VECTOR TRAINER ON TEGRALS ON THE BOTTON TO THE CONTROL OF THE CONT Casmaths com I. V.C.B. Madasmaths com I. V.C.B. Manasm

TYPE OF THE TYPE OF STREET STR Masmaths.com L. V.C.B. Madasmaths.com L. V.C.B. Manasmaths.com L. V.C.B. Manasma

Question 1

$$V(x,y,z) = 60xyz^2.$$

Evaluate the following integral along C, from (3,1,1) to (4,3,2),

$$\int_C V \, \mathbf{dr} \,, \qquad \mathbf{dr} = \left(dx, dy, dz \right)^{\mathrm{T}} \,,$$

where C is the curve with parametric equations

$$x = t + 2$$
, $y = 2t - 1$, $z = t$.

1139i + 2278j + 1139k

$$\begin{aligned} & V(x_{ijjk}) = \underbrace{\text{Garg}}_{2} z^{2} & \text{4} & \text{3c} = \frac{t+2}{t} & \text{3c} = \frac{t+2}{t} \\ & \text{3c} = \frac{t+2}{t} & \text{3c} = \frac{t+2}{t} \end{aligned}$$

$$& \text{The } \int_{C} V \, dx = \int_{-t_{ij}}^{(q_{ij}, q_{ij})} \underbrace{\text{Garg}}_{2} z^{2} \left(b_{i} d_{ij} d_{ij} \right) = \int_{-t_{ij}}^{t_{ij}} \underbrace{\text{Grey}}_{2} (y_{i+1})^{2} \left(d_{ij} d_{ij} d_{ij} \right) \\ & = \int_{-t_{ij}}^{t} \underbrace{\text{Grey}}_{2} (x_{i+1}^{2} d_{i}^{2} - \frac{t}{t}^{2} + y_{i}^{2} - \frac{t}{t}^{2} d_{i}^{2} \\ & = \underbrace{\text{Grey}}_{2} (x_{i+1}^{2} \int_{-t_{ij}}^{t} \frac{x_{i}^{2} + x_{i}^{2} - x_{i}^{2}}{t^{2}} d_{i}^{2} \\ & = \underbrace{\text{Grey}}_{2} (x_{i+1}^{2} \int_{-t_{i+1}}^{t} \frac{x_{i}^{2} + x_{i}^{2} - x_{i}^{2}}{t^{2}} d_{i}^{2} \\ & = \underbrace{\text{Grey}}_{2} (x_{i+1}^{2} \int_{-t_{i+1}}^{t} \frac{x_{i}^{2} + x_{i}^{2} - x_{i}^{2}}{t^{2}} d_{i}^{2} \\ & = \underbrace{\text{Grey}}_{2} (x_{i+1}^{2} \int_{-t_{i+1}}^{t} \frac{x_{i}^{2} + x_{i}^{2} - x_{i}^{2}}{t^{2}} d_{i}^{2} \\ & = \underbrace{\text{Grey}}_{2} (x_{i+1}^{2} \int_{-t_{i+1}}^{t} \frac{x_{i}^{2} + x_{i}^{2} - x_{i}^{2}}{t^{2}} d_{i}^{2} d_{i}^{2} \\ & = \underbrace{\text{Grey}}_{2} (x_{i+1}^{2} \int_{-t_{i+1}}^{t} \frac{x_{i}^{2} + x_{i}^{2} - x_{i}^{2}}{t^{2}} d_{i}^{2} d_{i}^{2} \\ & = \underbrace{\text{Grey}}_{2} (x_{i+1}^{2} - x_{i}^{2} -$$

Question 2

$$\varphi(x, y, z) \equiv 3x + 2y + z.$$

Evaluate the following integral along C, from (1,0,0) to (2,2,1),

$$\int_C \varphi \, \mathbf{dr} \,, \qquad \mathbf{dr} = (dx, dy, dz)^{\mathrm{T}} \,,$$

where C is the curve with parametric equations

$$x = t + 1$$
, $y = 2t$, $z = t^2$

$$\frac{41}{6}\mathbf{i} + \frac{41}{3}\mathbf{j} + \frac{49}{6}\mathbf{k}$$

$$\begin{cases} \dot{\Psi}(3|3) = 334 + 2q + 2 & 3 = \frac{1}{2} + 1 & \Rightarrow \int_{3} 4x = 4t \\ & 3 = 2t \Rightarrow dy = 2 + 2t \\ & 2 = +1 \Rightarrow dy = 2 + 2t \end{cases}$$

$$\vec{P}(3|3) = \frac{1}{2} \cdot \frac{1}{$$

Question 3

$$F(x,y,z) = xyz.$$

Evaluate the following integral along C, from (1,0,0) to (0,1,4),

$$\int_C F \, \mathbf{dr} \,, \qquad \mathbf{dr} = (dx, dy, dz)^{\mathrm{T}} \,,$$

where C is the curve with parametric equations

$$x = \cos t$$
, $y = \sin t$, $z = \frac{8t}{\pi}$.

