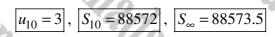
The **GEOMETA SERVICE HARDEN HARDE** CLASINGUIS COM LY, C.B. MARCASINANIS COM LY, C.B. MARCASINANIS COM LY, C.B. MARCASINANIS COM LY, C.B. MARCASIN

Question 1 (**)

7,21,63,189,567,...

- **a**) Find, using algebra, the value of the eighth term of the above sequence.
- **b**) Determine the sum of the first twelve terms of the sequence.

12012.Sn

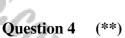

 $u_8 = 15309$, $S_{12} = 1860040$

Question 2 (**)

59049,19683,6561,2187,729,.

For above sequence, ...

- a) ... calculate, using algebra, the value of the tenth term.
- **b)** ... determine the sum of the first ten terms.
- **c**) ... find the sum to infinity.


@ 50040,19683, 6561	, 2187, 729, a = 5900	49 1 F= 19063 = 1
$(\mathbf{q}) \underbrace{\left[\begin{array}{c} \mathcal{U}_{q} = \ \mathrm{cir}^{q-1} \\ \end{array} \right]}_{\left[\begin{array}{c} \mathcal{U}_{q} = \ \mathrm{cir}^{q} \\ \end{array} \right]} \times \left(\begin{array}{c} \mathbf{q} \\ \mathbf{q} \end{array} \right)^{q}}_{\mathbf{q}}$	$\left(b \right) \left[s_{t} = \frac{a(t-t^{0})}{t-c} \right]$	(c) $\int_{\infty}^{\infty} = \frac{\alpha}{1-C}$
U10 = 3	\$1.= 51049 (1-(3)))	500= 59043
//	\$. = \$8572//	Sec = 88573.5

Question 3 (**)

0.31, 0.0031, 0.000031, 0.00000031, ...

- a) Calculate, using algebra, the sum of the first five terms of the above sequence.
- **b**) Find, as an exact fraction, the sum to infinity of the series.

nadasn.

 $-\frac{1}{16807}, -\frac{1}{2401}, -\frac{1}{343}, -\frac{1}{49},$

a) Determine, using algebra, the value of the tenth term of the above sequence.

b) Find, to the nearest integer, the sum of the first ten terms of the above sequence.

 $u_{10} = -2401$, $S_{10} \approx -2801$

 $S_5 = 0.3131313131$,

<u>31</u> 99

 S_{∞}

• $-\frac{1}{\log_2} - \frac{1}{2\omega_1} - \frac{1}{\omega_2} - \frac{1}{2\omega_2} - \frac{1}{\omega_2} -$

1120/2.SI

Question 5 (**)

The first and second term of a geometric series is 90 and 15, respectively.

a) State the common ratio of the series.

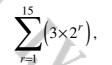
b) Calculate the sum to infinity of the series.

Question 6 (**)

The third and fourth term of a geometric progression is 144 and 108, respectively.

Find ...

- **a**) ... the common ratio of the progression.
- **b**) ... the fifth term of the progression.
- c) ... the sum to infinity of the progression.


 $r = \frac{3}{4}, u_5 = 81, S_{\infty} = 1024$

 $\begin{array}{c} & (u_1 = iu_1 & (u_2) & (u_3 = iu_3 \times i^{-1}) \\ & (u_4 = iu_6) & (u_1 = iu_6 \times i^{-1}) \\ & (u_4 = iu_6) & (u_4 = iu_6 \times i^{-1}) \\ & (u_4 = iu_6) & (u_4 = i^{-1}) \\ & (u_4 = i^{-1}) & (u_4 = i^{-1}) \\ &$

 $S_{\infty} = 108$

Question 7 (**)

Evaluate the sum

showing clearly all the relevant workings.

196602

Question 8 (**+)

A geometric series has common ratio $\frac{1}{3}$.

a) Find the first term of the series, given that the sum of its first four terms is 36.

b) Determine the sum to infinity of the series.

a = 24.3, $S_{\infty} = 36.45$

(a) $S_{i} = \frac{\alpha(i-r^{*})}{i-r}$	(b) $y_{\alpha}^{\beta} = \frac{\alpha}{1-1}$
$36 = \frac{\alpha(1-(\frac{1}{2})^4)}{1-\frac{1}{2}}$	$S_{00} = \frac{24.3}{1-\frac{1}{5}}$
$36 = \frac{\alpha(1-\frac{1}{6})}{\frac{2}{5}}$	Sa = 24.3
24 = a × 80, 81	, Sao = 36.45
a = 24.3	1/

Question 9 (**+)

The second and the fifth term of a geometric series is 12 and 1.5, respectively.

a) Find the first term and the common ratio of the series.

b) Calculate the sum to infinity of the series.

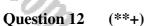
a	= 24 , <i>r</i> =	0.5,	$S_{\infty} = 48$
			h
(a)	$\left\{\begin{array}{c} u_2 = 12\\ u_3 = 1\cdot 5\end{array}\right\}$ $\left[\begin{array}{c} u_4 = \alpha r^{n-4}\\ \end{array}\right] =$	12=αr 1:s=αr ² }⇒	DIVIOE STOR BY SIDA
(b)	$ = \underbrace{at^{4}}_{a} = \frac{1.5}{12} = t^{3} = \frac{1}{6} $		$\frac{1}{2} \frac{1}{2} \frac{1}$
(9	50 = 1-r 50 = 1-r 1-2 = 48		a = 24

Question 10 (**+)

The fifth and the sixth term of a geometric series is 12 and -8, respectively.

11₂₀₂₈₁

- a) Find the first term and the common ratio of the series.
- **b**) Calculate the sum to infinity of the series.


$$a = 60.75$$
, $r = -\frac{2}{3}$, $S_{\infty} = 36.45$

$ \begin{array}{c} \textbf{(9)} \Gamma \simeq \frac{U_{g}}{U_{2}} = -\frac{8}{12} = -\frac{2}{3} \\ \hline \\ $	$\begin{cases} \textbf{(b)} \\ \Rightarrow \\ \frac{1-\gamma^{*}}{1-(-\frac{1}{2})} \end{cases}$
$\Rightarrow 12 = \alpha \times (-\frac{2}{3})^{\frac{1}{2}}$	$\Rightarrow \$_{\infty} = \frac{6075}{\frac{5}{3}}$
=> 12 = ax 16	= \$x0 = 36.45
⇒ 972 = 16a	
$\Rightarrow a = \frac{243}{4} = 60.75$)

Question 11 (**+)

The common ratio of a geometric series is twice as large as its first term.

