JACOBIANS CURVILINEAR COORDINATES Nasmalls com 1. V. G.B. Madasmalls com 1. V. G.B. Manasm

Question 1

- a) Determine, by a Jacobian matrix, an expression for the area element in plane polar coordinates, (r,θ) .
- b) Verify the answer of part (a) by performing the same operation in reverse.

 $dA = r dr d\theta$

Question 2

Determine, by a Jacobian matrix, an expression for the volume element in spherical polar coordinates, (r, θ, φ) .

 $dV = r^2 \sin\theta \, dr \, d\theta \, d\varphi$

Question 3

Two sets of variables are related by the equations

$$x = r \cosh \theta$$
 and $y = r \sinh \theta$,

where $r \ge 0$.

Evaluate independently Jacobians

$$I = \frac{\partial(x, y)}{\partial(r, \theta)}$$
 and $J = \frac{\partial(r, \theta)}{\partial(x, y)}$,

and hence show that $I = \frac{1}{J}$.

$$I = \sqrt{x^2 + y^2} = r$$
, $J = \frac{1}{r} = \frac{1}{\sqrt{x^2 + y^2}}$

Question 4

The finite region R is bounded by the straight lines with equations

$$y = x-1$$
, $y = x+1$, $y = -x-1$ and $y = -x+1$.

Find an exact value for

$$\iint_{R} 3x^2 \, dx \, dy.$$

Question 5

The finite region R is bounded by the curves with equations

$$y = 2x^2$$
, $y = 4x^2$, $xy = 1$ and $xy = 5$.

Find an exact value for

$$\iint\limits_R xy\ dx\,dy.$$

4 ln 2

Question 6

The finite region R in the first quadrant is defined by the inequalities

$$4 \le x^2 + y^2 \le 9$$
 and $1 \le x^2 - y^2 \le 4$.

Evaluate the following integral

$$\iint\limits_R xy\ dx\,dy\,.$$

15 8

Question 7

The finite region R is bounded by the straight lines with equations

$$x + y = 1$$
, $x + y = 2$, $y = x$ and $y = 0$.

Use the transformation equations

$$x = uv$$
 and $y = u(1-v)$,

to find an exact value for

$$\iint_{\mathbb{R}} \frac{y \ln(x+y)}{x^2} \, dx \, dy \, .$$

$$(1-\ln 2)(-1+2\ln 2)$$

Question 8

The finite region R satisfies the inequalities

$$x \le y^2 \le 2x$$
 and $\frac{1}{x} \le y \le \frac{2}{x}$.

Find the area of R, giving the answer as an exact simplified logarithm.

 $\frac{1}{3}$ ln 2

Question 9

An ellipse has Cartesian equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

where a and b are positive constants.

Use the transformation equations

$$x = r \cos \theta$$
 and $y = f(r) \sin \theta$,

where f is a function to be found, to determine the area enclosed by the ellipse.

 πab

Question 10

The finite region R is bounded by the straight lines with equations

$$y = x$$
 and $y = 4x$,

and the hyperbolae with equations

$$y = \frac{1}{x}$$
 and $y = \frac{2}{x}$, $x \neq 0$.

Show clearly that

$$\iint\limits_{R} 3x^2 y^2 \, dx \, dy = 7 \ln 2.$$

proof

Question 11

The **unbounded** region R is defined by the curves with equations

$$R$$
 is defined by the curves with equations $y = x^2$, $y = 2x^2$ and $y = \frac{1}{4x^2}$. equations $u = \frac{y}{2}$ and $v = yx^2$,

Use the transformation equations

$$u = \frac{y}{x^2}$$
 and $v = yx^2$

to find an exact value for

$$\iint\limits_R \frac{1}{y^2 x^3} \, dx \, dy \, .$$

Question 12

The finite region R, in the first quadrant, satisfies the inequalities

$$x \le y^2 \le 3x$$
 and $\frac{1}{x} \le y \le \frac{2}{x}$.

Find the exact value of

$$\int_{R} y^6 \ dx \, dy$$

$$\frac{\text{Resultational Triple In Interval No.}}{\int_{R}} \int_{0}^{R} dx \, dy = \int_{R_{1}}^{2} \int_{R_{2}}^{2} \frac{dx^{2}}{2} x^{2} \frac{dy}{2x^{2}} \frac{dy}{2x^{2}} dy \\
= \frac{1}{3} \int_{V_{1}}^{2} \int_{R_{2}}^{2} dy^{2} \frac{1}{3} x^{2} dy \\
= \frac{1}{3} \int_{V_{2}}^{2} \int_{R_{2}}^{2} dy^{2} \frac{1}{3} x^{2} dy \\
= \frac{1}{3} \int_{V_{2}}^{2} \frac{1}{2} x^{2} x^{2} \frac{1}{2} x^{2} dy \\
= \frac{1}{3} \int_{0}^{2} \frac{1}{4} x^{2} dy dy \\
= \frac{1}{3} \left[\frac{1}{3} x^{2} \right]_{1}^{2} \\
= \frac{4}{9} \left(8 - 1 \right)$$

