created by T. Madas ARTHMETIC SERIES SEKIES Worded Questions A. I.Y.G.B. Malasmalls.Com I.Y.G.B. Malasmalls.Com I.Y.G.B. Malasm THER. Madasmans.com I.V.C.P. Manager

Question 1 (**) non calculator

A ball bearing is rolling down an inclined groove.

It rolls down by 1 cm during the first second of its motion, and in each subsequent second it rolls down by an extra 3 cm than in the previous second.

Given it takes 12 seconds for the ball bearing to roll down the groove, find in metres the length of the groove.

2.1 m

12 2×1+11×3

Question 2 (**+)

Seats in a theatre are arranged in rows. The number of seats in each row form the terms of an arithmetic series.

The sixth row has 23 seats and the fifteenth row has 50 seats.

a) Find the number of seats in the first row.

The theatre has 20 rows of seats in total.

b) Find the number of seats in this theatre.

8, 730

row 20

1+

row 5

row 4

row 3

row 2 row 1

Question 3 (***)

Arnold is planning to save for the next 48 months in order to raise a deposit to buy a flat. He plans to save ± 300 this month and each successive month thereafter, to save an extra ± 5 compared to the previous month.

- a) Find the amount he will save on the twelfth month.
- **b**) Find the total amount he will save at the end of the 48 months.

Franco is also planning to save for the next 48 months in order to buy a car.

He plans to save $\pounds a$ this month and each successive month thereafter, to save an extra $\pounds 15$ compared to the previous month.

c) Find the value of *a*, if Franco saves the same amount of money as Arnold does in the next 48 months.

(a) [a = 300] [d = 5]	b(1-1)+00= =4U 2X11+00E = 4U 2212 = 210
(b) $\beta_{\eta^q} \frac{\eta}{2} \left[2a + 1 \right]$	$(1-1)d$ \Rightarrow $S_{48} = \frac{2}{3} \left[\frac{2}{2} \times 300 + 47 \times 5 \right]$ \Rightarrow $S_{48} = 24 \times (im + 235)$ \Rightarrow $S_{48} = 24 \times 835$ \Rightarrow $S_{48} = 20042$
(c) $\begin{cases} \gamma_{H_0} = 200003 \\ d = 15 \\ h = 48 \\ q = ? \\ d = ? \\ q = ? \\ d = 1 \\ q = ? \\ q = ? \\ q = 1 \\ q$	$ \begin{array}{c} c_{p} = \frac{w}{2} \left[b_{1} \left(x_{0} - \lambda_{0} \right) \right] \\ \Delta c_{0} c_{0} c_{2} & \frac{w}{2} \left[\Delta a + F \left(\lambda_{1} \right) \right] \\ \Delta c_{0} c_{0} c_{2} & \frac{w}{2} \left[\Delta a + F \left(\lambda_{1} \right) \right] \\ \Delta c_{0} c_{2} & \frac{w}{2} \left[\Delta a + F \left(\lambda_{1} \right) \right] \\ B & 2 c_{2} \\ B & 2 c_{2} \\ B & 2 c_{3} \\ B & 2 c_{3} \\ a_{1} = c_{3} \\ a_{2} \\ a_{3} \\ c_{3} \\ c_{3$

 $\pounds 355$, $\pounds 20040$, a = 65

Question 4 (***)

Andrew is planning to pay money into a pension scheme for the next 40 years.

He plans to pay into the pension scheme $\pounds 800$ in the first year and each successive year thereafter, an extra $\pounds 100$ compared to the previous year.

- a) Calculate the amount Andrew will pay into the scheme on the tenth year.
- b) Find the total amount Andrew will have paid into the scheme after 20 years.

Beatrice is also planning to pay money into a pension scheme for the next 40 years.

She plans to pay £1580 in the first year and each successive year thereafter, to pay an extra $\pounds d$ compared to the previous year.

c) Find the value of d, if both Andrew and Beatrice paid into their pension schemes the same amount of money over the next 40 years.

 $[\pounds 1700], \ [\pounds 35000], \]d = 60$

Question 5 (***)

A novelist is planning to write a new book.

