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Question 1  (*%)

y =coshx

The figure above shows the graph of the curve with equation

y=coshux, for -1<x<1.

Find the length of the curve, in terms of e.
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Question 2 (*%)

YA

y=4\/§

> x

The figure above shows the graph of the curve with equation

y=4\/x—3, x=>0.

Find the length of the arc of the curve for 0 < x <10.
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Question 3 (**+)

y=In(secx)

v

The figure above shows the graph of the curve with equation

V4 V.4
=1 , ——<x<—.
y=In(secx) S <%y,

Show that the length of the curve for % <x< z is

3
ln(l+§\/§j.

proof
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Question 4  (¥*%)

A curve is given parametrically by

x=—t+cosht, y=t+cosht, OSIS%an

Show that the length the curve is % .

proof

Question 5 (¥**4)

A curve C has equation

Show that the length of the arc of C from A(0,0) to B(9,—6) is 12 units.

proof
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Question 6  (¥*%4)

A curve is given parametrically by
x=2sinht, y=cosh2t, 0<t<In3.

Show that the length the curve is exactly

§+ln3.
9

proof
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Question 7  (¥*%4)

A curve C has equation by y2 = x> and its graph is shown in the figure above.

Show that the length of the arc of C from A(S,—S\/g) to B(S,S\/g) is exactly %

proof
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Question 8  (F**%¥)

Show that the length of C from the point where x=1In2 to the point where x =1n4 is
exactly

(7).

proof
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Question 9 (¥**¥)

Y N
................ ¢
........................................................................ ..A(1,4)
............... —
.............................................................. B(@%)
T >
0

The curve C, shown above, is given parametrically by the equations

x=secht, y=4-tanht, re R

a) Show that the length of the arc of C from A(1,4) to B(g, ) is given by

SN ]

%1113
s=j secht dx.
0

b) Use the substitution u =e’, to find the exact value of s.

N
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Question 10 (¥*%%)

The figure above shows the graph of the curve with equation

y=ln(1—x2), <x<

| =

l
2

a) Show that the length s of the curve is given by

yzln(l—xz)

—1+2n3|
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Question 11

a) Use a suitable hyperbolic substitution to'show that

(****)
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I(a,x)Eij2+a2 dx, xeR, aeR, x>0.

I(a,x) =la2 arsinh (%)+

X\/)C2+Cl2
2
a

+ constant .

b) Hence find in exact form the length of the curve with equation

from the origin O to the point with coordinates (1,

=
Il

=
=

N

).

sz%\/§+ln[%(l+\/§ﬂ

Q) W54 HiRFe3ouc SRSTTvmoN

o =00l
® 6= ok

o dx= olodi®

2 o debiE— T \
ERETE E N s o ok )
- TR G oy = | VR s &)

(

B e I PR R 1)

@[ 16+ Lsbaly] +

T L f
= | Prkadpic =

= @[ bombl) + LT D4
(' GF
1

b sem e 0 Mo o

RN By i PR
LR [EXETREN 3
dy - L
sl e
»= [ e Ay -
7 \\ONJH%‘A & u\%:.»i:\

Created by T. Madas

]
= 4] e h
o
e ™ (@) wink g=2
S=tx2? rmmhl L adme |
£ LM = A
go [aphz ol |

g+ [ownsrdol-(1]

f= ambl + L

Fo h(EelET) . LE
B= w(E) 5w 2
.




Created by T. Madas

Question 12 (¥*%%)

A curve has equation

y=In(l+cosx), xe [—%75,

d

=

Show that the length this curve is In (17 +122 ) units.
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Question 13 (**¥**4)

Find an exact value for the length of the curve with equation

y=Inx, 1<x<e.

Vel+1+1 V241
Ve? \/_+1+1£ 1+2 J 2.00

1+ve?+1

Vo142 44 1[ - 1} %m(@}:z,oo
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Question 14 (**¥**4)

A curve has equation

y :i[(2x+1)\/4x2 +4x —arcosh(2x+1)} ,

Show that the length of the curve is 20 units.

0<x<4.

, |proof
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Question 15 (k¥¥%%¥)

A parabola has equation

y2=4x, 0<x<5

Show that the length this parabola is exactly In (\/Z +/b ) ++ab where a and b are
positive integers.

[ 1.{(a.b)=(6.5)=(5.6)
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Question 1 (¥*%)

The part of the curve with equation
_ .3
y=x, 0<x<1
is rotated through 27 radians about the x axis.

Show that the area surface generated is

[10@—1}.

z
27

, |proof
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Question 2 (**%)

By considering the top half of the circle with equation

show that the surface generated when the circle’s top half is rotated through 27

radians about the x axis has an area of 47a’ square units.

proof
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Question 3 (¥*%)

A parabola has equation
2 _
y =12x, x=20.

The arc of the parabola from the point A(0,0) to the point B(3,6) is rotated through

27 radians about the x axis, to form a solid of revolution.