Question 13

The finite region R, in the first quadrant, is bounded by the curves with equations

$$y = 2x + 1$$
, $y = 2x + 2$, $y = \frac{3}{x}$ and $y = \frac{6}{x}$

Show clearly that

$$\iint\limits_R (y+2x)^3 \ dx \, dy = 115.$$

proof

Question 14

The finite region R is defined by the inequalities

$$2 \le x^2 + y^2 \le 4$$
 and $1 \le x^2 - y^2 \le 2$.

Given further that x > 0 and x > 0, evaluate the following integral

$$\iint\limits_{R} x^3 y^3 \, dx \, dy \, .$$

 $\frac{7}{16}$

Question 15

The finite region R is bounded by the parabolas with equations

$$y = \frac{1}{2}x^2$$
, $y = 2x^2$, $y^2 = x$ and $y^2 = 4x$.

Show clearly that

$$\iint\limits_{R} y^3 + 1 \ dx \, dy = \frac{117}{8} \, .$$

proof

Question 16

The finite region R is bounded by the straight lines with equations

$$y = x+1$$
, $y = x+2$, $y = 3-4x$ and $y = 4-4x$.

- a) Find the exact area of R.
- **b**) Show clearly that

$$\iint\limits_R 4y^2 + 12xy + 9x^2 \ dx \, dy = \frac{151}{30}.$$

 $area = \frac{1}{5}$

Question 17

The finite region R is defined by the inequalities

$$1 \le x^2 - y^2 \le 9 \quad \text{and} \quad 2 \le xy \le 4.$$

Given further that x > 0 and x > 0, evaluate the following integral

$$\iint\limits_{\mathbb{R}} \left(x^4 - y^4 \right) dx \, dy \, .$$

60

Question 18

The finite region R is bounded by the straight lines with equations

$$y = x - 1$$
 and $y = x - 3$,

and the hyperbolae with equations

$$x^2 - y^2 = 1$$
 and $x^2 - y^2 = 4$.

Evaluate the integral

$$\iint\limits_R (x+y)\,dx\,dy\,.$$

<u>5</u>2

Question 19

The finite region R is bounded by the curves with equations

$$6xy = \pi$$
 and $2xy = \pi$,

and the straight lines with equations

$$y = \sqrt{3}$$
 and $y = 3\sqrt{3}$.

evaluate the following integral

$$\iint\limits_R y\sin(xy)\,dx\,dy.$$

3

Question 20

The finite region R satisfies the inequalities

$$1 \le x + y \le 2$$
 and $0 \le y \le x$.

a) Use plane polar coordinates (r, θ) to find the value of

$$\iint\limits_{B} \frac{y(x+y)^2}{x^3} \, dx \, dy \, .$$

b) Verify the answer obtained in part (a) by transforming the integral to different coordinate system.

 $\frac{3}{4}$

Question 21

The finite region R in the x-y plane is defined as the region enclosed by the straight line segments joining the points with coordinates at (1,0), (1,0), (1,0) and (1,0), in that order.

Evaluate the following integral

$$\iint\limits_{R} (2x - y)^2 \, dx \, dy.$$

 $\frac{33}{2}$

Question 22

The finite region R in the x-y plane, is defined as the interior of a parallelogram with vertices at (4,0), (0,1), (-2,7) and (2,6).

Evaluate the integral

$$\int_{B} x^2 dx dy.$$

 $\frac{176}{3}$

Question 23

Given that R is the finite region in the x-y plane, defined as

$$\frac{x^2}{4} + \frac{y^2}{9} \le 1, \ x \ge 0, \ y \ge 0,$$

evaluate the integral

$$\int_{R} yx^3 \ dxdy$$

6

Question 24

Given that R is the region of the x-y plane, defined as

$$2x^2 \le y \le 4x^2 \quad \text{and} \quad 4yx^2 \ge 1,$$

evaluate the integral

$$\int_{R} \frac{1}{y^2 x^3} \, dx dy \, .$$

ln 2

Question 25

By suitably changing coordinates, find the volume of the solid defined as

$$0 \le \sqrt{x} + \sqrt{y} + \sqrt{z} \le \sqrt{3} .$$

 $\frac{3}{10}$

Question 26

The finite region R is defined as the region enclosed by the ellipsoid with Cartesian equation

$$\frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{25} = 1.$$

By first transforming the Cartesian coordinates into a new Cartesian coordinate system, use spherical polar coordinates, (r, θ, φ) , find the value of

$$\iiint\limits_R \left(x^2 + y^2 + z^2\right) dx dy dz.$$

 800π

Question 27

The finite region R in the x-y plane, is defined

$$x^2 \le y \le 2x^2$$
 and $x \le y^2 \le 2x$.