$$\frac{16-12\pi}{9\pi}\mathbf{i} + \frac{16}{9\pi}\mathbf{j} + \frac{8}{\pi}\mathbf{k}$$

TYPE ON TYPE ON THE WILLSON IN THE BARBARA THAN AND Tasmaths.com L. V.C.B. Madasmaths.com L. V.C.B. Manasmaths.com L. V.C.B. Manasmaths.com

Question 1

$$\mathbf{F}(x, y, z) \equiv xy\mathbf{i} + z\mathbf{j} - x^2\mathbf{k} .$$

Evaluate the vector integral

$$\int_{V} \mathbf{F} \ dV \ ,$$

where V is the finite region in the first octant bounded by the planes with equations

$$x = 2$$
, $y = 3$ and $z = 4$.

36i + 48j - 32k

$$\begin{aligned} & = \left(\frac{26}{36}, \frac{18}{3}, -\frac{1}{25} \right) & \text{if } & \frac{28}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} & \text{if } \\ & = \int_{0}^{4} \int_{0}^{2\pi} \left(\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} - \frac{1}{3} \frac{1}{3} \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \\ & = \int_{0}^{4\pi} \int_{0}^{2\pi} \left(\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} + \frac{1}$$

Question 2

$$\mathbf{F}(x, y, z) \equiv z\mathbf{i} + \mathbf{j} + y\mathbf{k}.$$

Evaluate the vector integral

$$\int_{V} \mathbf{F} \ dV \,,$$

where V is the finite region in the first octant bounded by the plane with equation

$$2x + y + z = 6.$$

$27\mathbf{i} + 18\mathbf{j} + 27\mathbf{k}$

Question 3

$$\mathbf{F}(x, y, z) \equiv \mathbf{i} + 2z\mathbf{j} + y\mathbf{k} .$$

Evaluate the vector integral

$$\int_{V} \mathbf{F} \ dV \ ,$$

where V is the finite region enclosed by the cylinder with equation

$$x^2 + y^2 = 9$$
, $0 \le z \le 2$.

 $18\pi(\mathbf{i}+2\mathbf{j})$

Question 4

$$\mathbf{F}(x, y, z) \equiv \frac{1}{6\pi} \mathbf{i} + \frac{z}{18\pi} \mathbf{j} + \frac{y}{9\pi} \mathbf{k}.$$

Evaluate the vector integral

$$\int_{V} \mathbf{F} \ dV$$

where V is the finite region enclosed by the cylinder with equation

$$x^2 + y^2 = 4$$
, $0 \le z \le 3$.

2**i** + **j**

Question 5

$$\mathbf{F}(x, y, z) \equiv 3\mathbf{i} + -y\mathbf{j} + 6x\mathbf{k}.$$

Evaluate the vector integral

$$\int_{V} \mathbf{F} \ dV \ ,$$

where V is the finite region enclosed by the hemisphere with equation

$$x^2 + y^2 + z^2 = 4$$
, $z \ge 0$.

 $16\pi i$

Question 6

The finite region V in the first octant, is bounded by the surfaces with equations

$$y = 4 - x^2$$
 and $y = 4 - z^2$.

Given that $\mathbf{F} = \frac{1}{8}\mathbf{i} + 3y^2\mathbf{j} - \frac{1}{4}\mathbf{k}$ determine

$$\int_{V} \mathbf{F} \ dv.$$

 $\mathbf{i} + 64\mathbf{j} - 2\mathbf{k}$

Casmaths com I. V.C.B. Madasmaths com I. V.C.B. Manasm

Question 1

$$F(x, y, z) \equiv x + y + z.$$

Evaluate the integral

$$\int_{S} F \, dS,$$

where S is the plane surface with equation

$$2x + y + 2z = 6$$
, $x \ge 0$, $y \ge 0$, $z \ge 0$.