- a) Given that the sum to infinity of the series is 1, find the exact value of the first term of the series.
- b) Determine, as an exact fraction, the value of the fifth term of the series.

The common ratio of a geometric series is $\frac{1}{2}$ and the sum of its first three terms is 98.

- **a**) Find the first term of the series.
- **b**) Determine the sum to infinity of the series.

a = 56, $u_{\infty} = 112$

 $\frac{16}{243}$

 u_5

r= 20 8 50

(٩)	\$3 = 96	(b)	\$ = - a
	$\alpha + \alpha r + \alpha r^2 = 98$ $\alpha + \frac{1}{2}\alpha + \alpha \left(\frac{1}{2}\right)^2 = 98$		$S_{80} = \frac{56}{1-\frac{1}{2}}$
	$a + \frac{1}{2}a + \frac{1}{4}a = 98$ (x4)		Store SG
	4a + 2a + a = 312		\$ = 112
	7a = 392		
7	d = 22		

Question 13 (**+)

The second and the fourth term of a geometric series are 3 and 1.08, respectively.

Calculate the sum to infinity of the series, given that all the terms of the series are positive.

 $S_{\infty} = 12.5$

$ \begin{array}{c} \left(U_{2} = 3 \\ U_{4} = 1 \cdot 08 \end{array} \right) \begin{array}{c} \left[U_{4} = \alpha r^{3} - 1 \\ 0 & 0 \end{array} \right] \Rightarrow 3 = \alpha r \\ 1 \cdot 08 = \alpha r^{3} \end{array} \Rightarrow p_{100} + s_{100} +$	BY SIDE
$\Rightarrow \frac{gr/3}{\alpha r} = \frac{1.06}{3} \Rightarrow r^2 = 0.36 \Rightarrow \frac{r = 0.6}{(r > 0)}$	This ar=3
$\therefore \begin{bmatrix} a \\ b \\ a \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ c \\ b \end{bmatrix} = \begin{bmatrix} a \\ c \\ c \end{bmatrix} = \begin{bmatrix} a \\ c \\ c \end{bmatrix}$	**/

Question 14 (**+)

Miss Velibright started working as an accountant in a large law firm in the year 2001.

Her starting salary was $\pounds 22,000$ and her contract promised that she will be receiving a pay rise of 5% every year thereafter. Miss Velibright plans to retire in 2030.

Find to the nearest f,

a) ... her salary in the year 2030.

b) ... her total earnings in employment for the years 2001 to 2030, inclusive.

, £90,555, £1,461,655

(a) (a= 22000) (r= 1.05)	6)	$ \underset{r > 1}{\not \sim} \frac{\alpha(r_{r-1})}{r-1} r > 1$
$\underbrace{\bigcup_{k} = \alpha r^{N-1}}_{\bigcup_{30} = 22000 \times 105} r^{29}$		$s_{3b}^2 = \frac{2200 - (1 - 05^{30} - 1)}{1 - 05 - 1}$ $s_{3b}^2 = 1461654 + 645 \dots$
U30 = 90554.98		H \$ 1,40,655

Question 15 (**+)

The k^{th} term of a geometric progression is given by

 $u_k = 15625 \times 1.25^{-k}$.

- a) Find the first three terms of the progression.
- **b**) Find the sum to infinity of the progression.
- **c**) Evaluate the sum

 \mathcal{Q}_{j}

F.C.B.

giving the answer to the nearest integer.

, $u_1 = 12500$, $u_2 = 10000$, $u_3 = 8000$, $S_{\infty} = 62500$, $S_{10} = 55789$

i G.B.

nadasn.

Question 16 (**+)

The third and the sixth term of a geometric series is 4 and 6.912, respectively.

- a) Find the exact value of the first term and the common ratio of the series.
- b) Calculate, to three significant figures, the sum of the first ten terms of the series.

À.				
	(9)	$\left[U_{\eta} = \alpha r^{n-1} \right]$	(b)	S. = a(1-r")
Υ <i>σ</i>		$u_3 = 4$ $u_4 = 6.312$ $\Rightarrow \begin{bmatrix} 4 = \alpha r^2 \\ 6.912 = \alpha r^3 \end{bmatrix}$		= 5 = = = = = = = = = = = = = = = = = =
		Drund granitaury forund	1	l-1-2

a =

 $S_{10} \approx 72.1$

Question 17 (**+)

The second and the fifth term of a geometric progression is 80 and 5.12, respectively.

- a) Find the value of the first term and the common ratio of the progression.
- **b**) Calculate, correct to two decimal places, the difference between the sum of the first ten terms of the progression and its sum to infinity.

 $S_{\infty} - S_{10} = 0.03$ a = 200

Question 18 (**+)

All the terms of a geometric progression are positive. The second and the fourth term of the progression is 9.6 and 6.144, respectively.

- a) Find the first term and the common ratio of the progression.
- **b**) Calculate, correct to three significant figures, the sum of the first ten terms of the progression.

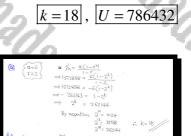
a = 12, r = 0.8,

a = 6, r = 3, $S_{10} = 177144$

 $S_{10} \approx 53.6$

Question 19 (**+)

The third and the sixth term of a geometric series is 54 and 1458, respectively.


- a) Find the first term and the common ratio of the series.
- **b**) Determine the sum of the first ten terms of the series.

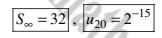
Question 20 (**+)

6, 12, 24, 48, 96, ..., U

The geometric sequence above has k terms and its last term is U.

- a) Given that the sum of its terms is 1572858, find the value of k.
- **b**) Determine the value of U.

Question 21 (**+)

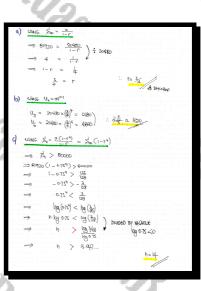

The first few terms of a geometric sequence are given below

16,8,4,2,..

Find ...

a) ... the sum to infinity of the series.

b) ... the exact value of the twentieth term, giving the answer as a power of 2.