He plans to write 15 pages in the first week, 17 pages in the second week, 19 pages in the third week, and so on, so that he writes an extra two pages each week compared with the previous week.

a) Find the number of pages he plans to write in the tenth week.

b) Determine how many pages he plans to write in the first ten weeks.

The novelist sticks to his plan and produces a book with 480 pages, after n weeks.

c) Use algebra to determine the value of n.

[33], [240], [n=16]

(9)	$ u_q = \alpha + G_{n-1} d \leq b$	\$ = 4 204	+Gn=1)al
	Uto = (2×P + 2) = 00	Sho = 10 2×1	s + 9 × 2]
	U ₁₀ = 33	\$ 3 240 -	+18
ũ	$\boxed{\begin{bmatrix} \frac{1}{2} \frac{1}{2} = \frac{N}{2} \begin{bmatrix} 2n + (n-1)d \end{bmatrix}}$	SINCE SOUTH	ALL & PETTIE HOUSE
	$460 = \frac{11}{2} \left[\frac{30 + (n-1)x_2}{2} \right]$	16 N=15	15×(29)= 435
	480 = ½ [30+2x-2] 480 = ½ [2x+28]	M= 16	(6×30 = 480
	48b = N(N + 10p)	h = L	6//

Question 6 (***+)

An athlete is training for a long distance race.

He is preparing by running on 16 consecutive days so that his daily running distances form an arithmetic sequence.

The athlete ran for 15 km on the 16th day of his training and the total distance run over the 16 day training period was 288 km.

Find the distance the athlete ran on the 11th day of his training.

17 km

and the second se		
(1,6 = 15) (\$16 = 298)	$[0]_{t=\alpha+(n-1)d}$	$\frac{\left[b_{1}^{2}-\frac{N}{2}\left[2\alpha+G_{1}\right]\right]}{288=\frac{16}{2}\left[2\alpha+I_{2}d\right]}$
: 15=a+150	5	$288 = 8 \left[2a + 15d \right]$ 36 = a + (a + 15d) 36 = a + 15 [a = 21]
$\begin{bmatrix} d & z \\ -\frac{C}{2} $		ar + lod 21 + lo(-e.q)

Question 7 (***+) non calculator

On his 1^{st} birthday, Anthony was given £50 as a present by his godmother Cleo.

For every birthday ever since, Cleo gave Anthony £20 more than on his previous birthday. This money was saved by Anthony's mother until Anthony was n years old.

a) Find the amount of money Anthony received as a birthday present on his tenth birthday.

After Anthony's n^{th} birthday his mother gave him Cleo's presents, which was £7800 in total.

b) Determine the value of n.

a) (a=50) (d=20)	$ \begin{array}{c} \hline \underbrace{(J_{q} \circ \alpha_{4}(\tilde{\mu}_{t-1})_{d})}_{\Rightarrow \circ} & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{\Rightarrow \circ} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_{0} + \eta \times 2\sigma)}_{p_{0}} \\ \Rightarrow & \underbrace{(u_{p_{0}} \circ S_$	$\begin{cases} \begin{pmatrix} \mathbf{b} \end{pmatrix} \begin{bmatrix} \frac{1}{2} & \frac$
		$\begin{cases} \Rightarrow 7800 = 104 (4+h) \\ \Rightarrow 780 = h(4+h) \end{cases}$
		S BY INSRETION N=26

Question 8 (***+)

A new gym opened and during its first trading month 26 people joined its membership.

A business forecast for the gym membership is drafted for the next twelve months.

It assumes that every month an extra x number of members will join, so that next month (26+x) members will be added, the following month (26+2x) members will be added, and so on.

Taking x = 15, find ...

- a) ... the number of members that will join in the twelfth month.
- **b**) ... the total number of members that will join during the first twelve months.

The business plan recognises that in order for the business to succeed in the long term, it needs a total membership of at least 1500 during its first twelve months.

c) Using the same model, find the required value of x in order to achieve a twelve month membership target of 1500.