36i + 18j + 36k

Question 2

$$\varphi(x,y,z) \equiv \frac{3}{4}xyz.$$

Evaluate the integral

$$\int_{S} \varphi \, dS,$$

where S is the curved surface of the cylinder with equation

$$x^2 + y^2 = 4$$
, $x \ge 0$, $y \ge 0$, $0 \le z \le 2$.

4i + 4j

Question 3

$$\varphi(x, y, z) \equiv \frac{1}{2} xyz^2.$$

Evaluate the integral

$$\int_{S} \varphi \, dS,$$

where S is the curved surface of the cylinder with equation

$$x^2 + y^2 = 9$$
, $x \ge 0$, $y \ge 0$, $0 \le z \le 2$.

12**i** + 12**j**

Question 4

$$\varphi(x, y, z) \equiv 2x + 2y.$$

Evaluate the integral

$$\int_{S} \varphi \, dS,$$

where S is the curved surface of the sphere with equation

$$x^2 + y^2 + z^2 = 1$$
, $x \ge 0$, $y \ge 0$, $z \ge 0$.

$$\frac{1}{3} \left[(\pi+2)\mathbf{i} + (\pi+2)\mathbf{j} + 4\mathbf{k} \right]$$

TYPE SUBSERIES TRANSPORT IN THE REAL PROPERTY OF THE PROPERTY Masmaths.com L. V.C.B. Madasmaths.com L. V.C.B. Manasmaths.com L. V.C.B. Manasma

Question 1

The Cartesian equation of a surface S is

$$z = x^2 + y^2, \quad z \le 1.$$

Evaluate the surface integral

$$\int_{S} \hat{\mathbf{n}}_{\wedge} \nabla \varphi \, dS \,,$$

where $\hat{\mathbf{n}}$ is an outward normal unit vector field to S , and φ is the function with Cartesian equation

$$\varphi(x,y,z)=y.$$

 $\begin{array}{c} \sum_{x} \frac{1}{x^2} \frac{1}{x^2} \frac{1}{x^2} \\ = \sum_{x} \frac{1}{(x^2 + y^2 + y^2)} \frac{1}{(x^2 + y^2 + y^2)} \\ = \sum_{x} \frac{1}{(x^2 + y^2 + y^2)} \frac{1}{(x^2 + y^2 + y^2)} \frac{1}{(x^2 + y^2 + y^2)} \\ = \sum_{x} \frac{1}{(x^2 + y^2 + y^2)} \frac{1}{(x^2 + y^2 + y^2)} \frac{1}{(x^2 + y^2 + y^2)} \\ = \sum_{x} \frac{1}{(x^2 + y^2 + y^2)} \frac{1}{(x^2 + y^2 + y^2)} \frac{1}{(x^2 + y^2 + y^2)} \\ = \sum_{x} \frac{1}{(x^2 + y^2 + y^2)} \frac{1}{(x^2 + y^2 + y^2)} \frac{1}{(x^2 + y^2 + y^2)} \\ = \sum_{x} \frac{1}{(x^2 + y^2 + y^2)} \frac{1}{(x^2$

Question 2

The Cartesian equation of a surface S is

$$z = 1 - x^2 - y^2$$
, $z \ge 0$.

Evaluate the surface integral

$$\int_{S} \hat{\mathbf{n}}_{\wedge} \nabla \varphi \, dS \,,$$

where $\hat{\mathbf{n}}$ is an outward unit normal vector field to S , and φ is the function with Cartesian equation

$$\varphi(x,y,z)=1-2x^2y.$$

TYPE ARTS ON THE CONTROL ON THE CONT Casmaths com I. V.C.B. Madasmaths com I. V.C.B. Manasm

Question 1

Evaluate the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS}$$

where S is the surface with equation

$$x^2 + y^2 + z^2 = a^2$$
, $a > 0$,

and $\mathbf{F} = z^2 \mathbf{k}$.

0

Question 2

$$\mathbf{F}(x, y, z) \equiv x^2 \mathbf{i} - 2y \mathbf{j} - 2z \mathbf{k} .$$

Evaluate the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS},$$

where S is the plane surface with equation

$$2x + 2y + z = 2$$
, $x \ge 0$, $y \ge 0$, $z \ge 0$.