Evaluate the integral

$$\int_{B} x^3 + y^3 \, dx dy \, .$$

 $\frac{7}{16}$

Question 28

The finite region R is bounded by the coordinate axes and the straight line with Cartesian equation

$$x + y = 1$$

Use the coordinate transformation equations

$$u = \frac{1}{2}x + \frac{1}{2}y$$
 and $v = \frac{1}{2}x - \frac{1}{2}y$

to find an exact value for

$$\int_{R} e^{\frac{x-y}{x+y}} dx dy.$$

$$\frac{e^2 - 1}{4e} = \frac{1}{2} \sinh 1$$

Question 29

The figure above shows the graph of a "hill", modelled by the function z = f(x, y), defined in the entire x-y plane by

$$z = e^{-\left(\frac{5}{4}x^2 - xy + 2y^2\right)}.$$

Use the transformation equations

$$x = u + 2v$$
 and $y = u - v$

to show that the volume of the "hill" is $\frac{2\pi}{3}$.

You may assume without proof that $\int_{-\infty}^{\infty} e^{-s^2} ds = \sqrt{\pi}.$

Created by T. Madas

Question 30

The finite region R is bounded by the coordinate axes and the straight line with Cartesian equation

$$x + y = 1$$

Use the transformation equations

$$u = x + y$$
 and $v = x - y$

to find an exact value for

$$\int_{P} e^{\frac{1}{4}(x+y)^2} dxdy.$$

 $2\left(e^{\frac{1}{4}}-1\right)$

Question 31

The finite region R is bounded by the coordinate axes and the straight line with Cartesian equation

$$x + y = 1$$

Use a suitable coordinate transformation to find an exact value for

$$\int_{R} e^{\frac{y-x}{y+x}} dx dy.$$

$$\frac{e^2 - 1}{4e} = \frac{1}{2} \sinh 1$$

Question 32

The finite region R satisfies the inequalities

$$1 \le x + y \le 2$$
 and $0 \le y \le x$.

Show clearly that

$$\iint_{R} \frac{y \ln(x+y)}{x^2} dx dy = (1-\ln 2)(-1+2\ln 2).$$

, proof

Question 33

The finite region R is defined by the inequalities

$$y \le x$$
, $y \le 1-x$ and $y \ge 0$

Use the transformation equations

$$u = x + y$$
 and $v = x - y$

to find an exact value for

$$\int_{R} \left(x^2 - y^2\right) e^{\frac{1}{4}(x - y)^2} dx dy$$

$$\boxed{\frac{1}{2}\left(4e^{\frac{1}{4}}-5\right)}$$

Question 34

The finite region R is bounded by the straight lines with equations

$$y = x$$
, $x = 1$ and $y = 0$.

Use the transformation equations

$$u = x + y$$
 and $v = \frac{y}{x}$

to find an exact value for

$$\iint\limits_{\mathbb{R}} \left(\frac{x+y}{x^2} \right) e^{x+y} \, dx \, dy.$$

Question 35

The finite region R in the x-y plane is enclosed by the rectilinear triangle with vertices at (0,0), (0,1) and (2,0).

Use a suitable coordinate transformation to find an exact value for

$$\int_{R} e^{\frac{x-2y}{x+2y}} dx dy.$$

Question 36

$$I = \int_0^\infty \int_0^\infty e^{-(x+y)^2} dx \, dy.$$

a) Use the coordinate transformation equations

$$x = \frac{1}{2}u + \frac{1}{2}v$$
 and $y = \frac{1}{2}u - \frac{1}{2}v$,

to find the value of I.

b) Evaluate I in plane polar coordinates, (r, θ) , and hence verify the answer of part (a).

 $\frac{1}{2}$

Question 37

The finite region R is bounded by the curve with Cartesian equation

$$x^4 + y^4 = 1, \ x \ge 0, \ y \ge 0.$$

Use the transformation equations

$$x^2 = r\cos\theta$$
 and $x^2 = r\cos\theta$,

to find the value of

$$\iint\limits_R x^3 y^3 \sqrt{1 - x^4 - y^4} \ dx dy \, .$$

Question 38

The finite region V is enclosed by the surface with Cartesian equation

$$x^4 + y^4 + z^4 = 64.$$

By first transforming the Cartesian coordinates into a new Cartesian coordinate system, use spherical polar coordinates, (r, θ, φ) , to show that the volume of V is

$$\frac{8}{3\pi} \left[\Gamma \left(\frac{1}{4} \right) \right]^4.$$

proof