		-	
(@)	$b_{ip} = a + (n-1)d$	(ک)	$A_{1}^{2} = \frac{H}{2} \left[2a + (u-1)d \right]$
(م	$\begin{split} \frac{ \mathbf{x}_{q} }{ \mathbf{x}_{q} ^{2}} &= \frac{ \mathbf{x}_{q} }{ \mathbf{x}_{q} ^{2}} &\leq 1 + \mathbf{x}_{q} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{k}_{q} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf{y}_{q} _{\mathbf{S}} &= \mathbf{S} + \mathbf{S} - \mathbf{S} \\ \mathbf$	Q)	$\begin{array}{c} \gamma &= \sum_{i=1}^{i-1} \sum_{j=1}^{i-1} \sum_{j$

Question 9 (***+)

A non regular polygon has 9 sides whose lengths, in cm, form an arithmetic sequence with common difference d.

The longest side of the polygon is 6 cm and the perimeter of the polygon is 45 cm.

Find in any order ...

- a) ... the length of the shortest side of the polygon.
- **b**) ... the value of d.

	ALC: NOT ADDR.	
(N=9) (Uq=5,4- had terri (Sq=45)	$\begin{cases} \int_{a}^{b} c \frac{y}{2} \left(a + b \right) \\ \Rightarrow \frac{1}{2} \int_{a}^{b} c \frac{y}{2} \left(a + b \right) \\ \Rightarrow \frac{1}{2} \int_{a}^{b} c \frac{y}{2} \left(a + b \right) \\ \Rightarrow 0 = 0 \\ \Rightarrow 0 \\ \Rightarrow 0 = 0 \\ \Rightarrow 0 \\ \Rightarrow 0 = 0 \\ \Rightarrow $	$\begin{array}{c} \label{eq:constraint} \begin{tabular}{lllllllllllllllllllllllllllllllllll$

Question 10 (***+)

The roof of a museum has a sloping shape with the roof tiles arranged neatly in horizontal rows. There are 28 roof tiles in the top row and each row below the top row has an extra 4 tiles than the row above it.

The bottom row has 96 tiles.

Show that there are 1116 tiles on the roof of the museum.

proof

Question 11 (***+)

William started receiving his annual allowance on his 13^{th} birthday. His first allowance was £750 and this amount was increased in each successive birthday by £150.

- a) Use algebra to find the amount William received on his 18th birthday.
- b) Show that the total amount of allowances William received up and including his 18th birthday was £6750.

When William turned k years old he received his last allowance. The total amount of his allowances up and including that of his k^{th} birthday was £30000.

c) Find the value of k.

 $\pounds 1500$, k = 28

Question 12 (***+)

A non regular polygon has 10 sides whose lengths, in cm , form an arithmetic sequence with common difference d.

The longest side of the polygon is twice as long as the shortest side.

Given that the perimeter of the polygon is 405 cm, find in any order ...

- a) ... the length of the shortest side of the polygon.
- **b**) ... the value of d.

$ \begin{array}{c} \left[\begin{array}{c} \int_{0}^{1} \left(\frac{1}{2} \sum_{i}^{n} \left(\frac{1}{2} + \frac{1}{2} \right) \right) \\ \left(\frac{1}{2} + \frac{1}{2} \sum_{i}^{n} \left(\frac{1}{2} + \frac{1}{2} \right) \\ \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ \left(\frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} + $	$ \left\{ \begin{array}{c} U_{n} \equiv \alpha + (u-i)d \\ \Rightarrow U_{n} \equiv -\alpha + qd \\ \Rightarrow 2n = -\alpha + qd \\ \Rightarrow 2n = -qd \\ \Rightarrow 2n = -qd \\ \Rightarrow d = -3 \end{array} \right. $

Question 13 (***+)

The council of Broxbourne undertook a housing development scheme which started in the year 2001 and is to finish in the year 2025. Under this scheme the council will build 760 houses in 2012 and 240 houses in 2025.

The number of houses the council builds every year, forms an arithmetic sequence.

- a) Determine the number of houses built in 2001.
- **b**) Calculate the total number of houses that will be built under this scheme.