 $-\frac{7}{6}$

Question 3

$$\mathbf{F}(x, y, z) \equiv 4y\mathbf{i} + \mathbf{j} + 2\mathbf{k} .$$

Evaluate the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS},$$

where S is the surface with equation $\frac{2}{1+x^2+z^2}$

$$x^2 + y^2 + z^2 = 9$$
, $x \ge 0$, $y \ge 0$, $z \ge 0$.

$$36+\frac{9}{4}\pi$$

Question 4

Evaluate the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS}$$

where S is the surface with equation

$$x^2 + y^2 + z^2 = 1,$$

and $\mathbf{F} = -y\mathbf{i} + z\mathbf{j} - x\mathbf{k}$.

0

Question 5

$$\mathbf{F}(x, y, z) \equiv \mathbf{i} + \frac{1}{2}y\mathbf{j} + z^2\mathbf{k}.$$

Evaluate the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS},$$

where S is the curved cylindrical surface with equation

$$x^2 + y^2 = 4$$
, $x \ge 0$, $0 \le z \le 3$.

 $3\pi+12$

Question 6

$$\mathbf{F}(x, y, z) \equiv x\mathbf{i} + y\mathbf{j} + z^4\mathbf{k}.$$

Calculate the flux of **F** through the open surface with equation

$$z = \sqrt{x^2 + y^2} \ , \ z \le 1$$

in the direction of z decreasing.

 $-\frac{1}{3}\pi$

Question 7

The surface S has Cartesian equation

sian equation
$$z = 1 - x^2 - y^2, \ x \ge 0, \ y \ge 0, \ z \ge 0.$$
 gral
$$\int 15z \mathbf{i} \cdot \mathbf{dS}.$$

Evaluate the surface integral

$$\int_{S} 15z \mathbf{i} \cdot \mathbf{dS}$$

Question 8

$$\mathbf{F}(x, y, z) \equiv -y\mathbf{i} + x\mathbf{j} + 3z\mathbf{k} .$$

Evaluate the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS},$$

where S is the surface of the hemisphere with equation

$$x^2 + y^2 + z^2 = 9$$
, $z \ge 0$,

contained inside the cylinder with equation

$$x^2 + y^2 = 4, \ z \ge 0,$$

$$2\pi \left[27-5\sqrt{5}\right]$$

Question 9

Space is filled uniformly by the constant vector field 3i + 4j + 5k.

A square lamina whose vertices are at (0,0,0), (1,0,0), (1,1,0) and (0,1,0) is rotated by $\frac{1}{4}\pi$, anticlockwise, about the y axis.

determine the magnitude of the flux of the field through the rotated lamina.

 $4\sqrt{2}$

Question 10

The surface S has Cartesian equation

$$z = 2 - x^2 - y^2$$
, $x^2 + y^2 \le 1$.

- a) Sketch the graph of S.
- **b)** Given that $\mathbf{F} = y\mathbf{i} x\mathbf{j} + z\mathbf{k}$, evaluate the integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS}.$$

 $\frac{3\pi}{2}$

Question 11

The surface S has Cartesian equation

$$(z-1)^2 = x^2 + y^2, 1 \le z \le 3.$$

- a) Sketch the graph of S.
- **b)** Given that $\mathbf{F} = z^2 \mathbf{i} + x^2 \mathbf{j} + y^2 \mathbf{k}$, evaluate the integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS}.$$

 4π

Question 12

$$\mathbf{F}(x, y, z) \equiv 3x\mathbf{i} + y^2\mathbf{j} + z^2\mathbf{k} .$$

Evaluate the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS},$$

where S is the surface with Cartesian equation

$$x^2 + y^2 + z^2 = 1.$$

 4π

Question 13

$$\mathbf{F}(x,y,z) \equiv (x+y)\mathbf{i} + (x-y)\mathbf{j} + (x+z)\mathbf{k}.$$

Evaluate the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS},$$

where S is the surface with Cartesian equation

$$z = 1 - x^2 - y^2$$
, $z \ge 0$.

 $\frac{\pi}{2}$

Question 14

$$\mathbf{F}(x, y, z) \equiv (x + z + xy)\mathbf{i} + (z^2 - 2xz - y)\mathbf{j} + \mathbf{k}.$$

Evaluate the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS},$$

where S is the surface with Cartesian equation

$$x^2 + y^2 + z^2 = 4$$
, $z \ge 0$.