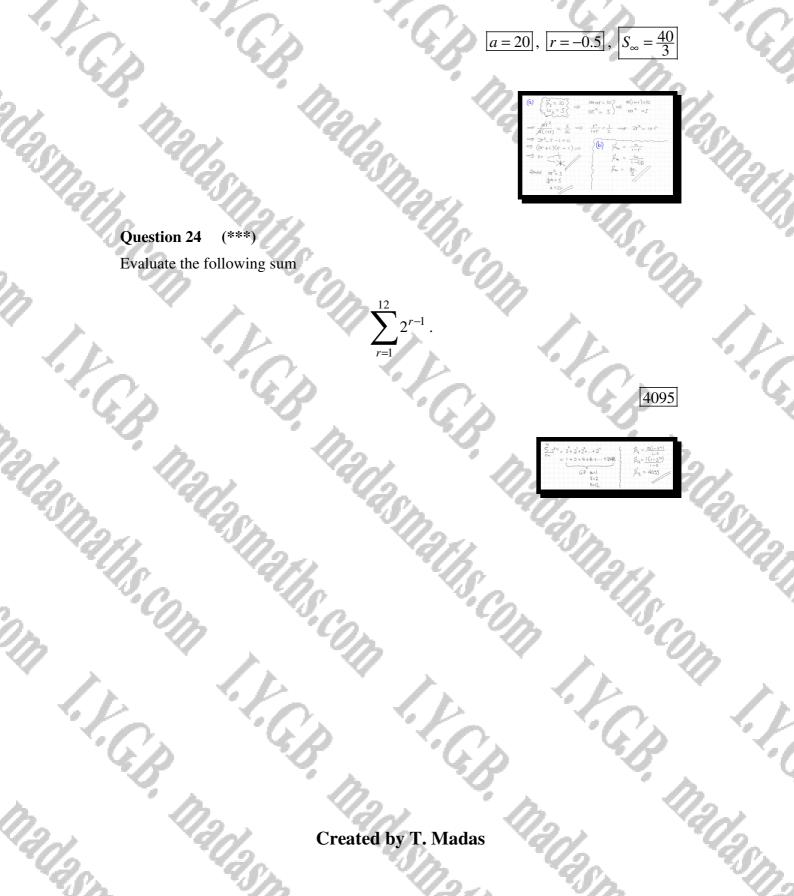
Question 22 (***)

Y.C.B.

A geometric series has first term 20480 and its sum to infinity is 81920.

- **a**) Show that the common ratio of the series is $\frac{3}{4}$.
- **b**) Calculate the difference between the fifth and the sixth term of the series.
- c) Determine the smallest number of terms that should be added so that their total exceeds 80000.

1620, 14


mana

Question 23 (***)

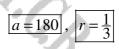
The sum of the first two terms of a geometric series is 10 and the third term is 5.

a) Find the first term and the common ratio of the series.

b) Determine the sum to infinity of the series.

Question 25 (***)

The maximum speed, in mph, that can be achieved in each of the five gears of a sports car form a geometric progression.


The maximum speed obtained in first gear is 32 mph while the car can achieve a maximum speed of 162 mph in fifth gear.

Find the maximum speed that can be achieved in third gear.

Question 26 (***)

The sum to infinity of a geometric progression of positive terms is 270 and the sum of its first two terms is 240.

Find the first term and the common ratio of the progression.

72 mph

		-
\$a= 270	\$ ¹ ₂ = 240	
$\frac{\alpha}{1-\Gamma} = 270$	a+ar = 240	
a = 270(1-r)	a(1+r)=240	
\searrow	270(1-1)(1+1)=240	
	$(-r)(1+r) = \frac{\theta}{2}$ $1-r^2 = \frac{\theta}{2}$	
	$\frac{1}{9} = r^2$	
	$f = \frac{1}{24} \left(\frac{30\pi 209}{24} \right) \frac{1}{5} = 1$	
a = 276(1-r)		
$\alpha = 270(1-\frac{1}{2})$		
a = 180		

Question 27 (***)

ŀ.G.p

I.F.G.P.

CO17

The sum to infinity of a geometric series is four times as large as its first term.

nadasm.

200

. FGB

The sum of its first two terms is 2240.

Find the sum of the first five terms of the series.

• \$a = 4a	5 0,8	2 = 2240
$\Rightarrow \frac{\alpha}{1-r} = 4\alpha$	(ar = 2240
⇒ × = 4d(i-r) ⇒ (= 4(i-r)	5	3a = 8960 7a = 8960
⇒ = 1-C		9 = 1280
NOW $\leq_{h} = \frac{q(1-r^{k})}{1-r}$		
$S_{5} = \frac{1280(1-\frac{3}{4})}{1-\frac{3}{4}}$	1) = 3905	-

11212ST

2017

hains,

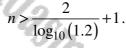
I.F.G.B.

S₅ = 3500

6

Madasm.

Inadasm


Question 28 (***)

Grandad gave Kevin $\pounds 10$ on his first birthday and he increased the amount by 20% on each subsequent birthday.

a) Calculate the amount of money that Kevin received from his grandad on his 10th birthday

Kevin received the last birthday amount of money from his grandad on his n^{th} birthday and on that birthday the amount he received exceeded £1000 for the first time.

b) Show clearly that

c) State the value of n.

		1
$(a) \begin{pmatrix} a = 10 \\ r = 1 \cdot 2 \\ r = 1 \cdot 2 \\ a = ar^{n-1} \\ q \\ $	$\begin{cases} (b) U_{i_{h}} > 1000 \\ \Rightarrow \alpha \Gamma^{i_{h+1}} > 1000 \\ \Rightarrow 00 \times 12^{i_{h+1}} > 100 \\ \Rightarrow 10 \times 12^{i_{h+1}} > 100 \\ \vdots \\$	(C) 6400 NNG N> 26.258 ∴ 27Hr Brentformy
⇒ U ₁₀ = 51.597	$ \begin{array}{c c} \Rightarrow & 1 \cdot 2^{9-1} > 100 \\ \Rightarrow & 1 \cdot 2^{9-1} > 100 \\ \Rightarrow & \log_{10}(1 \cdot 2) > 1 \log_{10}(1 \cdot 2) > 2 \\ \Rightarrow & (9 \cdot 1) \log_{10}(1 \cdot 2) > 2 \end{array} $	
	$ \begin{array}{c} \sum_{i=1}^{2} \langle (i-i) \rangle \stackrel{<}{=} \\ \sum_{i=1}^{2} \langle i-i\rangle \stackrel{<}{=} \\ \downarrow \\ $	

 $f{\pm}51.60$, n=27

Question 29 (***+)

The first three terms of a geometric series are

k, 6 and 5k+8 respectively,

where k is a constant.

