The Talk Com I. V. C. B. Madasman I. V. C. B. Madas Masmaths com I. V. C.B. Madasmaths com I. V. C.B. Manasma

LIMITS BY STANDARD PANSIONS LIMITS B STANDARD EXPANSIONS THE REAL PROPERTY OF THE PROPERT On I.V.G.B. Madasmaths.com I.V.G.B. Madasm M I. F. G.B. Mallasmarks. com I. F. G.B. Manhaga

Question 1 (***)

- a) Write down the first two non zero terms in the expansions of $\sin 3x$ and $\cos 2x$.
- b) Hence find the exact value of

$$\lim_{x \to 0} \left[\frac{3x \cos 2x - \sin 3x}{3x^3} \right]$$

$$\boxed{\sin 3x \approx 3x - \frac{9}{2}x^3}, \boxed{\cos 2x \approx 1 - 2x^2}, \boxed{-\frac{1}{2}}$$

Question 2 (***)

Use standard expansions of functions to find the value of the following limit.

$$\lim_{x \to 0} \left[\frac{\cos 7x - 1}{x \sin x} \right].$$

Question 3 (***)

Use standard expansions of functions to find the value of the following limit.

$$\lim_{x \to 0} \left[\frac{e^{5x} - 5x - 1}{\sin 4x \sin 3x} \right].$$

Question 4 (***)

Use standard series expansions to evaluate the following limit.

$$\lim_{x \to \infty} \left[x - x^2 \ln \left[x + \frac{1}{x} \right] \right].$$

Question 5 (***)

By considering series expansion, determine the value of the following limit.

$$\lim_{x \to 0} \left[\frac{2x - x\sqrt{x+4}}{\ln\left(1 - 3x^2\right)} \right]$$

$$\frac{1}{12}$$

```
\begin{array}{c} (CL)(C) & \text{STR-IDARD EXPANSIONS} \\ & \text{In}(1+x) = x - \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{1}{2}x^2 + O(2) \\ & \text{In}(1+x) = (ax) - \frac{1}{2}(ax)^2 + \frac{1}{2}(ax)^4 + O(2) \\ & \text{In}(1+x) = (ax) - \frac{1}{2}(ax)^2 + \frac{1}{2}(ax)^4 + O(2) \\ & \text{In}(1+x) = (a+1)^{\frac{1}{2}} = \frac{1}{2}(ax)^2 + O(2) \\ & = 2\left[1 + \frac{1}{2}(4x)^2 + \frac{1}{2}(4x)^2 + O(2)\right] \\ & = 2\left[1 + \frac{1}{2}(4x)^2 + \frac{1}{2}(4x)^2 + O(2)\right] \\ & = 2\left[1 + \frac{1}{2}(4x)^2 + \frac{1}{2}(4x)^2 + O(2)\right] \\ & = 2\left[1 + \frac{1}{2}(4x)^2 + \frac{1}{2}(4x)^2 + O(2)\right] \\ & = 2\left[1 + \frac{1}{2}(4x)^2 + \frac{1}{2}(4x)^2 + O(2)\right] \\ & = 2\left[1 + \frac{1}{2}(4x)^2
```

Question 6 (***+)

Use standard expansions of functions to find the value of the following limit.

$$\lim_{x \to 0} \left[\frac{\cos^2 3x - 1}{x^2} \right].$$

Question 7 (***+)

Use standard expansions of functions to find the value of the following limit.

$$\lim_{x \to 0} \left[\frac{\ln(1-x)}{\sin^2 x} + \csc x \right].$$

$$-\frac{1}{2}$$

Question 8 (****+)

Use standard expansions of functions to find the value of the following limit.

$$\lim_{x \to 0} \left[\frac{e^x \sqrt{x^2 + 2x + 4} - 2}{x} \right].$$

No credit will be given for using alternative methods such as L' Hospital's rule.