1200, 18000

(a) (U ₁₂ = 760 (U ₁₃ = 240=L) (V ₁ = 25 Junter) (V ₁ = 25 Junter)	$u_n = \alpha + (u_n)d$ • 760 = $\alpha + 11d$ • 240 = $\alpha + 24d$ * 240 = $-520 = 136$	build - 2027 - 2020 (44-) 11+ P = 2017 C443 - P = 2037
(b) $\beta_1 = \frac{h}{2}(a+L)$	-40 = d	a = has
$s_{25}^{2} = \frac{25}{2} \left[1200 + 24 \right]$	o] = 25 (600+120) =	25×720 = 18000

Question 14 (***+)

Osama starts his new job on an annual salary of £18000. His contract promises a pay rise of £1800 in each subsequent year until his salary reaches £36000. When the salary reaches £36000 Osama will receive **no more** pay rises. Osama's salary first reaches the maximum salary of £36000 in year N.

- **a**) Determine the value of N.
- **b**) Find Osama's total salary earnings during the first N years of his employment.

Obama starts his new job at the same time as Osama on an annual salary of $\pounds A$. His contracts promises a pay rise of $\pounds 1000$ in each subsequent year until his salary reaches $\pounds 36000$. When the salary reaches $\pounds 36000$ Obama will receive **no more** pay rises. Obama's salary first reaches the maximum salary of $\pounds 36000$ in year 15.

- c) Find the year when both Osama and Obama have the same annual salary.
- **d**) Calculate the difference in the total salary earnings between Osama and Obama in the first 15 years of their employment.

N = 11, $|S_N = 297000|$, |n = 6|, $|d = \overline{6000}|$

Question 15 (***+)

Thomas is making patterns using sticks. He uses 6 sticks for the first pattern, 11 sticks for the second pattern, 16 sticks for the third pattern and so on.

- a) Find how many sticks Thomas uses to make the tenth pattern.
- b) Show clearly that Thomas uses 285 sticks to make the first ten patterns.

Thomas has a box with 1200 sticks. Thomas can make k complete patterns with the sticks in his box.

c) Show further that k satisfies the inequality

 $k(5k+7) \le 2400.$

d) Hence find the value of k.

51, k = 21

(a) 6,11,16, i.e a=b (d=s	(c) $\beta_k \leq 1200$
$\left[U_{q}=\alpha+(\alpha-i)d\right]$	$\frac{k}{2}\left[\frac{2\times6+(k-1)\times5}{4}\right] \leq 1200$
4 = = 51	$\frac{1}{2}(5k+7) \leq 1200$ $k(5k+7) \leq 2400$ Requests
(b) $\left[\beta_{1} = \frac{M}{2} \left[2\alpha + (n-1)d \right] \right]$ () (d) BY INISPECTION)
$\Rightarrow \oint_{10} = \frac{19}{2} \left[2 \times 6 + 9 \times 5 \right]$ $\Rightarrow \oint_{10} = 5 \left[12 + 45 \right]$	k≈to lo×57 = 570 < 2.400 k=ts t5×82 = 1430 < 2400 k=ts t5×82 = 1430 < 2400
=) \$10 = 5×57	• $L=21$ $21 \times 112 = 2352 < 2400$
=> \$10 = 285	· K=22 22×117 = 2574 >240
A Espirence	: k=21

Question 16 (***+)

A length of rope is wrapped neatly around a circular pulley.

The length of the rope in the first coil (the nearest to the pulley) is 60 cm, and each successive coil of rope (outwards) is 3.5 cm longer than the previous one.

proof

Uy= L=144

=> 84 = (h-1) x]

25 60 + 144

The outer coil has a length of 144 cm.

Show that total length of the rope is 25.5 metres.

Question 17 (****)

A farmer has difficulty persuading strawberry pickers to work for the entire 40 day strawberry picking season. He devises a wage plan to make the pay of the workers more attractive the more days they work.

He pays $\pounds a$ on the first day, $\pounds(a+d)$ on the second day, $\pounds(a+2d)$ on the third day, and so on, increasing the daily wages by $\pounds d$ every day.

A strawberry picker that worked for forty days got paid $\pounds 53.40$ on the last day and earned $\pounds 1668$ in total.

a) Show clearly that

10(a+53.4) = 834.

b) Calculate the wages that this strawberry picker received on the twentieth day.

