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Summary on Legendre Functions/Polynomials

Legendre’s Differential Equation

d*y  dy
(l—xz)?—Zxaﬂa(n—l)y:O, neR.

General Solution of Legendre’s Differential Equation

y:Al:l_(n+l)nx2+(n+3)(n+1)n(n—2) K _(n+5)(n+3)(n+1)n(n—Z)(n—4) x6+..]
2! 4! 6!

_|_
B[x_(n+2)(n—l) E +(n+4)(n+2)(n—l)(n—3) 5 _(n+6)(n+4)(n+2)(n—1)(n—3)(n—5) J +j|

3! 3! 7!

e If n is an even integer, the first solution terminates after a finite number of
terms, while the second one produces an infinite series.

e If n is an odd integer, the second solution terminates after a finite number of
terms, while the first solution produces an infinite series.

e The finite solutions are the Legendre Polynomials, also known as solutions of
the first kind, denoted by P, (x).

e The infinite series solutions are known as solutions of the second kind,
denoted by Q, (x).

The second solution @, (x) can be written in terms of P, (x) by

0,(x)=P,(x) 1 dx

(1-22) (B (1))’
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The infinite series form for the Legendre’s polynomial P, (x) is given by

_ N (2n-2k)! _1\F 2k
P"(x)_ZL"k!(n—k)!(n—2k)!( ) ;

k=0

where N is the floor function

%n if n is even
N =
1(n-1) ifnisodd

The generating function for the Legendre’s polynomial P, (x) is given by

o)

(1—2xt+t2)_% = Z[r” P, (x)}

n=0
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Question 1

Find the two independent solutions of Legendre’s equation

d* d
(1—x2)ﬁ—2xd—i}+n(n+l)y=0, ne R.

A_l_(n+l)nx2+(n+3)(n+1)n(n—2) x4_(n+5)(n+3)(n+l)n(n—2)(n—4) x6 +}

B_x_(n+2)(n—l) E +(n+4)(n+2)(n—l)(n—3) E _(n+6)(n+4)(n+2)(n—l)(n—3)(n—5) J +]

2! 4! 6!

_|_

3! 3! 7!
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Question 2

Legendre’s equation is given below

——2t—+n(n+1)w=0, ne N.

d*w dw
(1_t2) dt* dt

a) By assuming a series solution of the form

[e]

w(t)zz a. t", ay#0,
r=0

show by a detailed method that

(n—r)(n+r+l)a
(r+2)(r+l) a

Arip =

b) By rewriting the recurrence relation of part (a) backwards, and taking the
value of a, as

H" 2n—2m+1
an: %’
m=1 J

show further that the Legendre’s polynomials P,

n

_ . (2n—2k)! Yk =2k
P”(t)_Z{znk!(n—k)z(n—zk)!( o

k=0

(¢) can be written as

where N is the floor function

%n if n is'even
N =
L(n-1) ifnisodd

proof

[ solution overleaf ]
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Question 3

It can be shown that the Legendre’s polynomials P,(x) can be written as

_ N (2n—2k)! 1k n2k
P"(x)_ZL”k!(n—k)!(n—Zk)!( T

k=0

where N is the floor function

n if n is even
N = !
5(n—1) ifnis odd

Show that the generating function for P,(x) satisfies

(1 ~ 2t +17 )_é = Z[r”Pn (x)} :

proof

Created by T. Madas



Created by T. Madas

Question 4

The generating function for the Legendre’s polynomials P, (x), satisfies

(o)

(l—2xt+t2)_£ = Z[r”Pn (x)].

n=0

Use this relationship to prove that
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Question 5

The generating function g(x,7) for the Legendre’s polynomials P, (x), satisfies

[

g(x1)= (1—2xt+t2 )_7 = Z[t"Pn (x)}

n=0

—

Use this relationship to prove that

%[g(x,t):|+%[g(x,t):| = xl:g(x,t):|3.

, |proof
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Question 6
f(x)= 10x° =3x% + x—1.
Express f(x) as a linear combination of Legendre’s polynomials, P,(x).

You may assume

e P(x)=1

* R(x)=x

o B(x)=%(3x7-1)

o Py(x)=4(5x"-3x),

o Py(x)=4(35x" 30 +3)

f(x)=4B5(x) 2P (x) + 7R (x) - 2R (x)
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Question 7

The generating function for the Legendre’s polynomials P, (x), satisfies

(o)

(l—2xt+t2)_£ = Z[r”Pn (x)].

n=0

By differentiating the above relationship with respect to ¢, prove that

(2n+1)x P, (x)—(n+1) P (x)+n B, (x)=0.