- a) Show that one of the possible values of k is 2, and find the other.
- **b**) Given that k = 2, find the sum of the first 10 terms of the series.

and the second second	- **
$k = -\frac{18}{5}$	$\frac{3}{5}$, $S_{10} = 59048$
- 3	2
$\begin{array}{c} (\underline{\sigma}) & \alpha_1 = k \\ (\underline{\sigma}_2 = c \\ (\underline{\sigma}_1 = k \\ \underline{\sigma}_1 = k \end{array} \right) \rightarrow \begin{array}{c} \underline{\sigma}_1 \\ \underline{\sigma}_2 = c \\ \underline{\sigma}_1 = k \\ \underline{\sigma}_2 = c \\ \underline{\sigma}_2 = c$	$\frac{e}{k+\theta} = t \qquad \implies \qquad \sum_{k=0}^{k} \sum_{k=0}^$
(b) K=2.	
$\begin{array}{c} u_1 = 2 \\ u_2 = 6 \\ u_3 = 10 \end{array} \times 3 \qquad r = 3 \\ u_3 = 10 \end{array}$	$S_{10} = \frac{2(1-3^{10})}{1-3}$
	S ₁₀ = 59048

Question 30 (***+)

 $1+(1+x)+(1+x)^{2}+(1+x)^{3}+(1+x)^{4}+...$

It is given that the above series is convergent.

Determine the range of values of x, and its sum to infinity in terms of x.

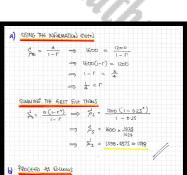
-2 < x < 0, $\frac{1}{x}$

$(1 + (1+x) + (1+x)^{2} + (1+x)^{3} + \dots$	15 4 G.P. WITH	a = 1 F= 1+x
IF CONCREGENT -1<1 =1 -1<12×1 -2<2<0	$\begin{cases} \sigma_{00} \circ \frac{\sigma_{1}}{1-\Gamma} \\ \sigma_{00} \circ \frac{1}{1-(1+\alpha)} \\ \sigma_{00} = -\frac{1}{2\Gamma} \end{cases}$	

 $\sum_{r=6}^{\infty} u_r$

Question 31 (***+)

The first term of a geometric progression is 1200 and its sum to infinity is 1600.


a) Find the sum of the first five terms of the progression.

The n^{th} term of the progression is denoted by u_n .

b) Evaluate the sum

Ĉ.B.

I.F.C.B.

 $S_5 = 1598.4375$, 1.5625

Ś

1+

floceed ?	ts ishows
Σ Ur 50 Ur	$= u_{\ell} + u_{\gamma} + u_{8} + \dots$ = $(u_{i} + u_{2} + u_{3} + u_{4} + \dots) - (u_{i} + u_{2} + u_{3} + u_{4} + u_{5})$
	$= \beta_{\infty} - \beta_{s}$
	= 1600 - 1598.4375
	₹ <u>25</u> 16 5 1/5025

F.G.B.

200

Question 32 (***+)

The sum of the first four terms of a geometric series is 2040 and the sum to infinity of the series is 2048.

All the terms of the series are positive.

Find the fourth term of the series.

 $u_4 = 24$

Question 33 (***-

The second term of an geometric progression is 2 and the common ratio is $\frac{1}{2}\sqrt{2}$

- a) Find the first term of the progression.
- **b**) Determine the value of the tenth term.
- c) Show, by detailing all steps in the calculation, that the sum to infinity of the progression is

 $4 + 4\sqrt{2}$.

 $a = \sqrt{8}$ u_{10}

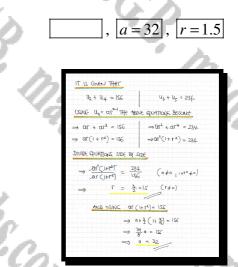
	100	
(a) $\left\{ \begin{array}{c} u_2 = 2 & \Gamma = \sqrt{2} \\ u_2 = 2 & 1 \\ 2 & 2 \end{array} \right\}$	6)	UL=ar"-1
$O\Gamma = 2$ $\Rightarrow O(\frac{42}{2})=2$		$\begin{split} & U_{10} = \left(2\sqrt{2}\right) \left(\frac{N^2}{2}\right)^q \\ & U_{10} = 2 \times \sqrt{2} \times \left(\sqrt{2}\right)^q \end{split}$
	~	410 = 1 29
=) Q = 212	(C)	$\int_{\infty}^{\infty} = \frac{\alpha}{1-r} = \frac{2\sqrt{2}}{1-\frac{\sqrt{2}}{2}}$ Duble TOP & BOTION OF RASTON
		$= \frac{4\sqrt{2}}{2-42} = \frac{4\sqrt{2}(2+42)}{(2-\sqrt{2})(2+62)}$
		= 812+8 = 812+8 4-2 2
		= 4.V2+4 45 249440

Question 34 (***+)

20

Smaths,

ŀG.B.


I.C.B.

In a geometric series the sum of the second and fourth term is 156.

In the same geometric series the sum of the third and the fifth term is 234.

madasn

Find the first term and the common ratio of the series.

6

madasma,

F.G.B. Madasn

Created by T. Madas

E.B.

ng

23

Question 35 (***+)

The second term of a geometric series is 4 and its sum to infinity is 18.

a) Show that the common ratio r of the series is a solution of the equation

$9r^2 - 9r + 2 = 0.$

b) Find the two possible values of r and the corresponding values of the first term of the series.