£41.40

Question 18 (****)

Tyler is repaying a loan over a period of n months in such a way so that his monthly repayments form an arithmetic series.

He repays $\pounds 350$ in the first month, $\pounds 340$ in the second month, $\pounds 330$ in the third month and so on until the full loan is repaid.

- a) Assuming it takes more than 12 months to repay his loan find ...
 - i. ... the amount he pays on the twelfth month.
 - **ii.** ... the total amount of his repayments in the first twelve months.

Tyler pays back his loan of $\pounds 6200$ after *n* months.

- **b**) Show clearly that ...
 - **i.** ... $n^2 71n + 1240 = 0$
 - ii. $\dots n = 40$ is one of the solutions of this equation and find the other.
- c) Determine, with a valid reason, which of the two values of *n* represents the actual number of months it takes Tyler to repay his loan.

£240, £3540, n = 31, 31 months

(I) (D) $\int_{M} = \frac{M}{2} \left(\alpha + L \right)$ 3540 4 23540 6 (1) S. = 670 n2 -71 H +1240= 6)(n-31)= A BROOKIN $U_{n} = 0 + (h_{-1})d$ Un = 350+30×1

Question 19 (****)

An oil company is drilling for oil.

It costs £5000 to drill for the first 10 metres into the ground.

For the next 10 metres it costs an extra £1200 compared with the first 10 metres, thus it costs £6200. Each successive 10 metres drilled into the ground costs an extra $\pounds 1200$, compared with the cost of drilling the previous 10 metres.

a) Find the cost of drilling 200 metres into the ground.

The company has a budget of $\pounds 15,000,000$.

b) Determine the maximum depth, in metres, that can be reached on this budget.

			ALC: NO	1.10	
a) form a model					
20 PRED OF 10 P	Cast \$.5000 \$.6200 \$.7400 ?	$\gamma \sim \gamma \sim$	$\frac{\frac{W}{2}\left[2\alpha + (k-1)d\right]}{\frac{2}{2}\left[2x + (k-1)d\right]}$ $\log\left[10000 + 2280$ $328p.00$	×1100] x0]	
b) Bolking Barrowere	u	le	\$ 328,000	//	
$\beta_{q} = \frac{H}{2} \left[2a + C_{q} \right]$	-1) d]				
$= \frac{N}{2} = 0000001 = \frac{N}{2}$	iooo + Ck−1)×1	1200]			
==> 12000.000 = 분[168	200 + 1200и - 1 900 + 1200и	12.00			
→ 1500000 = 4400	и + 600 µ ²				
$\rightarrow 600y_{+}^{2}+4400y_{+}150$ $\Rightarrow 6y_{+}^{2}+44y_{-}-150$	000 000 ° Č) ÷100			
		1.74			

£328,000, 1540 m

Question 20 (****)

In the TV game "Extra Fifty" contestants answer a series of questions.

Contestants win £50 for answering the 1^{st} question correctly, £100 for answering the 2^{nd} question correctly, £150 for answering the 3^{rd} question correctly, and so on.

Once an incorrect answer is given the game ends but the contestant keeps the winnings up to that point.

A contestant wins £15000.

Determine, showing all parts in the calculation, the number of the questions he or she answered correctly.

50,100,150,	d:: 50
SJUA MODS 76 FIND 4 .	15000 Sile 15000
$ \sum_{i=1}^{\infty} \frac{1}{2} \left[2a + (u-1)d \right] $ $ = 15000 = \frac{14}{2} \left[2x50 + (u-1)x5 \right] $	(1+n)n = 000 (= +unizer to 300 (= (000 + 000 (= 000 (= 000))
$= 15000 = \frac{1}{2}(100 + 504 - 50)$ $= 15000 = \frac{1}{2}(504 + 50)$	• N= 10 [0 ×1] = 110 • N=20 20×2(=420
\Rightarrow 30000 = N (SO4 + So) \Rightarrow 30000 = SO4 (N+1)	h = 24 h = 24 h = 24 h = 24 h = 24 h = 24 h = 24
\Rightarrow 3000 = $2^{M}(N+1)$	(** n=cr

24

Question 21 (****)

A company agrees to pay a loan back in monthly instalments, starting with £1500.

