Jordan-Gauss Talastian Elimination Vasnaths.com 1. V.C.B. Madasmaths.com 1. V.C.B. Manasmaths.com 1. V.C.B

Unique Soluta. Unique Soluta. Halasmans.com Lasmans.com Lasmans.co Casmaths com I. V.C.B. Madasmaths com I. V.C.B. Manasm

Question 1

Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$\begin{pmatrix} 1 & 1 & -3 \\ 2 & 1 & 4 \\ 5 & 2 & 16 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 4 \end{pmatrix}$$

Question 2

$$x +3y +5z = 6$$

$$6x -8y +4z = -3$$

$$3x+11y+13z = 17$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

Question 3

$$x + 5y+7z = 41$$

$$5x-4y+6z = 2$$

$$7x+9y-3z = 1$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$x = -2, y = 3, z = 4$$

Question 4

$$4x +2y+7z = 2$$

$$10x-4y-5z = 50$$

$$4x +3y+9z = -2$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$x = 4, y = 0, z = -2$$

Question 5

$$x+3y+2z=14$$

$$2x + y + z = 7$$

$$3x+2y - z = 7$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$x = 1, y = 3, z = 2$$

Question 6

$$2x+5y+3z = 2$$
$$x+2y+2z = 4$$
$$x+y+4z=11$$

Solve the above simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$x = 12, y = -5, z = 1$$

$$\begin{pmatrix} 2 & 5 & 3 & 2 \\ 1 & 2 & 2 & 4 \\ 1 & 1 & 4 & 11 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 5 & 3 & 2 \\ 1 & 1 & 4 & 11 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 5 & 3 & 2 \\ 1 & 1 & 4 & 11 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 5 & 3 & 2 \\ 1 & 1 & 4 & 11 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 1 & 4 \end{pmatrix} \xrightarrow{C_2} \begin{pmatrix} 1 &$$

Question 7

$$2x + y - z = 3$$
$$x+3y + z = 2$$
$$3x+2y-3z = 1$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$x = 3$$
, $y = -1$, $z = 2$

Question 8

Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 3 & 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

$$x = 3, y = -1, z = 0$$

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & 3 & 2 \\ 3 & 5 & 3 & 4 \end{pmatrix} \underbrace{f_{2}(c_{3})}_{G_{2}(c_{3})} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 2 & 1 \\ 0 & -1 & 0 & 1 \end{pmatrix}}_{G_{2}(c_{3})} \underbrace{f_{2}(c_{3})}_{G_{2}(c_{3})} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 2 & 1 \\ 0 & -1 & 0 & 1 \end{bmatrix}}_{G_{2}(c_{3})} \underbrace{f_{2}(c_{3})}_{G_{2}(c_{3})} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}}_{G_{2}(c_{3})} \underbrace{f_{2}(c_{3})}_{G_{2}(c_{3})} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}}_{G_{2}(c_{3})}$$

Question 9

$$x+3y+2z=13$$

$$3x+2y-z=4$$

$$2x + y + z=7$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$x = 1$$
, $y = 2$, $z = 3$

Question 10

Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \\ 8 \end{pmatrix}$$

$$x = 2$$
, $y = -1$, $z = 4$

$$\begin{array}{c} \text{Trice}(A) \text{Trice}(A) \text{Trice}(A) \\ \begin{pmatrix} 1 & 1 & 1 & 5 \\ 2 & 1 & 2 & 8 \\ 1 & 2 & 2 & 8 \end{pmatrix}, \begin{array}{c} \Gamma_0(z_3) \\ \Gamma_0(z_3) \\ \Gamma_0(z_3) \\ 0 & 1 & 1 & 3 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 &$$

Question 11

$$x +5y+7z = 41$$

$$5x-4y+6z = 2$$

$$7x+9y-3z = k$$

Use the Jordan Gauss algorithm to determine the solution of the above system of simultaneous equations, giving the answers in terms of the constant k.

Non-Unique Solutions Madasman NonMadasmaths com L. K.C.B. Madasmaths com L. K. Casmaths com I. V.C.B. Madasmaths com I. V.C.B. Manasm

Question 1

$$x+y+2z = 2$$

$$2x-y+z=-2$$

$$3x+y+4z = 2$$

Show, by reducing the augmented matrix of the above system of equations into row echelon form, that the solution can be written as

$$x = -t$$
, $y = 2 - t$, $z = t$

where t is a scalar parameter.

Question 2

$$x+2y+z=1$$

$$x+y+3z=2$$

$$3x+5y+5z=4$$

Show that the solution of the above simultaneous equations is

$$x = 3 - 5t$$
, $y = 2t - 1$, $z = t$

where t is a parameter.

Question 3

$$3x-2y-18z=6$$
$$2x + y -5z = 25$$

Show, by reducing the above system of equations into row echelon form, that the solution can be written as

$$\mathbf{r} = 8\mathbf{i} + 9\mathbf{j} + \lambda (4\mathbf{i} - 3\mathbf{j} + \mathbf{k}),$$

where λ is a scalar parameter.

proof

 $\begin{pmatrix} 2 & 1 & -5 & 2\xi \\ 5 & -2 & -18 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}\xi \\ 3 & -2 & -18 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}\xi \\ 3 & -2 & -18 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}\xi \\ 3 & -2 & -18 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -4 &$

Question 4

$$x + y - 2z = 2$$

$$3x - y + 6z = 2$$

$$6x+5y-9z=11$$

Show, by reducing the above equation system into row echelon form, that the consistent solution of the system can be written as

$$x = 1 - t$$
, $y = 3t + 1$, $z = t$

where t is a scalar parameter.