The sum of the first *n* terms of the series is denoted by S_n

c) Given that r takes the larger of the two values found in part (b) determine the smallest value of n for which S_n exceeds 17.975.

a = 12

P 22	(a) $\bigcup_{i=1}^{n} \alpha_{i}^{n-1}$ $\int_{\infty}^{1} \alpha_{i} \alpha_{i}^{n-1}$ $\int_{\infty}^{1} \alpha_{i} \alpha_{i}^{n-1}$ $\int_{\infty}^{1} \alpha_{i}^{n-1} \alpha_{i}^{n-1}$ $\int_{\infty}^{1} \alpha_{i}^{n-1} \alpha_{i}^{n-1}$ $\int_{\infty}^{1} \alpha_{i}^{n-1} \alpha_{i}^{n-1}$ $\int_{\infty}^{1} \alpha_{i}^{n-1} \alpha_{i}^{n-1} \alpha_{i}^{n-1}$	
	$\begin{array}{c} 4 = (10 - 1007) \\ 4 = (107 - 1077) \\ 4 = (107 - 1077) \\ 10072 - 1007 + 4 = 0 \end{array}$	
	$\begin{array}{c} qr^{2} - qr + 2 = 0 \\ (\mathbf{b}) & (3r - 1)(3r - 2) = 0 \\ h = \langle -k_{b} \\ h = \langle -k_{b} \\ h = \langle -k_{b} \\ h = n \\ h = $	
	$\begin{array}{c} \bullet a = & \sum_{i=1}^{j_i} \sum_{j=1}^{j_i} \sum_{j=1}^{j_i}$	
	$ \begin{array}{c} \\ \\ \begin{matrix} \overset{\sim}{\rightarrow} \\ \overset{\sim}{\rightarrow} \\ \overset{\sim}{\rightarrow} \\ \begin{matrix} \overset{\sim}{\rightarrow} \\ \begin{matrix} \overset{\sim}{\rightarrow} \\ \overset{\sim}{\rightarrow} \\ \begin{matrix} \overset{\sim}{\rightarrow} \\ \begin{matrix} \overset{\sim}{\rightarrow} \\ \overset{\sim}{\rightarrow} \\ \begin{matrix} \overset{\sim}{\rightarrow} \\ \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} $	
	$ \begin{array}{c c} F & he to & \boldsymbol{f}_{h} = [7, 41] \\ IF & he = [7] & \boldsymbol{f}_{h} = [7, 45] \\ IF & he = [7] & \boldsymbol{f}_{h} = [7, 48] \\ IF & he = [8] & \boldsymbol{f}_{h} = [7, 48] \\ IF & he = [8] & \boldsymbol{f}_{h} = [7, 48] \\ IF & he = [7] & \boldsymbol{f}_{h} \\ he & he & he \\ he & he & he \\ he & he & he \\ he \\ he & he \\ h$	
	$ \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \hline \end{array} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \hline \end{array} \\ \hline & \begin{array}{c} \text{IF } h \in \mathcal{H} \\ \hline \end{array} \\ \end{array} $	
	$\begin{cases} \gamma + \frac{\gamma \ln(2\pi)}{\ln(2\pi)} \\ \gamma + \frac{\gamma}{\ln(2\pi)} \\ \gamma + \frac{\gamma}{\ln(2\pi)} \\ \gamma + \frac{\gamma}{\ln(2\pi)} \end{cases}$	

 $\frac{2}{2}, a = 6$

n = 17

Question 36 (***+)

The first three terms of a geometric series are given below as functions of x.

 x^2 , (x+12) and (2x-3).

a) Show that x is a solution of the equation

 $x^3 - 2x^2 - 12x - 72 = 0.$

- **b**) Show clearly that x = 6 is the only solution of the above equation.
- c) Find the sum to infinity of the series.

(e) $u_1 = x^2$ if equilibrius $\frac{u_2}{u_1} = \frac{u_1}{u_2}$ $u_2 = xu_2$ $u_3 = x^{-3}$ $\implies \frac{x^2 + x^2}{2x^2} = \frac{2x - 3}{x + 12}$ $\implies (x + 12)^k = (2x - 3)x^2$
$= 0 (2 + 12) = (22 - 3)2^4$ $=) 2^4 - 24^2 + 1(44 = 2)^4 - 32^2$ $= 0 0 = 24^2 - 42^2 - 242 + 1044$ $=) 2^3 - 24^2 - 122 - 104$
-) -2 - 12 + 72 = 0 +3 2401726
b) $(x-4)$ $(x^2+Ax+12)$ By institution x^2 (colour At contraining x (2x) - CAx = -12x (2x - CAx = -12x) (2x - CAx = -2) 24 = CA 4 = 4
$(a-6)(a^2+4a+12)=0$ $(a-6)(a^2+4a+12)=0$ $(a-48=-32<0$
$\begin{array}{c} \text{M} = 2\lambda^{2} = 3\zeta \\ \text{M}_{2} = 2\lambda^{2} = 3\zeta \\ \text{M}_{2} = 3\lambda + 2 = 0 \\ \text{M}_{2} = 2\lambda - 3 = 9 \\ \text$

, $S_{\infty} = 72$

1+

nadasmaths,

F.G.B.

2017

nadasmaths,

aths.com

a = 216,

nadasmans.com

- - 288

4,+4, = 270 a+ ar = 270 11.4.

nadasman

I.C.B. Madasn

(***+) Question 37

A geometric series consists of positive terms only.

The first and the second term of the series add up to 270.

Its sum to infinity is 288.

adasmaths

madasm,

COM

0

Smaths,

F.G.B.

Smaths,

I.F.G.p.

Determine the first term and the common ratio of the series.

Question 38 (***+)

I.C.B.

The first and the second term of a geometric series add up to 240.

The first and the third term of the same geometric series add up to 200.

Determine the two possible values of the sum to infinity of the series.

nadasm

6

nadasma,

Madasn,

 $S_{\infty} = 270 \text{ or } 320$

Created by T. Madas

C.B.

277

F.G.B.

Question 39 (***+)

The manufacturer of a certain brand of washing machine is to replace an old model with a new model. There will be a "phase out" period for the old model and a "phase in" period for the new model, both lasting 24 months and starting at the same time.

On the first month of the phase out period 5000 old washing machines will be produced and each month thereafter, this figure will reduce by 20%.

- a) Show that on the fifth month of the "phase out" period 2048 old washing machines will be produced.
- **b**) Find how many old washing machines will be produced during the "phase out" period.

On the first month of the "phase in" period 1000 new washing machines will be produced and each month thereafter, this figure will increase by 5%.

c) Calculate how many new washing machines will be produced on the last month of the "phase in" period.

On the k^{th} month of the "phase in/phase out" period, for the first time more new washing machines will be produced than old washing machines.

d) Show that *k* satisfies

e) Use logarithms to determine the value of k.

a) $a = 500$ $u_{q} = ar^{p-1}$ $h = 5$ $u_{s} = 2048$ $h = 000$ $u_{q} = ar^{p-1}$ $h = 5$ $u_{s} = 2048$ h = 1 - 0.6 h = 1 - 0.6	11/2	<u></u>
	$ \begin{array}{c} f_{-} & 0 & 0 \\ h_{-} & 5 & 0 \\ h_{-} & 5 \\ h_{-} & 5 \\ h_{-} & 0 \\ h_$	$\begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

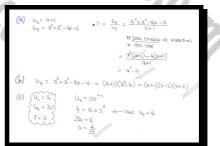
24881 or 24882,

3071 or 3072

k = 7

Question 40 (***+)

The third and fourth term of a geometric series is


$$(x+1)$$
 and (x^3+x^2-4x-4) ,

respectively.

a) Determine the common ratio of the series.Give the answer as simplified quadratic expression, in terms of x.

b) Write the fourth term of the series as a product of three linear factors.

c) Given that x = 3, find the first term of the series.

