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Question 1

Find the area of the plane with equation

2x+3y+6z=60, 0<x<4,0<y<6.
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Question 2
A surface has Cartesian equation

x+ial=1,

4 5

Determine the area of the surface which lies in the first octant.
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Question 3

The plane with equation
2x+2y+z7=18,

intersects the cylinder with equation

Determine the area of the cross-sectional cut.
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Question 4

A tube in the shape of a right circular cylinder of radius 4 m and height 0.5 m, emits
heat from its curved surface only.

The heat emission rate, in Wm ™, is given by
1.2z.2
>€ sin o,

where 6 and z are standard cylindrical polar coordinates, whose origin is at the
centre of one of the flat faces of the cylinder.

Given that the cylinder is contained in the part of space for which z2>0, determine
the total heat emission rate from the tube.
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Question 5

A surface has Cartesian equation

Z=\/x2+y2.

The projection in the x-y plane of the region S on this surface, is the region R with
Cartesian equation

Find the area of S .
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Question 6

I=IzdS.
Ry

Find the exact value of I, if S is the surface of the hemisphere with equation
x2+y2+z2=4, z20.

You may only use Cartesian coordinates in this question.
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Question 7

A hemispherical surface, of radius a m, is electrically charged.

The electric charge density ,0(6’, @), in Cm™2, is given by

p(6,9) =k cos*(6) sin( (o),

o=

where k is a positive constant, and € and ¢ are standard spherical polar coordinates,
whose origin is at the centre of the flat open face of the hemisphere.

Given that the hemisphere is contained in the part of space for which z >0, determine
the total charge on its surface.
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Question 8

Evaluate the integral
j (x+y+2)dS,
S

where S is the plane with Cartesian equation

6x+3y+2z=6, x>0, y=>0, z=>0.
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Question 9

A hemispherical surface, of radius a m, has small indentations due to particle
bombardment.

The indentation density p(z), in m™2, s given by

p(z)=kz,

where k is a positive constant, and z is a standard cartesian coordinate, whose origin
1s at the centre of the flat open face of the hemisphere.

Given that the hemisphere is contained in the part of space for which z >0, determine
the total number of indentations on its surface.
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Question 10

Evaluate the integral

X2 =3y%+1
o VAP 44yl

ds,

where § is the surface with Cartesian equation

z=1—x2—y2, z220.
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Question 11

Evaluate the integral
j (xy+2z)dsS,
S

where S is the plane with Cartesian equation
2x—y+z=3,

whose projection onto the plane with equation z=0 is the rectilinear triangle with
vertices at (0,0), (1,0) and (1,1).
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Question 12

I:I x2+y2 ds .

S

Find the exact value of I, if S is the surface of the cone with equation

z2:4(x2+y2), 0<z<4.
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Created by T. Madas



Created by T. Madas

Question 13
Show clearly, by a Cartesian projection onto the x-y plane, that the surface area of a

sphere of radius a, is dra® .

proof
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Question 14

Find in exact form the total surface area of the cylinder with equation
x2+y2=16, z2>1,
cut of by the plane the plane with equation

z=12—-x.

87(13+242)
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Question 15

Find the area of finite region on the paraboloid with equation
z=x"+y",

cut off by the cone with equation

=
I\l
1l
po
+
<

o, %x[n\/ﬁ—l]

SRS 81 SEBING BE SOPRACES

TRES T 5
éj;g’ § =2 Vot Tie
2z 224 " 2]
\ [/ 2 )22y
\ T 4 e

\
LESRY)
J
"

=\

An

Created by T. Madas

&

2 Br pes/otae THPEY cb wy Pxns o< T2, 0F BEAT
|

Bes
o
(

ar
£ I /7
Flna-) & = J(

(o) = :

A \5‘*7

MING — TG W SHOMD A4t 0TS ik —&

v = (U0 2o o I Gragat duay
4

2

o
E (eafeas) =

|l ) arde

)
a

[‘E(te.\ﬂl 6 < |



Created by T. Madas

Question 16

Find a simplified expression for the surface area cut out of the sphere with equation
xz+y2+z2 =a2, a>0,
when it is intersected by the cylinder with equation

x2+y2=ax, a>0.
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Question 17
Electric charge ¢ 1is thinly distributed on the surface of a spherical shell with equation

x2+y2+z2=a2, a>0.

Given that g(x,y)= 237+ y2 , determine the total charge on the shell.
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Question 18

A inverted right circular cone, whose vertex is at the origin of a Cartesian axes, lies in
the region for which z>0. The z axis is the axis of symmetry of the cone. Both the
radius and the height of the cone is 6 units.