 4π

Question 15

$$\mathbf{F}(x, y, z) \equiv -xy\mathbf{i} + (yz - xy)\mathbf{k}.$$

Show that there is zero net flux of F through the surface with Cartesian equation

$$x^2 + y^2 + z^2 = 25, \ z \ge 3.$$

proof

Question 16

$$\mathbf{F}(x, y, z) \equiv x\mathbf{i} + y^2\mathbf{j} + z^2\mathbf{k}.$$

a) Given that S is the surface with Cartesian equation

$$x^2 + y^2 + z^2 = 1, z \ge 0,$$

show that

$$\int_{S} \mathbf{F} \cdot \mathbf{dS} = 4 \int_{R} \left[\frac{x^2}{\sqrt{1 - x^2 - y^2}} + 1 - x^2 - y^2 \right] dx dy,$$

where R is the region in the first quadrant with Cartesian equation

$$x^2 + y^2 \le 1$$
, $x \ge 0$, $y \ge 0$.

b) Evaluate the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS}$$

 $\frac{7}{6}\pi$

Question 17

$$\mathbf{F} = x^2 y^3 \mathbf{i} + z \mathbf{j} + x \mathbf{k} .$$

Show by direct evaluation that

$$\int_{S} \nabla \wedge \mathbf{F} \cdot \hat{\mathbf{n}} \ dS = 0 \,,$$

where S is the sphere with equation

$$x^2 + y^2 + z^2 = 1,$$

and $\hat{\mathbf{n}}$ is an outward unit normal to S.

proof

Question 18

$$\mathbf{F}(x, y, z) \equiv (x + yz)\mathbf{i} + (y^3z + x)\mathbf{j} + (z + xyz)\mathbf{k}.$$

Calculate the magnitude of the flux of ${\bf F}$ through the open cylindrical surface with equation

$$x^2 + y^2 = 1$$
, $0 \le z \le 4$.

Question 19

$$\mathbf{F}(x,y,z) \equiv y\mathbf{i} + x^2\mathbf{j} + z\mathbf{k} .$$

Find the magnitude of the flux through the surface with parametric equations

$$\mathbf{r}(u,v) = u\mathbf{i} + v\mathbf{j} + (u+v)\mathbf{k}, \quad 0 \le u \le 1, \quad 1 \le v \le 4$$

All integrations must be carried out in parametric.

Question 20

Evaluate the surface integral

$$\int_{S} z \mathbf{k} \cdot d\mathbf{S},$$

where S is the surface represented parametrically by

$$\mathbf{r}(\theta,\varphi) = \begin{bmatrix} \sin\theta\cos\varphi \\ \sin\theta\sin\varphi \\ \cos\theta \end{bmatrix}, \ 0 \le \theta \le \frac{1}{2}\pi, \ 0 \le \varphi \le \frac{1}{2}\pi.$$

Question 21

Evaluate the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS},$$

where S is the surface represented parametrically by

$$\mathbf{r}(u,v) = \begin{bmatrix} u+v \\ u-v \\ u \end{bmatrix}, \quad 0 \le u \le 2, \quad 0 \le v \le 3,$$

and F is the vector field

$$x^2\mathbf{i} + y^2\mathbf{j} + z^2\mathbf{k}$$

All integrations must be carried out in parametric.

, 36

Question 22

$$\mathbf{F}(x, y, z) \equiv x\mathbf{i} + y\mathbf{j} + 2z\mathbf{k}.$$

Find the magnitude of the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS}$$

where S is the surface with parametric equations

$$\mathbf{r}(u,v) = (u\cos v)\mathbf{i} + (u\sin v)\mathbf{j} + u\mathbf{k},$$

such that $0 \le u \le 1$, $0 \le v \le 2\pi$.

All integrations must be carried out in parametric.

 $\frac{2}{3}\pi$

Question 23

$$\mathbf{F}(x, y, z) \equiv x\mathbf{i} + y\mathbf{j} + z\mathbf{k} .$$

Find the magnitude of the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS}$$

where S is the surface with parametric equations

$$\mathbf{r}(u,v) = (1+\sin u\cos v)\mathbf{i} + (\sin u\sin v)\mathbf{j} + (\cos u)\mathbf{k},$$

such that $0 \le u \le \pi$, $0 \le v \le 2\pi$.

All integrations must be carried out in parametric.

Question 24

$$\mathbf{F}(x, y, z) \equiv x\mathbf{i} + y\mathbf{j} + z\mathbf{k} .$$

Find the magnitude of the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS}$$

where S is the surface with parametric equations

$$\mathbf{r}(u,v) = (u\cos v)\mathbf{i} + (1+u\sin v)\mathbf{j} + (u-1)\mathbf{k},$$

such that $0 \le u \le 1$, $0 \le v \le 2\pi$.