L'HOSPITAL RULE RUL On A.K.G.B. Madasmaths.com A.K.G.B. Madasm The A. F. C.B. Madasmaths com I. V. C.B. Madasa

Question 1 (**)

Find the value of the following limit

$$\lim_{x \to 0} \left[\frac{x \cos x}{x + \arcsin x} \right].$$

Question 2 (**+)

Find the value of the following limit

$$\lim_{x \to \infty} \left[x \left(2^{\frac{1}{x}} - 1 \right) \right].$$

Question 3 (***)

Find the value of the following limit

$$\lim_{x \to 0} \left[\frac{\cos^2 3x - 1}{x^2} \right].$$

Question 4 (***)

Find the value of the following limit

$$\lim_{x \to 0} \left[\frac{\cos 7x - 1}{x \sin x} \right].$$

$$-\frac{49}{2}$$

$$\begin{array}{ll} \lim_{\Omega \to 0} \left\lfloor \frac{\log \overline{\Omega}_{\varepsilon}}{\Omega \log \Omega_{\varepsilon}} \right\rfloor & \operatorname{Grids} \stackrel{\circ}{\circ} \\ \dots & \operatorname{Re} \left\lfloor \frac{1}{2} \operatorname{degree} \right\rfloor & \operatorname{Grids} \stackrel{\circ}{\circ} \\ \dots & \operatorname{Re} \left\lfloor \frac{1}{2} \operatorname{degree} \right\rfloor & \operatorname{Grids} \left\lfloor \frac{1}{2} \operatorname{degree}$$

(***) Question 5

Use L'Hospital's rule to find the value of the following limit

$$\lim_{x \to 0} \left[\frac{\tan x - x}{\sin 2x - \sin x - x} \right].$$

Question 6 (***+)

Show clearly that the following limit converges to 1.

$$\lim_{x\to\infty} \left[\sqrt[x]{x}\right]$$

You must justify the evaluation.

Question 7 (****)

If $p \in (0, \infty)$, show that

$$\lim_{x \to 0^+} \left[x^p \ln x \right] = 0, \quad x \in (0, \infty).$$

, proof

```
The limit is of the type (860) \times (-arbitry) so it can be imposed to the continuity of the limit \frac{1}{2} \log \frac{1}{2
```

(****) **Question 8**

Find the value of the following limit

$$\lim_{x \to 0} \left[\frac{e^{5x} - 5x - 1}{\sin 4x \sin 3x} \right].$$

Question 9 (****)

Find the value of the following limit

$$\lim_{x\to 0+} \left[x^{-\sin x} \right].$$

Question 10 (****+)

Find the value of the following limit

$$\lim_{x \to 0} \left[\frac{\sin\left(\pi \cos^2 x\right)}{x^2} \right]$$

 π

$$\begin{array}{c} \lim_{\chi \to 0} \frac{\sin[\pi \log^2\chi]}{2^2} = \dots \underbrace{\frac{\sin \pi}{o}} = \frac{o}{o} \quad \text{After it historic give} \\ \lim_{\chi \to 0} \frac{\cos[\pi \log^2\chi] \times \left[-2\pi \cos \lim_{\chi \to 0}\right]}{2\chi} = \frac{o}{o} \quad \text{They if Arry } \\ \lim_{\chi \to 0} \frac{\sin[\chi]}{2\chi} = \frac{1}{o} \underbrace{\frac{\sin[\chi]}{2} \cos[\pi \log^2\chi]}_{\chi \to 0} = \frac{\pi}{o} \underbrace{\frac{\sin[\chi]}{2} \cos[\pi \log^2\chi]}_{\chi \to 0} = \frac$$

Question 11 (****+)

Find the value of the constant k, given that

$$\lim_{x \to 2} \left\{ \frac{\left[x^2 + (k-2)x - 2k \right] \tan(x-2)}{x^2 - 4x + 4} \right\} = 5$$

k = 3

Question 12 (****+)

Show with detailed workings that

$$\lim_{x \to \infty} \left[\left(1 + \frac{a}{x} \right)^{bx} \right] = e^{ab}.$$

, proof

Question 13 (*****)

Find the value of the following limit

$$\lim_{x \to \pi} \left[\frac{\sin^2 x - \tan^2 x}{\left(x - \pi\right)^4} \right].$$

<u>-1</u>

Question 14 (*****)

$$L = \lim_{x \to 0} \left[\frac{a - \sqrt{a^2 - x^2} - \frac{1}{4}x^2}{x^4} \right], \ a > 0.$$

Given that L is finite, determine its value.