Show clearly that the area of the curved surface of the solid produced is exactly
247(2V2-1).

proof

o &
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Question 4  (¥*%4)

A curve C has equation given by

Show that the area of the surface generated when the arc of C for which 0< x<3 is
rotated through 27 radians about the x axis is 37 square units.

proof
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Question 5 (¥*%¥)

YA\

The figure above shows the curve C, given parametrically by the equations
1 .
XZECOSth‘ , y=2sinht, te R.

a) Show that

2 2
(ﬂj + (ﬂj =2cosh”t
dt dt

The arc of C from the point A(l,O) to the point B(H

> 16° ) is rotated through 27

\S](O%}

radians about the x axis.

b) Show that the area of the surface generated is 2_41l7[ square units.

proof
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Question 6  (¥*%¥)

The curve C has parametric equations

3

x=cos@, y=In(secO+tand)—sind, OSHSE

a) Show that

L =1(6)2(6),

where f(6) and g(6) are simple trigonometric functions.

b) Hence show that the length of C is In2.

ﬂ =sinftan @
do
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Question 7 (FxEE)

A curve has parametric equations

x=t—tanht, y=sechrt, 0<t<In2.

Determine, in exact simplified form, the area of the surface of a complete revolution of
the curve, about the x axis.
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Question 8  (¥**¥4)

The curve C has equation given by
y2=x>+32, xeR, 0<x<4

a) Show that

1+(@j2 N2
- .

y

b) Hence show further that the area of the surface generated when C is rotated by
27 radians in the x axisis given by

1671’[2+x/§1n(1+x/§)]

proof
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Question 9 (¥***4)

A curve is defined parametrically by the following equations.
1
x=2Int, y=t+-, teR, 1<5t<4.
t

The curve is fully revolved about the y axis forming a surface of revolution.

Show that the area of this surface is

kz[-3+10In2],

where k 1s a positive integer to be found.
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Question 10  (****4)
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A curve has parametric equations

x=coshr+r1,

y=cosht—t,

reR.

The part of the curve, for which 0 <7 <1n?2,1is rotated through 27 radians about the x

axis.

Show that the exact area of the surface generated is

2

ZYZ(23-81n2).
e (23-8In2)

, |proof
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Question 11 (*¥%*4)

v
=

The figure above shows the cardioid C with parametric equations
x=2cosf—-cos20, y=2sinf-sin20, 0<60<2r.
The curve is revolved by a full turn in the x axis, forming a surface of revolution.

Find in exact simplified form the area of this surface.
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Question 12 (k)

A curve has parametric equations

x=t—sint, y=1-cost, 0<t<2rx.

Determine, in exact simplified form, the area of the surface of a complete revolution of
the curve, about the x axis.
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Question 13 (Gk¥¥%%¥)

Gabriel’s horn is the geometric figure which is formed by revolving the graph of
y :l, xe[l,»),
X

by 2z radians about the x axis.

Gabriel’s horn gives rise to the “Painter’s Paradox”, that the “horn” could be filled
with a finite quantity of paint and yet that paint would not be sufficient to coat its inner
or outer surface.

Use calculus to verify the validity of the apparent paradox, however you need
not resolve the flaw in the paradox.

You must show any limiting processes and further advised NOT to find

le+x2
—de.
X
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Question 14  (Gk¥¥%¥)

The part of the graph of the exponential curve

J<x<mn(%),

Alw

yse*, ln(

is rotated by 2z radians in the x axis, forming a surface of revolution S .

Show that area of S is
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Question 15
The part of the curve with equation

Created by T. Madas

3

y=sin2x, OSXSE

is rotated by 360° about the x axis.

Show that the area of the surface generated is

z[%ln(2+\/§)+\/§]

, |proof
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Question 16 (¥*¥%%¥)

A curve has parametric equations

x=2+tanht, y=sechr,teR

The part of the curve for which

1s rotated through 27 radians in the x axis.

Show that the exact area of the surface generated is

%75[4+3\/§].
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Question 17  (Ge#*%F)

A curve is defined parametrically by the following equations.
1
x=2Int, y=t+-, teR, t=>1.
t

The curve is fully revolved about the y axis forming a surface of revolution.

The surface is modelling the casing of a rocket

The vertex of the surface is held just above a container full of paint, with its line of
symmetry vertical.

Its line of symmetry is vertically lowered into the paint, at a rate of , t>1.

wlnt

Show that the outer section of the surface is covered in paint at the rate 4coth (%x) .
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Question 1 (¥*%%)
YA

The parametric equations of an astroid are
x:acos3t9, y:asin30, 0<0<2x
a) Show that the total length of the curve is 6a units.
The curve is rotated by 360° about the x axis forming a solid of revolution.

b) Show further that the surface area of the solid is %ﬂaz .

proof
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Question 2 (¥**¥)

The curve with equation y = f(x) satisfies y >0, for xe[a,b].

. The area of the region bounded by the curve with equation y= f(x) and the

x axis, for a<x<b,is denoted by A.

e The length along the curve from the point P|:a, f (a)] to the point QI:b, f (b):' ,
is denoted by L.

If A is numerically equal to L, determine the equation of the curve.

[ |.ly=cosh(x+C)
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Question 3 (¥***4)

A cycloid has parametric equations
x=0+sinf, y=1+cos@, 0<6<rx
a) Show that the total length of the curve is 4 units.

The cycloid is rotated by 360° about the x axis, forming a solid of revolution.

b) Show further that the total surface area of the solid is 447”
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