SERIES AROSHAIIS COM L. K. G. B. Madas Maths com L. K. G. SERIES and INTEGRALS Hallasman, Mallasman, M

NT. On I.V.G.B. Madasmaths.com I.V.G.B. Madasmaths.com I.V.G.B. Madasm The Madasmaths com I. K. C. R. Marlace.

Question 1 (***)

The figure below shows the curve C with equation $y = e^{-\frac{1}{x}}$, $0 < x \le 1$.

a) By using a two different sets of rectangles of unit width under and above the graph of *C*, show that

$$f(n) < \sum_{r=1}^{n} \frac{1}{r} < g(n),$$

where f(n) and g(n) are functions involving natural logarithms.

- **b**) Determine whether $\sum_{r=1}^{\infty} \frac{1}{r}$ exists.
- c) Write down an approximation for $\sum_{r=1}^{N} \frac{1}{r}$ if N is very large.

$$f(n) = \frac{1}{n} + \ln n, \quad g(n) = 1 + \ln n, \quad \sum_{r=1}^{\infty} \frac{1}{r} \text{ diverges}, \quad \text{as } n \to \infty, \quad \sum_{r=1}^{N} \frac{1}{r} \approx \ln N$$

Question 2 (***)

The figure above shows the curve C with equation $y = \sqrt[3]{x}$, $x \ge 0$.

a) By using two different sets of rectangles of unit width under and above the graph of C, show that

$$\int_{a}^{b} \sqrt[3]{x} \ dx < \sqrt[3]{1} + \sqrt[3]{2} + \sqrt[3]{3} + \dots + \sqrt[3]{n} < \int_{c}^{d} \sqrt[3]{x} \ ,$$

stating the limits in the integrals.

b) Hence show that

$$\sum_{n=1}^{100} \sqrt[3]{n} \approx 350.$$

$$a = 0, b = n, c = 1, d = n+1$$

The figure below shows the curve C with equation $y = e^{-\frac{1}{x}}$, $0 < x \le 1$.

a) By using two different sets of rectangles of width $\frac{1}{n}$ under and above the graph of C, show that

$$A < \int_0^1 e^{-\frac{1}{x}} dx < A + \frac{1}{2e},$$

where A is an exact finite series involving exponentials.

The above expression is to be used to approximate the area under C for $0 < x \le 1$. When $n \ge N$, the error is less than 10^{-5} .

b) Determine the least possible value of N.

$$A = \frac{1}{n} \left[e^{-n} + e^{-\frac{1}{2}n} + e^{-\frac{1}{3}n} + e^{-\frac{1}{4}n} + \dots + e^{-\frac{n}{n-1}} \right], \quad \boxed{N = 36788}$$

Created by T. Madas

Question 4 (***+)

By considering the area of two different rectangles of unit width under and above the graph of $y = \frac{1}{x}$, show that

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$$

Question 5 (*****)

A curve has equation y = f(x).

The finite region R is bounded by the curve, the x axis and the straight lines with equations x = a and x = b, and hence the area of R is given by

$$I(a,b) = \int_a^b f(x) \ dx.$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f(x_i)$, known as a "right (upper) Riemann sum"

$$I(a,b) = \lim_{n\to\infty} \left[\sum_{i=1}^{n} \left[f(x_i) \delta x \right] \right],$$

where $\delta x = \frac{b-a}{n}$ and $x_i = a + i \, \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

$$\int_{0}^{1} x^{2} dx = \frac{1}{3}.$$

Question 6 (*****)

A curve has equation y = f(x).

The finite region R is bounded by the curve, the x axis and the straight lines with equations x = a and x = b, and hence the area of R is given by

$$I(a,b) = \int_a^b f(x) \ dx.$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f(x_i)$, known as a "right (upper) Riemann sum"

$$I(a,b) = \lim_{n\to\infty} \left[\sum_{i=1}^{n} \left[f(x_i) \delta x \right] \right],$$

where $\delta x = \frac{b-a}{n}$ and $x_i = a+i \, \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

$$\int_{3}^{6} x^{2} dx = 63.$$

Question 7 (*****)

A curve has equation y = f(x).

The finite region R is bounded by the curve, the x axis and the straight lines with equations x = a and x = b, and hence the area of R is given by

$$I(a,b) = \int_a^b f(x) \ dx.$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f(x_i)$, known as a "right (upper) Riemann sum"

$$I(a,b) = \lim_{n\to\infty} \left[\sum_{i=1}^{n} \left[f(x_i) \delta x \right] \right],$$

where $\delta x = \frac{b-a}{n}$ and $x_i = a + i \, \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

$$\lim_{n\to\infty} \left\lceil \sqrt[n]{\frac{n!}{n^n}} \right\rceil = \frac{1}{e}.$$

Question 8 (****)

Determine the limit of the following series.

$$\lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \frac{1}{n+4} + \dots + \frac{1}{n+n-2} + \frac{1}{n+n-1} + \frac{1}{n+n} + \right]$$

