rod.

At time ¢t =0, the temperature @ is suddenly dropped to =0 °C at both the ends of
the rod at x=0, and at x=1, and the source which was previously maintaining the

temperature distribution is removed.

The new temperature distribution along the rod (x,1), satisfies the heat equation

2
90 _% 0<x<l1, r20.

- s

ox> ot

Use Laplace transforms to determine an expression for 6(x,7).

[ 1.|6(x.0) =8¢ "sin(27x)
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Question 7

The temperature &(x,7) in a semi-infinite thin rod satisfies the heat equation

20 _oo

= , x=20, t=0.
x> ot

The initial temperature of the rod is 0 °C, and for >0 the endpoint at x=0 is
maintained at T °C.

Assuming the rod is insulated along its length, use Laplace transforms to find an
expression for 49(x,t) )

You may assume that
e_*/; =erfc (—1 j
s 2\/;

o [l[f(k s)] :%f(éj , where k is a constant.

° El
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Question 8

The function x= f () satisfies the differential equation

d’x
—+x=tH(t—a), t 20,
2 (t-a)

where H(7) is the Heaviside function and a is a positive constant.
Use Laplace transforms followed by inversion using complex variable to show that

x=tH(t—a)—H(t—a)sin(r—a)+a H(r—a)cos(t—a).

proof

Created by T. Madas



Created by T. Madas

Question 9

The function x, = f(¢,n) satisfies the differential equation
2

td—;+(1—t)@+nx=0, t>20, ne N,
dt dt

Use Laplace transforms in ¢, followed by inversion using a unit circle contour, to
show that

X, =— —|t' ¢

Ldr _
"_z! dt”(n t)'

You may assume that

st n
e t . ;
1ds:—(27£1), where C:s=e'? —r<oco<r
o 0!
c

proof

9 © Wukeriig &y omrtex v s
& LG sty
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Question 10

The function y = y(t), +20 satisfies the following equation.

d? '
_2y —y+ zj sin(t—u) y(u) du = cost.
dt 0

Use Laplace transforms to show that

y(r)=sin (%jsinh (%j .

proof
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Question 11

The one dimensional heat equation for the temperature, T (x,7), satisfies

2
a_T:la_T’ IZO,
ax2 o ot

where ¢ is the time, x is a spatial dimension and o is a positive constant.

The temperature T (x,£) is subject to the following conditions.

i lim[T(xr)]=0

X—>00
ii. 7(0,1)=1
iii. 7(x.0)=0

a) Use Laplace transforms to show that

L|T(xt)] =T (xs) = %exp{—\/g x}.

b) Use contour integration to show further that

T(x.t) = l—erf[i} :

dot

You may assume without proof that
e} 2 2
o j e " coskx dxz‘/i exp p k-
0 4a 4a
2 [* 2
. erf(x)z—j et dé
Jz ),

proof

[ solution overleaf ]
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