<u>1</u>

Question 15 (*****)

Find the value of the following limit

$$\lim_{y \to 0} \left[\frac{1}{y^4} \int_0^y \sin^3 x \ dx \right].$$

 $\frac{1}{4}$

Casmaths com L. V.C.B. Madasmaths com L. V.C.B. Manasma

Question 1 (**)

Find the value of the following limit

$$\lim_{x \to \infty} \left[\frac{3x^2 + 7x - 1}{x^2 + 5} \right].$$

3

Question 2 (**)

Find the value of the following limit

$$\lim_{x \to 2} \left[\frac{x^3 - x^2 - x - 2}{x - 2} \right].$$

Question 3 (**+)

Find the value of the following limit

$$\lim_{x \to 3} \left[\left(\frac{1}{x} - \frac{1}{3} \right) \left(\frac{1}{x - 3} \right) \right].$$

 $-\frac{1}{9}$

Question 4 (**+)

Given that n is a positive integer determine

$$\lim_{x \to 0} \left[\frac{x^n e^x}{1 - e^x} \right].$$

Question 5 (***)

Find the value of the following limit

$$\lim_{x \to 2} \left[\frac{x^3 - 8}{x - 2} \right]$$

You may not use the L' Hospital's rule in this question.

12

Question 6 (***)

Find the value of the following limit.

$$\lim_{x \to \infty} \left[\sqrt{x+5} - \sqrt{x} \right].$$

(***) Question 7

Find the value of the following limit.

$$\lim_{x \to \infty} \left[x\sqrt{x^2 + 1} - \sqrt[3]{x^3 + 1} \right].$$

$$\frac{1}{2}$$

Question 8 (***)

The Fibonacci sequence is given by the recurrence formula

$$u_{n+2} = u_{n+1} + u_n$$
, $u_1 = 1$, $u_2 = 1$.

It is further given that in this sequence **the ratio of consecutive terms** converges to a limit ϕ , known as the *Golden Ratio*.

Show, by using the above recurrence formula, that $\phi = \frac{1}{2}(1+\sqrt{5})$.

, proof

Question 9 (***+) Limits

Evaluate the following limit.

$$\lim_{x \to 0} \left[\frac{1}{x\sqrt{1+x}} - \frac{1}{x} \right].$$

You may NOT use L'Hospital's rule in this question

Question 10 (***+)

$$f(n) = 2^{2^{2^n}}, n \in \mathbb{R}$$
 and $f(n) = 1000^{1000^n}, n \in \mathbb{R}$.

Determine whether or not $\lim_{n\to\infty} \left[\frac{g(n)}{f(n)} \right]$ exists.

$$\lim_{n\to\infty} \left[\frac{g(n)}{f(n)} \right] = 0$$

Show clearly without the use of any calculating aid that

$$\sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}} = k$$

where k is an integer to be found.

k = 3

Question 12 (***+)

$$\sqrt{x+2+\sqrt{x+2+\sqrt{x+2+\sqrt{x+2+...}}}}$$
,

It is given that the above nested radical converges to a limit $L, L \in \mathbb{R}$.

Determine the range of possible values of x.

$$x \ge -\frac{9}{4}$$

Question 13 (***+)

$$\sqrt[3]{4+2\sqrt[3]{4+2\sqrt[3]{4+2\sqrt[3]{4+...}}}}$$

Given that the above nested radical converges, determine its limit.

Question 14 (****)

Find the value of the following limit

$$\lim_{x \to 4} \left[\frac{x^2 - 16}{\sqrt{x} - 2} \right]$$

You may not use the L' Hospital's rule in this question.

$$\begin{bmatrix} \lim_{\lambda \to \beta_1} & \frac{2^k - 16}{\sqrt{2^k - 1}} \end{bmatrix} = \underbrace{\lim_{\lambda \to \beta_1} \left[\frac{(\lambda - 1)(\lambda + \mu)}{\sqrt{2^k - 2}} \right]}_{2 \to 3}$$

$$= \underbrace{\lim_{\lambda \to 3} \left[\frac{(\lambda - 2)(\lambda + \mu)}{\sqrt{2^k - 2}} \right]}_{2 \to 2}$$

$$= \underbrace{\left(\lambda 6^k + 2\right)(\lambda + \mu)}_{2 \to 2} + \frac{1}{2} \times 8 = 32$$

Question 15 (****)

Find the value of each of the following limits.