 $r = x^2 - 4$, $u_4 = (x - 2)(x + 2)(x + 1)$, $a = \frac{4}{25}$

Question 41 (***+)

In a certain quiz game, contestants answer questions consecutively until they get a question wrong.

They win £10 for answering the first question correctly, £20 for answering the second question correctly, £40 for answering the third question correctly, and so on so that the amounts won for each successive question is a term of a geometric series.

When contestants answer a question wrong their game is over and they get to keep $\frac{1}{10}$ of their **total** winnings up to that point.

Connor answers 5 questions correctly.

a) Show that Connor won £31.

The highest prize won in this game, by a contestant called Ray, was £2,097,151.

b) Use algebra to find the number of questions that Ray answered correctly.
 Full workings, justifying every step in the calculations, must be shown in this part of the question.

21

Question 42 (***+)

The first three terms of a geometric series are

(2k-2), (k+2) and (k-2) respectively,

where k is a non zero constant.

- **a**) Show clearly that k = 10.
- **b**) Find the sum to infinity of the series.

Question 43 (***+)

Four brothers shared £1800 so that their shares formed the terms of a geometric progression.

Given that the largest share was 8 times as large as the smallest share, determine the individual amounts each brother got.

, £120, £240, £480, £960

 $S_{\infty} = 54$

ί _ι μ ₂ α αr	ίι _δ ατ ²	ίι ₄ . α(⁻³	
	6	$a + ar + ar^{2} + ar^{3} = 18co$ $a + 2a + 4a + 8a = 18co$ $15a = 18co$ $a = 120$	
		*, THE SYMMES WHEF 120 (20×2≈340 240×2=440 480×2≈960	

Question 44 (***+)

The second and third term of a geometric progression are 9.6 and 9.216, respectively.

a) Show that the sum to infinity of the progression is 250.

The sum of the first k terms of the progression is greater than 249.

b) Show clearly that

 $0.96^k < 0.004$.

c) Hence determine the smallest value of k.

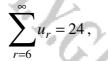
	7772
<u>ā</u>)	$\Gamma = \frac{U_3}{U_2} = \frac{4.216}{9.6} = \frac{24}{25} = 0.96$
	$\begin{array}{c} \vdots u_{q} = \alpha f^{n+1} \\ g_{16} = \alpha \times \circ 96^{1} \\ \hline \alpha = (0) \end{array} \qquad $
	$ \begin{array}{c} \displaystyle \begin{array}{c} \\ \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \right) \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \\ \displaystyle \end{array} \end{array} \end{array} \right) \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \\ \displaystyle \end{array} \end{array} \end{array} \end{array} \right) \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \\ \displaystyle \end{array} \end{array} \end{array} \right) \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \\ \displaystyle \end{array} \end{array} \end{array} \right) \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \\ \displaystyle \end{array} \end{array} \right) \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \\ \displaystyle \end{array} \end{array} \end{array} \right) \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \\ \displaystyle \end{array} \end{array} \right) \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \\ \displaystyle \end{array} \end{array} \right) \begin{array}{c} \displaystyle \begin{array}{c} \\ \displaystyle \end{array} \end{array} \right) \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \end{array} \end{array} \right) \begin{array}{c} \displaystyle \end{array} \end{array} \right) \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \end{array} \end{array} \right) \begin{array}{c} \displaystyle \end{array} \\ \displaystyle \begin{array}{c} \displaystyle \end{array} \end{array} \right) \begin{array}{c} \displaystyle \end{array} \end{array} \bigg) \begin{array}{c} \displaystyle \begin{array}{c} \displaystyle \end{array} \end{array} \bigg) \left(\displaystyle \bigg) \left(\displaystyle \end{array} \bigg) \left(\displaystyle \end{array} \bigg) \left(\displaystyle \bigg) \left(\displaystyle$
⇒ -	$lo(1-0.96^{4}) > 24.9$ $\Rightarrow \xi log(0.96) < log 0.004$
	$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

k =136

Question 45 (***+)

The second term of a geometric series is -12 and its sum to infinity is 16.

Show clearly that the eleventh term of the series is $\frac{3}{128}$.

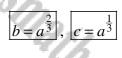

proof

(₽ U ₂ = -12.		$S_{\infty} = 16$
	CIF=-12 SINGE UNE OF		$\left f_{0} = \frac{\alpha}{1 - \gamma} \right SINCE \int_{B_{0}} \frac{\alpha}{1 - \gamma^{2}}$
	$ \begin{array}{c} $	1	
	74.5		
	$-\frac{12}{\Gamma} \doteq lb(1-\Gamma)$		
_	$-l_2 = V_{C}(-r)$		
	$-12 = 16r - 16r^{2}$		
	$ \ell L_{3}^{-}-\ell \ell L^{-} \mathcal{I}=0$		$U_{\eta^{(n)}} \approx \alpha r^{N-1}$ $U_{\eta^{(n)}} \approx \partial H \times (-\frac{r}{2r})^{H}$
	41-41-3=0		$u_n = 24 \times (-\frac{1}{2})^n$
⇒	(21-3) (21+1)=0 NO SUNTO INF	wi1/	$U_{11} = \frac{3}{128}$
9	(2r-3)(2r+1)=0 r= $r=$ $r=$ $r=$ $r=$ $r=$ $r=$ $r=$		25 REPIERO

Question 46 (***+)

The third and the sixth term of a geometric progression is 27 and 8, respectively.

Show clearly that



where u_r is the r^{th} term of the progression.

Question 47 (***+)

The first three terms u_1 , u_2 , u_3 of a geometric series are a, b and c respectively.