, |proof
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Question 8
The generating function for the Legendre’s polynomials P, (x), satisfies

(o)

(l—2xt+t2)_£ = Z[r”Pn (x)].

n=0

By separately differentiating the above relationship once with respect to ¢ and once

with respect to x, prove that

n B, (x)=xF(x)=F(x).

, |proof
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Question 9

The generating function for the Legendre’s polynomials P, (x), satisfies

(o)

_1
(1—2xt+t2) y = Z[r”Pn (x)].
n=0
a) Use this result to show that
P, (1)=1.

b) By using the result of part (a) and Legendre’s equation, deduce that

B (1)=%n(n+1).
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Question 10

Use trigonometric identities to show that

sin” @ =%P4 (cos®) —12—61P2 (cos 0)+%P0 (cos®)

You may assume

o B(x)=1

* R(x)=x

o« P(x)=1(3-1)
o Px)=L(5x'-3x),

o« Py(x)=4(35x*-304+3)

proof
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Question 11

The generating function g(x,7) for the Legendre’s polynomials P, (x), satisfies

[

g(x)=(1-2u+) 2 = Z[ﬂpn(x)]

n=0

—

Verify that g = g(x,#) is a solution of the differential equation

92 0 2\ 0g
ta7[tg]+$[(l—x )$j|:()

proof
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Question 12

The generating function for the Legendre’s polynomials P, (x), satisfies

b) By using the result of part (a) and Legendre’s equation, deduce that

P (1) =La(n+1)(-1)""".

D=

, |proof
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Question 13

The Legendre’s polynomial P, (x) is a solution of the differential equation

2
(l—xz)%—2x%+n(n+l)y=0, nelR.
Show that
1 X
p,;(x):”(“z)j P (x) dv
1—x 1

proof
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Question 14
The generating function for the Legendre’s polynomials P, (x), satisfies

(o)

(l—2xt+t2)_£ h Z[r”Pn (x)].

n=0

a) By differentiating the above relationship with respect to ¢, prove that

(2n+1)xP,(x)=(n+1)Py(x)+nP,_ (x).

b) By separately differentiating the generating function for the Legendre’s
polynomials once with respect to ¢ and once with respect to x, prove that

nk, (x)=xh, (x)=Fy ().

¢) Use parts (a) and (b) to show that

(2n+1) B, (x) = By (x) + By ().

d) Use parts (b) and (c) to deduce that

(n+1) B, (x) = By (x) - x By (x).

proof
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Question 15
The generating function for the Legendre’s polynomials P, (x), satisfies

Use this result to show that ...

... if n is even, P,(x) is an even polynomial in x.

.. if 1 is odd, P,(x) is an odd polynomial in x.

proof
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Question 16

The generating function for the Legendre’s Polynomials P,(x), satisfies

n=0
a) Use this result to show that
-1)"(2n)!
P,y (0)= LG
27" n!

b) Deduce the value of P, (0).

Il
(=)

P2n+l (O)
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Question 17

Legendre’s equation is given below

d* d
(l—xz)ﬁ—2xd—i+n(n+l)y=0, ne R.

Use the substitution x =cos @ to show that

_1 4 ﬂsin& +n(n+1)y=0.
sind d@| do

proof
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Question 18
Find the two independent solutions of Legendre’s equation

(1—x2)d—?—2xﬂ+2y:0.

dx dx
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Question 19

The generating function for the Legendre’s Polynomials P,(x), satisfies

Using this result, and integrating both sides with respect to 7, from 0 to 1, show that
[P (cos@
E {M} =In [1 + cosec (%9)} ;
n+l
n=0

proof
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Question 20

The generating function g for the Legendre’s polynomials P, (x), satisfies

(o)

g(x.1) =(1-2x;+t2)'5 = Z[t"pn(x)]

n=0

a) By differentiating g with respect to 7, prove that
(2n+1)xB,(x)=(n+1) P (x)+n P4 (x).

b) By differentiating g once with respect to ¢ and once with respect to x, prove
that

nF, (x)=xF(x)=F ().

¢) Use parts (a) and (b) to show that

(2n41) B, (x) = Bra (x) + By ().
d) Use parts (b) and (c) to deduce that

(n+1) B, (x) = B (x) = x B (x).
e) Use parts (b) and (d) to show that

(1-%) B (x) =n[ B, () - x B, (x)].

f) Use parts (a) and (e) to show that

(1= %) B (x) = (n+ D[ 5B, (%)= By (x)]

proof

[ solution overleaf ]
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Question 21

Find one series solution for the Legendre’s equation

d* d
(1—x2)ﬁ—2xd—i}+n(n+l)y=0, nelR,

about x=1.
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