IYGB GCE
Mathematics SYN
Advanced Level
Synoptic Paper WDifficulty Rating: 4.0225/0.7080
Time: 3 hoursCandidates may use any calculator allowed by the

Information for Candidates

This synoptic practice paper follows closely the Advanced Level Pure Mathematics Syllabus, suitable for first assessment Summer 2018.
The standard booklet "Mathematical Formulae and Statistical Tables" may be used. Full marks may be obtained for answers to ALL questions.
The marks for the parts of questions are shown in round brackets, e.g. (2). There are 22 questions in this question paper.
The total mark for this paper is 200.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.
Non exact answers should be given to an appropriate degree of accuracy.
The examiner may refuse to mark any parts of questions if deemed not to be legible.

Created by T. Madas

Question 1

A recurrence relation is defined for $n \geq 1$ by

$$
a_{n+1}=7 a_{n}-n^{3}-3, \quad a_{1}=1 .
$$

a) Find the value of a_{4}.
b) Evaluate the sum

$$
\begin{equation*}
\sum_{r=1}^{5} a_{r} \tag{2}
\end{equation*}
$$

Question 2

$$
f(x) \equiv x^{4}+2 x^{3}+x^{2}-4, x \in \mathbb{R} .
$$

a) Use the factor theorem to show that $(x+2)$ is a factor of $f(x)$.
b) Express $f(x)$ as the product of a linear factor and a cubic factor.
c) Find another linear factor of $f(x)$.
d) Express $f(x)$ as the product of two linear factors and a quadratic factor.
e) Show that the equation $f(x)=0$ has exactly two solutions.

Question 3

Solve each of the following equations.
a) $x=|3 x+2|-4$.
b) $x^{2}+1=|2 x-4|$.

Created by T. Madas

Question 4

The figure above shows a circular sector $O A B$ of radius $3 x \mathrm{~cm}$, subtending an angle θ radians at O.

The line $A C$ is perpendicular to $O B$ and has length $(2 x-1) \mathrm{cm}$.

The length of $O C$ is $(2 x+2) \mathrm{cm}$.
a) Show that $x=5$.
b) Find the area of the shaded region $A C B$.

Question 5

$$
f(x)=\frac{169}{8}-2\left(x+\frac{7}{4}\right)^{2}, x \in \mathbb{R} .
$$

a) State the coordinates of the maximum point of $f(x)$.
b) Express $f(x)$ in the form $a x^{2}+b x+c$, where a, b and c are integers.
c) Solve the equation $f(x)=0$.
d) Sketch the graph of $f(x)$, indicating clearly the coordinates of the points where the graph of $f(x)$ meets the coordinate axes.

Created by T. Madas

Question 6

A circle passes through the points with coordinates $P(-2,1), Q(14,13)$ and $R(20, k)$, where k is a constant.

Given that $\measuredangle P Q R=90^{\circ}$, determine an equation for the circle.

Question 7

The function $f(x)$ is given by

$$
f(x)=2 x^{2}+3, x \in \mathbb{R}, \quad x \leq 0 .
$$

a) Sketch the graph of $f(x)$.
b) Find $f^{-1}(x)$ in its simplest form.
c) Find the domain and range of $f^{-1}(x)$.
d) Solve the equation

$$
\begin{equation*}
f^{-1}(x)=-3 . \tag{2}
\end{equation*}
$$

Created by T. Madas

Question 8

$$
f(x) \equiv \frac{4 x(9 x-10)}{(2-x)(2-3 x)^{2}}, \quad x \in \mathbb{R}, \quad|x|<\frac{2}{3}, \quad x \neq 0 .
$$

a) Find the values of the constants A, B and C given that

$$
\begin{equation*}
f(x) \equiv \frac{A}{2-x}+\frac{B}{2-3 x}+\frac{C}{(2-3 x)^{2}} . \tag{4}
\end{equation*}
$$

b) Hence, or otherwise, find the binomial series expansion of $f(x)$, up and including the term in x^{2}.

The equation $f(x)=-0.63$ is known to have a positive solution which is further known to be numerically small.
c) Use part (b) to find this solution.

Question 9

The straight line with equation

$$
y=k(4 x-17),
$$

does not intersect with the quadratic with equation

$$
\begin{equation*}
y=13-8 x-x^{2} \tag{7}
\end{equation*}
$$

Find the range of possible values of k.

Question 10

Solve the following simultaneous equations without using a calculator

$$
\begin{align*}
& 8^{y}=4^{2 x+1} \\
& 27^{2 y}=9^{x-3} \tag{4}
\end{align*}
$$

Created by T. Madas

Question 11

Use the substitution $u=\ln x$ to show that

$$
\begin{equation*}
\int 3^{\ln x} d x=\frac{x\left(3^{\ln x}\right)}{1+\ln 3}+\text { constant } \tag{7}
\end{equation*}
$$

Question 12

An implicit relationship between x and y is given below, in terms of a constant A.