The agreement states that the company will pay back

 $\pounds(1500-x)$ in the 2nd month,

 $\pounds(1500-2x)$ in the 3rd month,

 $\pounds(1500-3x)$ in the 4th month,

and so on, with the repayments decreasing by $\pounds x$ every month.

a) Given that in the first year the company repaid a total of ± 15360 , find the value of x.

b) Show that the total money T_n , repaid in *n* months, is given by

$T_n = 20n(76-n).$

The total value of the loan was $\pounds 26000$.

c) Show that the equation

$T_n = 26000$

is satisfied by two different values of n.

d) Determine, with a valid reason, which of the two values of *n* represents the actual number of months it takes for the company to repay the loan.

 $x = 40, \quad n = 26,50, \quad n = 26$

Question 22 (****)

A machine cuts a circular sheet of plastic into **exactly** n sectors, $S_1, S_2, S_3, ...,$

The angle that each sector subtends at the centre of the circle forms an arithmetic series.

The smallest sector and the largest sector subtend angles at the centre of 7.25° and 32.75° , respectively.

Find the value of n.

n = 18

ショ

$u_{h} = l = 30.75$ $u_{h} = 360$	
	$\implies 360 = 204$ $\implies h = 18$

Question 23 (****)

A company offers two pay schemes for its employees.

Scheme One

• Annual salary in Year 1 is $\pounds X$.

 Annual salary increases every subsequent year by £(2Y), forming an arithmetic series.

Scheme Two

- Annual salary in Year 1 is $\pounds(X + 2000)$.
- Annual salary increases every subsequent year by $\pounds Y$, forming an arithmetic series.
- a) Show that the total salary received by an employee under Scheme One, over a nine year period is

9(X+8Y).

After nine years, the total salary received by an employee under Scheme One is £3600 larger than the total salary received by an employee under Scheme Two.

b) Show clearly that

Y = 600.

Given further that an employee under the Scheme One earns ± 36000 in the eleventh year of his employment, determine the value of X.

X = 24000

$$\begin{split} & \overset{k}{\sim}_{n} = \frac{u}{2} \begin{bmatrix} 2u + (u_{1})d \end{bmatrix} \\ & \overset{k}{\sim}_{n} = \frac{u}{2} \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = \frac{u_{1}}{2} \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2u + B(2v) \end{bmatrix} \\ & \overset{k}{\sim}_{n} = 2 \begin{bmatrix} 2$$

 $\beta_{q} = \frac{q}{2} \left[2(\chi + 2000) + BY \right] \leq \frac{50404}{2}$ $\beta_{q} = 9 \left[\chi + 2000 + 44Y \right]$

 $\Rightarrow 9(X + 8Y) - 9(X + 2000 + 4Y) = 3600$ $\Rightarrow (X + 8Y) - (X + 2000 + 4Y) = 4000$

 $\Rightarrow X \neq BY \Rightarrow -2000 - 4Y = 4$ $\Rightarrow 4Y = 2400$

Question 24 (****+)

Ladan is repaying an interest free loan of $\pounds 6200$ over a period of n months, in such a way so that her monthly repayments form an arithmetic series.

She repays £350 in the first month, £340 in the second month, £330 in the third month and so on until the full loan is repaid.

Determine, showing a full algebraic method, the value of n.

The Autophane Solver a 350+ 340+350+.....+(?) = 6200 I find , where is to a reality manage [GE US HAT a 250, d 2-10 a $S_{a} = 6200$ $S_{a} = \frac{6}{2} (2a + 6a - 1)d]$ $Goo = \frac{6}{2} [2a + 6a - 1)d]$ $Goo = \frac{6}{2} [2a + 6a - 1)d]$ $Goo = \frac{6}{2} [2a - 6a - 1]d]$ $Goo = \frac{6}{2} [2a - 2a - 1]d]$ $Goo = \frac{6}{2} [2a - 2a -$

n = 31

Question 25 (****+)

A company arranges to pay a debt of £360,000 by 40 monthly instalments.