Given that $b = c^2$ express u_2 and u_3 in terms of a.

proof

 $\Gamma^3 = \frac{8}{27}$ $\Gamma^2 = \frac{2}{3}$

$\begin{array}{c c} \underline{u}_{1} & \underline{u}_{2} & (r) & \Rightarrow & \underline{b} = c \\ \hline \underline{u}_{1} & \underline{u}_{2} & (r) & \Rightarrow & \underline{b} = a \\ \Rightarrow & \underline{b} = a \\ br & b = c^{2} \\ \Rightarrow & c = a \\ \Rightarrow & c = a \\ \end{array} \begin{array}{c c} A & b & b \\ b = a \\ b = a^{2} \\ \end{array} \begin{array}{c c} A & b \\ b = a^{2} \\ b = a^{2} \\ \end{array}$		and a second second	
	$ \Rightarrow b^2 = ac $ but $b = c^2$ $ \Rightarrow c^2 = ac$ $ \Rightarrow a = c^3$	< AND	$ b^{2} = \alpha_{3}^{4} \\ b = \left(\alpha_{5}^{4} \right)^{\frac{1}{2}} $

Question 48 (***+)

A steamboat uses 5 tonnes of coal to cover a standard journey designed for tourists.

Due to the engines becoming less efficient, the steamboat requires in each journey 2% more coal than the previous journey.

- a) Calculate, in tonnes correct to three decimal places, ...
 - i. ... the amount of coal the steamboat will use on the tenth journey.
 - ii. ... the total amount of coal the steamboat will use in the first ten journeys.

The company that owns the steamboat has stocked up with 360 tonnes of coal and plans to use all the coal during a single tourist season.

b) Assuming that in the first journey the steamboat used 5 tonnes of coal, and the consumption of coal increased by 2% in each subsequent journey, show clearly that

 $1.02^n \le 2.44$,

where n is the total number of journeys during a single tourist season.

c) Hence, or otherwise, determine the maximum number of journeys that the steamboat can make a single tourist season.

5.975, 54.749, 45 (I) S- a(1-r4) U. = $S_{i_{1}}^{i_{1}} = \frac{s'(1-1.02^{10})}{1-1.02}$ S-975 (3 J.p) log (1.02") 5 log (2.44)

Question 49 (***+)

The first, second and third term of a geometric series are

(2k-5), k and (k-6),

respectively, where k is a non zero constant.

a) Show that k is a solution of the equation

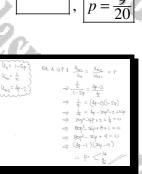
$$k^2 - 17k + 30 = 0.$$

- b) Given that the series converges, find its sum to infinity.
- c) Given instead that series does not converge, find the sum of its first ten terms.

$(\mathbf{\alpha}) \frac{U_2}{U_1} \doteq \frac{U_3}{U_2} = \frac{U_4}{U_3} = \cdots = \Gamma$
$\begin{array}{cccc} \frac{k}{2k-5} & \frac{k-\xi}{k} & \longrightarrow & k^2 = (k-\xi)(2k-\xi)\\ & \Rightarrow & k^2 = 2k^2 - 2k$
$\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}$
$\# m(t d = \frac{3}{5}) \implies \# m = \frac{1-t}{1-t} = \frac{1-3}{5} = \frac{5}{5}$
$ \begin{array}{c} {} {} \downarrow \downarrow$
\$10 = 341

è

, $S_{\infty} = \frac{125}{2} = 62.5$, $S_{10} = 341$


Question 50 (***+)

Three consecutive terms in geometric progression are given in sequential order as

(1-5p), $\frac{1}{2}$ and (4p-2),

where p is a constant.

Show that one possible value of p is $\frac{1}{4}$ and find the other.

Question 51 (***+)

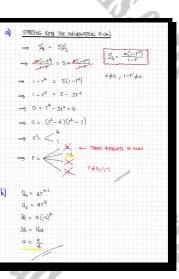
The sum to infinity of a geometric series is 3 times as large as its first term and the third term of the same series is 40.

- **a**) Find the value of the first term of the series.
- **b**) Determine the exact value of the sum of the first four terms of the series.

	$[a=90], [a=90], [S_4 = \frac{650}{3}]$
l	Schemping aut 90 withe
	$ \Rightarrow \frac{d}{2} = 3 \times \alpha $ $ \Rightarrow \frac{1}{1-r} = 2 $ $ \Rightarrow \frac{1}{1-r} = 3 $ $ \Rightarrow \frac{1}{1-r} = 3 $ $ \Rightarrow \frac{1}{2} = 1-r $ $ \Rightarrow \frac{d}{2} = 60 $
	b) this the summation formula for a G.g. $\Rightarrow \not \leq_{r} = \frac{\alpha(1-r^{*})}{1-r^{*}}$
1	$ \rightarrow S_{+}^{i} = \frac{\Re(1 - (\frac{\pi}{3})^{i})}{1 - \frac{\pi}{3}} $ $ \rightarrow S_{+}^{i} = \frac{\Re(1 - \frac{\pi}{3})}{1 - \frac{\pi}{3}} $
ł	⇒ \$4 = <u>\$50</u> = <u>26</u> ≥

Question 52 (***+)

A geometric series, whose terms alternate in sign, has its first term denoted by a and its common ratio denoted by r.


The sum of the first *n* terms of the series is denoted by S_n .

It is given that

 $S_4 = 5S_2$.

a) Find the value of r.

b) Given further that the fifth term of the series is 36, determine the value of a.

r = -2

 $a = \frac{9}{4}$

Question 53 (***+)

ŀ.C.p

K.G.B. Mal

I.C.B.

20

The sum to infinity of a geometric series is 675 and its second term is 27 times larger than its fifth term.

nadasmath

ř.G.B.

200

na

a = 450

I.G.B.

Madasn

23

6

Madasma

I.V.C.B. Madasn

Find the value of the first term of the series.

Question 54 (***+)

The eighth term of a geometric progression is ten times as large as its fourth term.

The common ratio of the progression is positive.

a) Show that the common ratio of the series is approximately 1.778.

The sum of the first eight terms of a **different** geometric progression is ten times as large as the sum of its first four terms.

The common ratio of the progression r, is positive.

b) Show that r is a solution of the equation

 $r^8 - 10r^4 + 9 = 0$.

c) By reducing the above equation to a suitable quadratic, or otherwise, show that

 $r = \sqrt{3}$.