- $\mathbf{a)} \quad \lim_{x \to 1} \left[\frac{1 \sqrt{x}}{1 x} \right].$
- $\mathbf{b)} \quad \lim_{x \to 0} \left[\frac{\sin(kx)}{\sin x} \right].$

You may not use the L' Hospital's rule in this question.

32

Question 16 (****)

Find the value of the following limit

$$\lim_{x\to 0} \left[\frac{\sqrt{x+4}-2}{x(x+1)} \right].$$

You may not use the L' Hospital's rule in this question.

 $\frac{1}{4}$

Question 17 (****)

The function f is defined as

$$f(x) \equiv \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + \dots}}}}$$
, $x \in (0, \infty)$.

Determine the value of

$$\int_0^2 f(x) \ dx \ .$$

 $\frac{19}{6}$

Question 18 (****+)

Find the value of the following limit

$$\lim_{x \to \infty} \left[\sqrt{x^2 + 5x} - x \right].$$

Question 19 (****+)

Find the value of the following limit

$$\lim_{n\to\infty} \left[\left(1 + \frac{1}{n} \right)^n \right]$$

e

Question 20 (****+)

Use two distinct methods to evaluate the following limit

$$\lim_{x \to 8} \left[\frac{\sqrt[3]{x} - 2}{x^2 - 9x + 8} \right].$$

 $\frac{1}{84}$

Question 21 (****+)

Find the value of the following limit

$$\lim_{x \to 0} \left[\frac{(8 + \cos x)(1 - \cos 2x)}{x \tan 3x} \right]$$

You may not use the L' Hospital's rule in this question.

(****+) **Question 22**

Use two distinct methods to evaluate the following limit

$$\lim_{x \to 1} \left[\frac{\sqrt{x^2 + x + 3} - \sqrt{x^2 + 4}}{x^2 - x} \right]$$

Question 23 (****+)

Find the value of the following limit

$$\lim_{x \to 8} \left[\frac{\sqrt[3]{x} - 2}{x - 8} \right].$$

You may not use the L' Hospital's rule in this question.

Question 24 (****+)

By considering the limit of an appropriate function show that $0^0 = 1$.

proof

• CASIDE
$$\lim_{x \to 0} x^x = \lim_{x \to 0} \lim_{x \to 0} x^x = \lim_{x \to 0} \lim_{x \to 0} x^x = \lim_{x \to 0} \lim_{x \to$$

Question 25 (****+)

Find the value of the following limit

$$\lim_{x \to 2} \left[\frac{\sqrt{x-2} + x^2 - 3x + 2}{\sqrt{x^2 - 4}} \right]$$

You may not use the L' Hospital's rule in this question.

Question 26 (****+)

Find the value of the following limit

$$\lim_{x \to 5} \left[\frac{\sqrt{x^2 - 25} - \sqrt{x - 5}}{\sqrt{x^3 - 125}} \right].$$

You may not use the L' Hospital's rule in this question.

$$\frac{\sqrt{10}-1}{\sqrt{60}}$$

(****+) **Question 27**

Find the value of the following limit

$$\lim_{x \to \infty} \left[\sqrt{x^{2n} - x^n} - x^n \right], \ n \in \mathbb{N}.$$

Question 28 (****+)

Find the value of the following limit

$$\lim_{x \to \infty} \left[\left(1 + \frac{1}{x^2} + \frac{1}{x^2} \right)^x \right].$$

THENSE THE CULT NOW VICTOR ZERO SANG.

