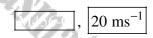
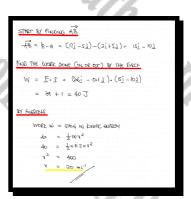
WORK and VEC. Malashatis com A C. B. Malashatis com Casmaths com 1. V.C.B. Madasmaths com 1. V.C.B. Manasm

Question 1 (**)


The vectors \mathbf{i} and \mathbf{j} are horizontal unit vectors perpendicular to each other.

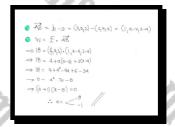

A bead of mass 0.2 kg is threaded on a smooth straight horizontal wire.

The bead is at rest at the point A with position vector $(2\mathbf{i} + 5\mathbf{j})$ m.

A single force $(2.6\mathbf{i} - 0.1\mathbf{j})$ N acts on the bead and moves it to the point B with position vector $(17\mathbf{i} - 5\mathbf{j})$ m.

Find the speed of the bead at B.

Question 2 (**)


The vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.

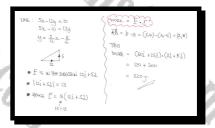
A particle P moves from the point A, with position vector $(2\mathbf{i} + 4\mathbf{j} + a\mathbf{k})$ m, where a is a constant, to the point B, with position vector $(3\mathbf{i} + a\mathbf{j} + 2\mathbf{k})$ m, under the action of a constant force $\mathbf{F} = (4\mathbf{i} + a\mathbf{j} + 3\mathbf{k})$ N.

The work done by \mathbf{F} , as it moves P from A to B, is 18 J.

Find the possible values of a.

$$a = -1, \ a = 8$$

Question 3 (***)


A small bead is threaded on a smooth, straight horizontal wire which passes through the point A(3,-4) and the point B(5,4).

The bead moves under the action of a single horizontal force ${\bf F}$ of magnitude 65 N, whose line of action is parallel to the straight line with equation

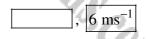
$$5x-12y=10$$
.

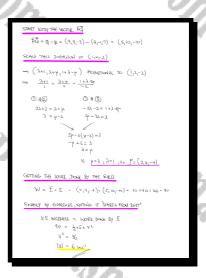
Given that all distances are measured in m, find the work done by \mathbf{F} as it moves the bead from A to B.

320 J

Question 4 (***)

The vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.


A particle of mass 5 kg is initially at rest at the point P with position vector $(4\mathbf{i} - \mathbf{j} + 7\mathbf{k})$ m when is acted by a force \mathbf{F} which causes it to move to the point Q with position vector $(9\mathbf{i} + 9\mathbf{j} - 3\mathbf{k})$ m.


It is further given that

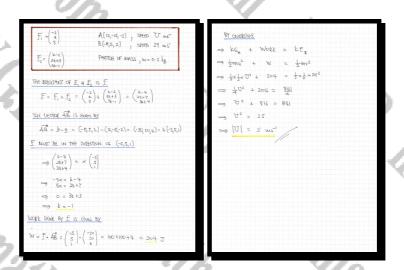
$$\mathbf{F} = \left[(\lambda + 1)\mathbf{i} + (\lambda + \mu)\mathbf{j} + (1 + \lambda - 2\mu)\mathbf{k} \right] \mathbf{N} ,$$

where λ and μ are scalar constants.

If \mathbf{F} is acting in the direction PQ, determine the speed of the particle as it passes Q.

Question 5 (****)

The vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.


A particle, of mass 0.5 kg, passes through the point A whose position vector is $(12\mathbf{i}-15\mathbf{j}-2\mathbf{k})$ m, with speed U ms⁻¹. The particle is moving due to the action of the following two constant forces, \mathbf{F}_1 , and \mathbf{F}_2 .

$$\mathbf{F}_{1} = \begin{pmatrix} -2\\4\\5 \end{pmatrix} \mathbf{N} \quad \text{and} \quad \mathbf{F}_{2} = \begin{pmatrix} k-2\\2k+3\\3k-1 \end{pmatrix} \mathbf{N},$$

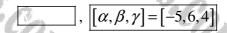
where k is a scalar constant.

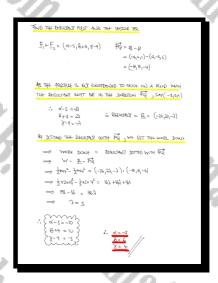
Determine the value of U, given further that it passes through the point B, whose position vector is $(-8\mathbf{i} + 5\mathbf{j} + 2\mathbf{k})$ m, with speed 29 ms⁻¹.

 $U = 5 \text{ ms}^{-1}$

Question6 (****)

The vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.

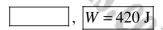

A particle of mass 2 kg, which is free to move in any direction, is acted by two forces


$$\mathbf{F}_1 = (-5\mathbf{i} + 4\mathbf{j} - 9\mathbf{k}) \text{ N}$$
 and $\mathbf{F}_2 = (\alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}) \text{ N}$,

where α , β and γ are scalar constants.

These two forces cause the particle to move **directly** from the point P with position vector $(4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k})$ m to the point Q with position vector $(-4\mathbf{i} + 5\mathbf{j} + \mathbf{k})$ m.

If the respective speeds of the particle at P and Q are 4 ms⁻¹ and 14 ms⁻¹, determine the values of α , β and γ .


Question 7 (****)

The vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.

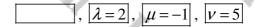
A particle P moves from the point A, with position vector $(-10\mathbf{i} - \mathbf{j} + 3\mathbf{k})$ m to the point B, with position vector $(8\mathbf{i} + 11\mathbf{j} + 9\mathbf{k})$ m, under the action of the following three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 .

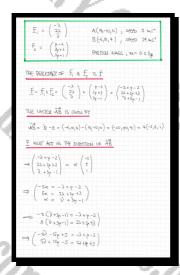
- $\mathbf{F}_1 = (\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}) \mathbf{N}$.
- $\mathbf{F}_2 = (7\mathbf{i} 2\mathbf{j} + 4\mathbf{k}) \mathbf{N}$
- $\mathbf{F}_3 = [(2k-1)\mathbf{i} + (2k+2)\mathbf{j} + (3-2k)\mathbf{k}]$ N, where k is a scalar constant.

Determine the work done by the three forces in moving the particle from A to B.

Question 8 (*****)

The vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.


A particle, of mass 0.5 kg, passes through the point A whose position vector is $(14\mathbf{i}-10\mathbf{j})$ m, with speed 5 ms^{-1} . The particle is moving due to the action of the following two constant forces, \mathbf{F}_1 , and \mathbf{F}_2 .


$$\mathbf{F}_{1} = \begin{pmatrix} -\lambda \\ 2\lambda \\ v \end{pmatrix} \mathbf{N} \quad \text{and} \quad \mathbf{F}_{2} = \begin{pmatrix} \mu - 2 \\ 2\mu + 3 \\ 3\mu - 1 \end{pmatrix} \mathbf{N},$$

where λ , μ and ν are scalar constants.

It further given that the particle passes through the point B, whose position vector is $(-6\mathbf{i} + 10\mathbf{j} + 4\mathbf{k})$ m, with speed 29 ms⁻¹.

Determine the value of each of the constants λ , μ and ν .