Question 5

$$3x - y - 5z = 5$$
$$2x + y - 5z = 10$$
$$x + y - 3z = 7$$

Show, by reducing the above system into row echelon form, that the consistent solution of the system can be written as

$$x = 2t + 3$$
, $y = t + 4$, $z = t$.

Question 6

$$x+5y+2z=9$$
$$2x-y+2z=4$$

Show, by reducing the above system of equations into row echelon form, that the solution can be written as

$$x = A\lambda + B$$
, $y = C\lambda + D$, $x = E\lambda + F$

where A, B, C, D, E and F are integers, and λ is a scalar parameter.

$$V$$
, $x = 12\lambda + 7$, $y = 2\lambda + 2$, $z = -11\lambda - 4$

$$\begin{array}{c} 2x + 5y + 2z = 9 \\ 2x - 9 + 2z = 4 \\ \bullet & \begin{array}{c} 2x + 5y + 2z = 9 \\ 2x - 9 + 2z = 4 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2 + 7 \\ \end{array} \\ \begin{array}{c} 2x - 2x - 2x - 7 \\ \end{array}$$

Question 7

$$x + y + z = 0$$
$$2x+4z+w=-1$$
$$3x+2y+4z+w=0$$

Find a general solution of the above system of simultaneous equations.

Alls com I Kep Male Cramer's Rule Malls com I Kep Males Males Males Com I Kep Tasmaths.com L. V.C.B. Madasmaths.com L. V.C.B. Manasmaths.com L. V.C.B. Manasmaths.com

Question 1

Use Cramer's rule to solve the following system of simultaneous equations.

$$3x + y + 2z = 11$$
$$x + y + z = 4$$

No credit will be given for using alternative solution methods.

Question 2

Use Cramer's rule to solve the following system of simultaneous equations.

$$3x - y + z = 7$$

$$x + y + 2z = 7$$

$$x + 3y + z = 0$$

No credit will be given for using alternative solution methods.

$$x = \frac{1}{2}$$
, $y = -\frac{3}{2}$, $z = 4$

Question 3

$$x+2y+3z = 5$$
$$3x + y+2z=18$$
$$4x-y+z=27$$

Solve the above system of the simultaneous equations ...

- a) ... by manipulating their augmented matrix into reduced row echelon form.
- **b**) ... by using Cramer's rule.

$$x = 6, y = -2, z = 1$$

Question 4

$$7x +2y -3z = 30$$

 $3x +4y -5z = 14$
 $5x -3y +4z = 18$

Solve the above system of the simultaneous equations by using Cramer's rule.

$$x = 4, y = -2, z = -2$$

Question 5

$$x + y + z + w = 2$$

 $2x - y + 2z - w = 1$
 $3x + y - z - w = 1$
 $4x + 2y + 3z - 2w = 0$

Use Cramer's rule to find the value of w in the above system of the simultaneous equations

Question 6

Use Cramer's rule to find the value of x in the following system of simultaneous equations.

$$2x + y-z + t = 9$$

$$x + y+z - w - t = 0$$

$$2x - y-z + 2w + 2t = 12$$

$$x + 2y + w + t = 8$$

$$3x + z - w = 6$$

No credit will be given for using alternative solution methods.

| Dest consists the determination of the matrix of the destination of

Matrix Inv. Matrix Inv. Matrix Inv. Malasnalis com Licannalis com Licanna Casmaths com I. V.C.B. Madasmaths com I. V.C.B. Manasm

Question 1

The 3×3 matrix **C** is given below.

$$\mathbf{C} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 4 & 2 \end{pmatrix}.$$

- a) Use the standard method for finding the inverse of a 3×3 matrix, to determine the elements of ${\bf C}^{-1}$.
- **b**) Verify the answer of part (a) by obtaining the elements of \mathbb{C}^{-1} , by using a method involving elementary row operations.


```
C = \begin{bmatrix} \frac{1}{2} & \frac{2}{1} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{2} \end{bmatrix} \xrightarrow{\text{MATRY GF MAXOCS}} = \begin{bmatrix} -2 & 3 & 7 \\ 0 & 1 & -2 \\ 1 & 4 & 2 \end{bmatrix}
\frac{1}{2} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} &
```

Question 2

The 4×4 matrix **A** is given below.

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & 3 & 1 \\ -2 & -1 & -1 & 0 \\ 3 & 2 & 4 & 2 \\ 3 & 2 & 3 & 2 \end{pmatrix}$$

Find A^{-1} , by using a method involving elementary row operations.

Various Various US TRACES TO A LIVE COM LIVE COM LIVE T. V. G.B. Madasmaths. com Tasmaths.com
L. V.C.B. Madasmaths.com
L. V.C.B. Manasma

Question 1

The following four vectors are given.

$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}, \quad \mathbf{p} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- a) Show that \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly independent.
- b) Express \mathbf{p} in terms of \mathbf{u} , \mathbf{v} and \mathbf{w} .

Question 2

The following three vectors are given.

$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 7 \\ 3 \\ 4 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix}$$

- a) Show that \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly dependent.
- b) Find a linear relationship, with integer coefficients, between \mathbf{u} , \mathbf{v} and \mathbf{w}

$$\mathbf{u} = 3\mathbf{v} - 4\mathbf{w}$$

Question 3

The following four vectors are given.

$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 3 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{p} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 0 \end{bmatrix}.$$

- a) Show that these four vectors are linearly dependent.
- b) Express p in terms of u, v and w.