$$
y \sec ^{2} x=A+2 \ln (\sec x), 0 \leq x<\frac{\pi}{2} .
$$

Given that $y=2$ at $x=\frac{\pi}{3}$, show clearly that when $x=\frac{1}{6} \pi$

$$
\begin{equation*}
y=\frac{3}{4}(8-\ln 3) \tag{7}
\end{equation*}
$$

Question 13

It is given that

$$
\sin ^{2}\left(\theta+\frac{\pi}{4}\right)-\sin ^{2}\left(\theta-\frac{\pi}{4}\right) \equiv \sin 2 \theta .
$$

a) Prove the validity of the above trigonometric identity.
b) Hence, or otherwise, show that ...

$$
\begin{align*}
& \text { i. } \ldots \sin \left(\theta+\frac{\pi}{4}\right) \cos \left(\theta+\frac{\pi}{4}\right)-\sin \left(\theta-\frac{\pi}{4}\right) \cos \left(\theta-\frac{\pi}{4}\right) \equiv \cos 2 \theta . \tag{4}\\
& \text { ii. } \ldots \sin \left(\frac{5 \pi}{12}\right) \cos \left(\frac{5 \pi}{12}\right)+\sin \left(\frac{\pi}{12}\right) \cos \left(\frac{\pi}{12}\right)=\frac{1}{2} . \tag{2}
\end{align*}
$$

Created by T. Madas

Question 14

Consider a sequence of geometric transformations T_{1}, T_{2} and T_{3} which map the graph of the curve with equation $y_{1}=\frac{1}{x}$ onto the graph of y_{2}.
T_{1} : reflection in the x axis.
T_{2} : translation in the negative x direction by 2 units.
T_{3} : translation in the positive y direction by 2 units.

$$
\text { a) Show that the equation of } y_{2} \text { is given by } y_{2}=\frac{2 x+3}{x+2}, x \neq-2 \text {. }
$$

b) Sketch the graph of y_{2}.

You must clearly indicate the equations of any asymptotes and coordinates of any intersections with the coordinate axes.

c) Solve the equation

$$
\begin{equation*}
\frac{2 x+3}{x+2}=2+\frac{2}{x-1} . \tag{3}
\end{equation*}
$$

Question 15

$$
y=(x+2)^{2} \mathrm{e}^{1-x}, x \in \mathbb{R}
$$

Show clearly that

$$
\begin{equation*}
(x+2)^{2} \frac{d^{2} y}{d x^{2}}+x(x+2) \frac{d y}{d x}+2 y=0 . \tag{7}
\end{equation*}
$$

Created by T. Madas

Question 16

The figure above shows the graph of the curve C with equation

$$
y=9 x \sin 3 x, x \in \mathbb{R} .
$$

The straight line L is the tangent to C at the point P, whose x coordinate is $\frac{\pi}{6}$.
a) Show that L passes through the origin O.

The finite region R bounded by C and L.
b) Show further that the area of R is

$$
\begin{equation*}
\frac{1}{8}\left(\pi^{2}-8\right) \tag{7}
\end{equation*}
$$

Question 17

Solve the following simultaneous equations

$$
\begin{gather*}
\arctan x+\arctan y=\arctan 8 \\
x+y=2 \tag{7}
\end{gather*}
$$

Created by T. Madas

Question 18

A curve C is given by the parametric equations

$$
\begin{equation*}
x=2 \cos 2 t, \quad y=5 \sin t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \tag{7}
\end{equation*}
$$

The point $P\left(1, \frac{5}{2}\right)$ lies on C.
a) Find the value of the gradient at P, and hence, show that an equation of the normal to C at P is

$$
8 x-10 y+17=0 .
$$

The normal at P meets C again at the point Q.
b) Show that the y coordinate of Q is $-\frac{165}{16}$.

Question 19

Water is leaking from a hole at the side of a water tank.

The tank has a height of 3 m and is initially full. It is thought that while the tank is leaking, the height, $H \mathrm{~m}$, of the water in the tank at time t hours, is governed by the differential equation

$$
\frac{d H}{d t}=-k \mathrm{e}^{-0.1 t},
$$

where k is a positive constant.

The height of the water drops to 2 metres after 10 hours.

Find in exact simplified form ...
a) ... an expression for H in terms of t.
b) ... the height of the hole, measured from the ground.

Question 20

W

The figure above shows a hollow container consisting of a right circular cylinder of radius R and of height H joined to a hemisphere of radius R.

The cylinder is open on one of the circular ends and the hemisphere is also open on its circular base. The cylinder is joined to the hemisphere at their open ends so that the resulting object is completely sealed.

Given that volume of the container is V, show the surface area of the container is minimised when $R=H$, and hence show further that this minimum surface area is

$$
\begin{equation*}
\sqrt[3]{45 \pi V^{2}} \tag{11}
\end{equation*}
$$

Question 21

Liquid is pouring into a container at the constant rate of $2 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

The container initially contains some liquid and when the height of the liquid in the container is $h \mathrm{~cm}$ the volume of the liquid, $V \mathrm{~cm}^{3}$, is given by

$$
V=\pi\left(h^{2}+5 h-16\right), h \geq 6 .
$$

Determine the rate at which the height of the liquid in the container is rising 30 seconds after the liquid started pouring in.

Question 22

A convergent geometric progression has positive first term and positive common ratio.

Use differential calculus to show that the sum to infinity of the progression is at least four times as large as its second term.

Created by T. Madas

\qquad