All integrations must be carried out in parametric.

 $\frac{1}{3}\pi$

Question 25

$$\mathbf{F}(x, y, z) \equiv x\mathbf{i} + y\mathbf{j} + 2z\mathbf{k}.$$

Find the magnitude of the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS}$$

where S is the surface with parametric equations

$$\mathbf{r}(\theta,\varphi) = [(4+\cos\theta)\cos\varphi]\mathbf{i} + [(4+\cos\theta)\sin\varphi]\mathbf{j} + (\sin\theta)\mathbf{k}$$
,

such that $0 \le \theta \le 2\pi$, $0 \le \varphi \le 2\pi$.

All integrations must be carried out in parametric.

 $24\pi^2$

```
 \begin{array}{c} \underbrace{ \left[ \Gamma(\theta_1 \phi) - \left[ \theta_1 + \text{traditional}_{1}, \left( \theta_1 + \text{traditional}_{2} + \text{traditi
```

NOW
$$\int_{S} F \cdot d\underline{x} = \int_{S} F \cdot \underline{h} \, d\underline{x} = \int_{S} F(0p) \underbrace{\left(\frac{1}{2} + \frac{1}{2} + \frac$$

Question 26

It is given that the vector field **F** satisfies

$$\mathbf{F} = 2y\mathbf{i} - 2x\mathbf{j} + \mathbf{k} .$$

Find the magnitude of the surface integral

$$\int_{S} \mathbf{F} \cdot \mathbf{dS},$$

where S is the surface with Cartesian equation

$$x^2 + y^2 + z^2 = 1$$
, $z \ge 0$,

cut off by the cylinder with cartesian equation

$$x^2 + y^2 = x.$$

You **must** find a suitable parameterization for S, and carry out the **integration in parametric**, without using any integral theorems.

Question 1

$$\mathbf{F}(x, y, z) \equiv xy\mathbf{i} + y\mathbf{j} + 4\mathbf{k} .$$

Evaluate the integral

$$\iint_{S} \mathbf{F} \cdot \mathbf{dS} \,,$$

where S is the **closed** surface enclosing the finite region V, defined by

$$x^2 + y^2 \le 9$$
, $x \ge 0$, $y \ge 0$, $0 \le z \le 4$.

$$9\pi + 36$$

Question 2

$$\mathbf{F}(x, y, z) \equiv (x + y^2)\mathbf{i} + (2y + xz)\mathbf{j} + (3z + xyz)\mathbf{k}.$$

Evaluate the integral

$$\iint_{S} \mathbf{F} \cdot \mathbf{dS} \,,$$

where S is the surface with Cartesian equation

$$4x^2 + 4y^2 + 4z^2 = 1.$$

You may not use the Divergence Theorem in this question.

Question 3

It is given that

$$\mathbf{F}(x, y, z) \equiv \mathbf{k} \wedge \mathbf{r}$$
, where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

Show by direct integration that

$$\bigoplus_{\mathbf{S}} \nabla_{\wedge} \mathbf{F} \cdot \mathbf{dS} = 0,$$

where S is the **closed** surface enclosing the finite region V, defined by

$$x^2 + y^2 + z^2 \le 1$$
, $z \ge 0$, and $x^2 + y^2 \le 1$.

You may not use any Integral Theorems in this question.

proof

Question 4

$$\mathbf{F}(x,y,z) \equiv (4yz)\mathbf{i} + (2y^2)\mathbf{j} + (5xyz + 6z^2 + 3z)\mathbf{k}.$$

Evaluate the integral

$$\iint\limits_{S} \ F \cdot dS \, ,$$

where S is the surface with Cartesian equation

$$x^2 + y^2 + 4z^2 = 1.$$

You may not use the Divergence Theorem in this question.

Question 5

The surface Ω is the sphere with Cartesian equation

$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 1$$

Evaluate the surface integral

$$\bigoplus_{\mathbf{O}} \left[(x+y)\mathbf{i} + (x^2 + xy)\mathbf{j} + z^2\mathbf{k} \right] \cdot \mathbf{dS},$$

where dS is a unit surface element on Ω .

You may not use the Divergence Theorem in this question.

 $\frac{16}{3}\pi$