• Lim
$$\left(1 + \frac{1}{2k} + \frac{1}{2k}\right) = 1$$

• Lim $\left(\frac{2}{2kk} - \frac{2}{2}\right) = 0$

• $\left(\frac{2}{2kk} - \frac{2}{2}\right) = 0$

• $\left(\frac{2}{2kk} - \frac{2}{2k}\right) = 0$

Question 29 (****+)

Use two distinct methods to evaluate the following limit.

$$\lim_{x \to 1} \left[\frac{\sqrt{x+3} - 2\sqrt{x}}{\sqrt{x} - 1} \right].$$

Question 30 (****+)

Use two distinct methods to evaluate the following limit

$$\lim_{n\to\infty} \left[\sqrt{n^2 + 3n} - n \right].$$

You may not use the L' Hospital's rule in this question.

Question 31 (****+)

$$f(x) = \sqrt{1 + x^2} , x \in \mathbb{R}.$$

Use the formal definition of the derivative as a limit, to show that

$$f'(x) = \frac{x}{\sqrt{1+x^2}}.$$

proof

Question 32 (****+)

$$f(x) = \frac{1}{\sqrt{x^2 - 1}}, \ x \in \mathbb{R}, \ |x| > 1.$$

Use the formal definition of the derivative as a limit, to show that

$$f'(x) = -\frac{x}{\left(x^2 - 1\right)^{\frac{3}{2}}}.$$

proof

Question 33

*+)
$$f(x) = \frac{1}{x^{100} + 100^{100}} \sum_{r=1}^{100} (x+r)^{100}, x \in \mathbb{R}.$$
I to find
$$\lim_{x \to \infty} f(x).$$

Use a formal method to find

$$\lim_{x\to\infty}f(x).$$

(****+) Question 34

Find the value of the following limit

$$\lim_{x \to 0} \left[\frac{1 - \cos\left(x^2\right)}{x^2 \tan^2 x} \right].$$

Question 35 (*****)

$$f(x) = \sqrt{\frac{1-x}{1+x}}, \ x \in \mathbb{R}, \ |x| < 1.$$

Use the formal definition of the derivative as a limit, to show that

$$f'(x) = -\frac{1}{(1+x)\sqrt{1-x^2}}$$

proof

Question 36 (*****)

Solve the following equation over the set of real numbers.

$$\lim_{x \to \infty} \left[\left(\frac{x+a}{x-a} \right)^{ax} \right] = \sqrt[e]{e^2} .$$

You may assume that the limit in the left hand side of the equation exists.

You must clearly state any results used in the solution.

$$a = \pm e^{-\frac{1}{2}}$$

Question 37 (*****)

It is given that for some real constants a and b,

$$\lim_{x \to +\infty} \left[\sqrt{x^2 - 2x + 2} - (ax + b) \right] = 2, \ x \in \mathbb{R}, \ x > 0.$$

Determine the value of a and the value of b.

$$a = 1$$
, $b = -3$

Question 38 (*****)

Determine the exact value of the following limit.

$$\lim_{h \to 0} \left[\frac{1}{h} \left[\int_{\frac{1}{6}\pi}^{\frac{1}{6}\pi + h} \frac{\sin x}{x} \, dx \right] \right]$$

You must justify the evaluation.

(****) **Question 39**

Evaluate the following limit.

$$\lim_{h \to 0} \left[\int_{\frac{1}{6}\pi}^{\frac{1}{6}\pi + h} \frac{2\sqrt{\sin x}}{\pi h} \ dx \right]$$

Question 40 (*****)

a) Use L'Hospital's rule to evaluate

$$\lim_{x \to 0} \left[\frac{\sqrt[3]{1 + \sin 3x} - \sqrt[3]{1 - \sin 3x}}{x} \right].$$

b) Verify the answer to part (a) by an alternative method.

You must state clearly any additional results used.

, [2

Question 41 (*****)

The positive solution of the quadratic equation $x^2 - x - 1 = 0$ is denoted by ϕ , and is commonly known as the golden section or golden number.

This implies that $\phi^2 - \phi - 1 = 0$, $\phi = \frac{1}{2} (1 + \sqrt{5}) \approx 1.62$.

Show, with full justification, that

$$\lim_{x \to \infty} \left[x \left(x^{\phi} + 1 \right)^{1 - \phi} \right] = 1.$$

____, proof

Question 42 (*****)

A curve has equation y = f(x).