These monthly instalments form an arithmetic series.

After 30 of these instalments were paid, the company declared themselves bankrupt leaving one third of their debt unpaid.

Find the value of the first instalment.

£5100

ma

12

Question 26 (****+)

A gym has 125 members and in order to meet its outgoings it needs 600 members.

A Public Relations company is hired to re-launch the gym and increase its membership thereafter, using a variety of marketing strategies.

A preliminary model for the recruitment of new members is as follows.

It is expected that 10 new members will join in the week following the gym's relaunch, 12 new members in the second week, 14 in the third week and so on with 2 new members joining the gym in each subsequent week.

a) Find according to this preliminary model ...

i. ... the number of the new members that will join in the 12^{th} week.

ii. ... the total number of members after 12 weeks.

The model is refined to allow for the gym losing members at the constant rate of 3 members per week. The gym **reaches** the desired target of 600 members in N weeks.

b) Determine the value of N.

- 7. J.	and the second se		
32,	377,	19	weeks

		and the second s
(a) (3) $U_{ij} = q + G_{i-1})d$ $U_{12} = N + 1/22$ $U_{12} = 32$	$ \begin{array}{c} (II) \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	4m368 252 12.5
	\$12 = 252	377
 WKEK 410 WKEK 2 412 WKEK 3 414 	-3 = +7 -3 = +9 -3 = +11 & ETC	So (a=7) (d=2)
46xce 125 +	$\beta_{4} = 600$ $\beta_{4} = 475$ $(2\times7 + (3+3)\times7) = 475$	N=12 ¹ 12×52 = 1422 N=12 ¹ 12×51 = 312 By 1076602007
2 <u>11</u> 22 <u>14</u> 2 8	$(u_{4} + 2u_{-2}) = 475$ $(2v_{+12}) = 475$ $(v_{+6}) = 475$:. N=19

Question 27 (****+)

A pension broker gets paid $\pounds 15$ commission **per week** for every pension scheme he sells. Each week he sells a new pension scheme so that ...

In the 1^{st} week he gets paid £15 commission for the pension he just sold.

In the 2^{nd} week he gets paid £30, £15 for the pension sold in the 1^{st} week plus £15 for pension he sold in the 2^{nd} week.

In the 3^{rd} week he gets paid £45, £15 for the pension sold in the 1^{st} week plus £15 for pension he sold in the 2^{nd} week, plus £15 for the pension he sold in the 3^{rd} week, and so on.

- a) Find the commission he gets paid on the last week of the year.
- **b**) Find his annual earnings after one year in this job.

His commission increases to £20 for new pension schemes sold during the 2^{nd} year but decreases to £10 for the schemes he sold in the 1^{st} year. The broker continues to sell at the rate of one new pension scheme every week.

c) Find his annual earnings in the 2^{nd} year.

£780,	£20670,	£54600

() WOODNE AL THE PATTAON
$\begin{array}{c} \text{weak:} 1 & 2 & 3 & \dots & 52 \\ \text{(auge:} 15 & 15 & \dots & 52 \\ \frac{15}{25} & 15 & \dots & 5 \\ \frac{15}{25} & 15 & \dots & 5 \\ \frac{15}{25} & 15 & \dots & 5 \end{array}$
45
$\rightarrow O_{\eta} = \alpha + O_{\eta-1}d$
$\Rightarrow (J_{n} = IS + SIXIS$
= 11 - Ten 11 + Ten //
1002 - 180
b) STAND 2000 2000 2000 2000 2000 0000 0000 00
4 16.117
A= = = [1+1]
듯 = 뚚[15+780] = 26×745 = 20070
1.6 ± 20670
CONTINUING THE PATTING & LINKING WITH THE FIRST YEAR
WEEK COMMISSION)
SI \$765 (FEIT XMO
52, 1780
j j j j j j j j j j j j j j j j j j j
(32×10)+28 4 NLS
2 (12/2 16) + 26 + 25
3 (2×10) + 20+0018 South Mark
in a part of the second second
52 (12x10)+ 74x52 and 1= 560
SOMMING USING St = 4 (a+L)