Electric charge Q is thinly distributed on the curved surface of the cone.

The charge at a given point on the curved surface of the cone satisfies
o(r)=r,

where r is the shortest of the point from the z axis.

Determine the total charge on the cone.

0 = 14472
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Question 19

A surface S has Cartesian equation
X% - y2 +22=0.
a) Sketch the graph of §.

b) Find a parameterization for the equation of S, in terms of the parameters u
and v.

¢) Use the parameterization of part (b) to find the area of §, for 0< y<1.

r(u,v)= <u cosv,u,usinv> . larea = z\/2
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Question 20
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The surface S is the sphere with Cartesian equation

x2+y2+12=1.

By using Spherical Polar coordinates (r, o, (0) , or otherwise, evaluate

(x®+y+z)as.
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Question 21
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A bead is modelled as a sphere with a cylinder, whose axis is a diameter of the sphere,

removed from the sphere.

If the respective equations of the sphere and the cylinder are

xz+yz+z2=a2 and x2+y2=b2,

Show that the total surface area of the bead is

4z(a+b)Na* —b* .

O<b<a.
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Question 22
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A surface S has Cartesian equation

x2+y2+Z2=2x.

a) Describe fully the graph of §, and hence find a parameterization for its
equation in terms of the parameters # and v.

b) Use the parameterization of part (a) to find the area for the part of S, for

which %Szé%.

|:|, r(u,v):<1+sinuc0sv,sinusinv,cosu>, 0<u<m 0<v<2x
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Question 23

Evaluate the integral
2
I x(x+z+xy)+y(z —2xz—y)+z ds,
N

where S is the surface with Cartesian equation

x2+y2+z2=a2, a>0, z20.

a
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Question 24

A surface S has Cartesian equation
X2+y2—22 =2y+2z, -1<£z<0.
a) Sketch the graph of §.

b) Find a parameterization for the equation of S, in terms of the parameters u
and v.

¢) Use the parameterization of part (b) to find the area of S .

r(u,v)=<ucosv,1+usinv,u—1>, 0<u<l, 0<v<2z|, |area =72
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Question 25

A thin uniform spherical shell has mass m and radius a.

Use surface integral projection techniques in x-y plane, to show that the moment of

inertial of this spherical shell about one of its diameters is %ma2 .

proof
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Question 26
Find the area of the surface § which consists of the part of the surface with Cartesian
equation
z=1-2x2-3y?%,

contained within the elliptic cylinder with Cartesian equation

4x* +9y* =1.
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Question 27

The surface S is the hemisphere with Cartesian equation
)c2+)72+z2 =16, z2>20

The projection of § onto the x-y plane is the area within the curve with polar
equation

~N
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Find, in exact form, the area of S .

87 —7N16=7° —16arcsin%
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Question 28

The surface S is the sphere with Cartesian equation
x*+ y2 +72=4

a) By using Spherical Polar coordinates, (r,8,¢), evaluate by direct integration

the following surface integral

b) Verify the answer of part (a) by using the Divergence Theorem.
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Question 29

In standard notation used for tori, r is the radius of the tube and R is the distance of
the centre of the tube from the centre of the torus.

The surface of a torus has parametric equations
x(0,9)=(R+rcosf)cosp, y(60,¢)=(R+rcos)sing, z(6,¢)=rsiné,

where 0< 0 <27 and 0<@<2rx.

a) Find a general Cartesian equation for the surface of a torus.

A torus T has Cartesian equation

2
(4—\/x2+y2) =1+ 7%

b) Use a suitable parameterization of 7 to find its surface area.

2
z2+(R—\/x2+y2) =r?|, |area = (27r) (27R) = 167°
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Question 30

A spiral ramp is modelled by the surface S defined by the vector function
r(u,v)=(xi+yj+zk)=(ucosv)i+(usinv)j+vk,
where 0<u <1, 0<v<3r.

Determine the value of

J‘\/xz + y2 das

S
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Question 31

The surface S is defined by the vector equation

T
F(u,v)z[ucosv,usinv,l} ,uz0.
u

Find the area of S lying above the region in the uv plane bounded by the curves

v=u4, v=2u4,

1 1
and the straight lines with equations « =34 and u =84.
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Question 32

The surface S is defined by the parametric equations

).

where ¢ and @ are real parameters such that 0<#<1 and 0<6<I.

=

x=tcosh@, y=tsinh@, z=

Find, in exact form, the value of

v"xy as .
S

5
1| (cosh2+1)2-1
30 cosh?2

+1-44/2 [=0.274397...
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