The finite region R is bounded by the curve, the x axis and the straight lines with equations x = a and x = b, and hence the area of R is given by

$$I(a,b) = \int_a^b f(x) \ dx.$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f(x_i)$, known as a "right (upper) Riemann sum"

$$I(a,b) = \lim_{n\to\infty} \left[\sum_{i=1}^{n} \left[f(x_i) \delta x \right] \right],$$

where $\delta x = \frac{b-a}{n}$ and $x_i = a + i \, \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

$$\int_{0}^{1} x^{2} dx = \frac{1}{3}.$$

_____, proof

Question 43 (*****)

The Lambert W function, also called the omega function or product logarithm, is a multivalued function which has the property

$$W(xe^x) \equiv x,$$

and hence if $xe^x = y$ then x = W(y).

For example

$$-xe^{-x} = 2 \implies -x = W(2)$$
, $(x+\pi)e^{x+\pi} = \frac{1}{2} \implies x+\pi = W(\frac{1}{2})$ and so on.

Use this result to show that the limit of

$$\ln\left(e+\ln\left(e+\ln\left(e+\ln\left(e+...\right)\right)\right)\right)$$

is given by

$$-e-W[-e^{-e}].$$

Question 44 (*****)

No credit will be given for using L'Hospital's rule in this question.

a) Use the formal definition of the derivative of a suitable expression, to find the value for the following limit

$$\lim_{x \to 4} \left[\frac{\sqrt{x^3} + 2\sqrt{x} - 12}{x - 4} \right]$$

b) Verify the answer to part (a) by an alternative method.

Question 45 (*****)

Use the formal definition of the derivative to prove that if

$$y = f(x) g(x),$$

then
$$\frac{dy}{dx} = f'(x) g(x) + f(x) g'(x)$$

You may assume that

- $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} [f(x)] + \lim_{x \to c} [g(x)]$
- $\lim_{x \to c} [f(x) \times g(x)] = \lim_{x \to c} [f(x)] \times \lim_{x \to c} [g(x)]$

Question 46 (*****)

A curve has equation y = f(x).

The finite region R is bounded by the curve, the x axis and the straight lines with equations x = a and x = b, and hence the area of R is given by

$$I(a,b) = \int_a^b f(x) \ dx.$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f(x_i)$, known as a "right (upper) Riemann sum"

$$I(a,b) = \lim_{n\to\infty} \left[\sum_{i=1}^{n} [f(x_i) \delta x] \right],$$

where $\delta x = \frac{b-a}{n}$ and $x_i = a + i \, \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

$$\int_{3}^{6} x^{2} dx = 63.$$

, proof

Question 47 (*****)

A curve has equation y = f(x).

The finite region R is bounded by the curve, the x axis and the straight lines with equations x = a and x = b, and hence the area of R is given by

$$I(a,b) = \int_a^b f(x) \ dx.$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f(x_i)$, known as a "right (upper) Riemann sum"

$$I(a,b) = \lim_{n\to\infty} \left[\sum_{i=1}^{n} \left[f(x_i) \delta x \right] \right],$$

where $\delta x = \frac{b-a}{n}$ and $x_i = a + i \, \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

$$\lim_{n\to\infty} \left\lceil \sqrt[n]{\frac{n!}{n^n}} \right\rceil = \frac{1}{e}.$$

, proof

Question 48 (*****)

Use Leibniz rule and standard series expansions to evaluate the following limit

$$\lim_{x \to 0} \left[\frac{1}{x^3} \int_0^x \frac{t \ln(t+1)}{t^4 + \frac{1}{6}} dt \right]$$

Question 49 (*****)

Determine the limit of the following series.

$$\lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \frac{1}{n+4} + \dots + \frac{1}{n+n-2} + \frac{1}{n+n-1} + \frac{1}{n+n} + \right]$$

Question 50 (****)

a) Show with detailed workings that

$$\lim_{x \to \infty} \left[\sqrt{x^2 + 2x - 1} - \sqrt{x^2 - 1} \right] = 1.$$

b) Hence determine in exact simplified form the value of

$$\lim_{x \to \infty} \left[\left(\sqrt{x^2 + 2x - 1} - \sqrt{x^2 - 1} \right)^x \right].$$