, proof

$u_{\mu} = ar^{\mu-1}$	(b) $\left \begin{array}{c} s_{t} = \frac{\alpha \left(t - r^{t} \right)}{t - r} \right $
$\implies U_8 = 10U_4$ $\implies p(r^7 = 10p(r^3)$	$\Rightarrow \beta_8 = \log_4$
$\Rightarrow \Gamma^7 = lor^3$	$\implies \underline{\alpha(\iota - r^{\theta})}_{1-\Gamma} = \iota_{0 \times \underline{\alpha(\iota - r^{\theta})}}$
$\Rightarrow \Gamma^{+} = 10$ $\Rightarrow \Gamma = 1.778279 (r>0)$	$\Rightarrow \frac{\alpha \neq \circ \delta r \neq 1}{1 - r^{\theta}} = \log \left(1 - r^{\theta} \right)$
=> LE. APPECK LITTB	= 1-L_B = 10-10L_A
. //	= 0 = r ⁸ -10r ⁴ +9
	$(C) \longrightarrow (\Gamma^{4})^{c} - lo(\Gamma^{4}) + 9 = 0$
	$\Rightarrow (\Gamma^{\dagger} - 1)(\Gamma^{\bullet} - 9) = 0$ $\Rightarrow \Gamma^{\bullet} = \langle q \rangle$
	· · · · · · · · · · · · · · · · · · ·
	$\Rightarrow r^{2} \ll \frac{1}{2}$
	$\Rightarrow r = \left(\begin{array}{c} \times \\ (r+1) \\ \sqrt{3} \end{array} \right)$
	-75 (1>0)
	$\rightarrow r = \sqrt{3}$

Question 55 (****)

- The second and fifth term of a geometric progression are 72 and -9 respectively.
 - **a**) Find the first term and the common ratio of the progression.
 - **b**) Show that the **difference** between the sum to infinity and the sum of the first *n* terms of the progression is given by

 3×2^{5}

a = -144

(4)

ar = 72 $ar^4 = -9$) =) Dunot $ar^4 = -\frac{9}{72}$ $r^3 = -\frac{1}{72}$

 $\frac{\alpha(i-h^{N})}{1-c} = \frac{\alpha}{1-c}\left[1-(i-c^{N})\right]$ $= \frac{\alpha(i-h^{N})}{(-c^{N})} = \frac{-h44 \times (-\frac{1}{2})^{N}}{1-(-\frac{1}{2})}$ $\frac{(-h^{N})}{1-(-\frac{1}{2})} = \pm 96 \times 2$

 $\begin{array}{l} \frac{a}{1+r} = \frac{-i4\mu}{1-r+\mu} = -96 \\ \frac{a(1-r)}{1-r} = \frac{-i4\mu}{1-(-\frac{1}{2})} = -96 \\ \frac{a(1-r)}{1-r+\mu} = \frac{-i4\mu(-(-(-\frac{1}{2})))}{1-(-\frac{1}{2})} = -96 \\ \frac{a(1-r)}{1-r+\mu} = \frac{-i4\mu(-(-(-\frac{1}{2})))}{1-(-\frac{1}{2})} = -96 \\ \end{array}$

[-95(1-(-+))]]

Question 56 (****)

Max is revising for an exam by practicing papers.

He takes 3 hours and 20 minutes to complete the first paper and 3 hours and 15 minutes to complete the second paper.

It is assumed that the times Max takes to complete each successive paper are consecutive terms of a geometric progression.

a) Assuming this model, show that Max will take approximately ...

- i. ... 176 minutes to complete the sixth paper.
- ii. ... 35 hours to complete the first 12 papers.

Max aims to be able to complete a paper in under two hours.

b) Determine, by using logarithms, the minimum number of papers he needs to practice in order to achieve his target according to this model.

(a) MORKING IN NUMBER	(1 ² = 162 ← 3 Hard=30 MinalH (1 ³ = 162 ← 3 Hard=30 MinalH
	$\frac{PE}{40} = \frac{2PI}{300} = 7 \text{OTHS HOUMON }$
$ \begin{array}{c} \textbf{(I)} & \underbrace{\left(U_{h} = \alpha t^{h-1} \right)}_{U_{k}} \\ \underbrace{\left(U_{k} = 2\infty \times \left(\frac{M}{40} \right)^{2} \right)}_{U_{k}} \\ \end{array} $	$(\mathbf{II}) \qquad \sum_{k=1}^{l} \frac{\alpha(\iota \circ \Gamma^{k})}{1 - \Gamma}$
46 = 176.219	$S_{12}^{l} = \frac{2\infty(1-(\frac{3}{2}))^{l_2}}{1-\frac{3\eta}{30}}$
	$f_{12} = 2036.01$ WINNOTHS $f_{12} = 60$
	34+93 Hours
	+ APPEX 35 Hours
(b) $u_{h} < 120$	
$\Longrightarrow \alpha \Gamma^{N-1} < 1_{20}$	>=> h-1 > 20.176
$\implies 200 \times \left(\frac{34}{4^{\circ}}\right)^{1/3} < 120$	S → M > 21.176
$\Rightarrow \left(\frac{4\pi}{34}\right)^{k-1} < \frac{3}{5}$: h= 22
$\Rightarrow \log \left[\left(\frac{34}{40} \right)^{n-1} \right] < \log \left(\frac{3}{4} \right)$	}
$\Rightarrow (h-1) (\log \frac{3\eta}{40}) < \log \frac{3}{5}$	5
$\frac{1}{2}$ $h_{-1} > \frac{\log 3f}{\log 3h}$	5
THIS IS NEGRITIVE! log 32	

22

Question 57 (****)

The sum to infinity of a geometric progression is four times as large as its second term.

a) Show that the common ratio of the series is $\frac{1}{2}$.

It is further given that the sum of the first four terms of the progression is 5760.

b) Find the first term of the progression.

The sum of the first k terms of the progression is **three less** than its sum to infinity.

c) Use algebra to determine the value of k.

(a) USUS STRUDAR FRANCIAR $\Rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\frac{(n-1)}{2} \rightarrow \beta \text{and} (d)$ $e^{3/2} = \frac{1}{2} \stackrel{(d)}{\leftrightarrow} e^{-1/2} \stackrel{(d)}{\leftarrow} e^{-1/2$
$ \begin{array}{c} 1-r & -4r \\ \hline \\ -9 & 1-r & -4r \\ \hline \\ -9 & 1-4r & -4r^2 \\ \hline \\ +12^{-}-4r & +1 & =0 \end{array} $	$a(1-\frac{1}{16}) = 5165 \times \frac{1}{2}$ $\Rightarrow a \times \frac{15}{16} = 2880$ $\Rightarrow 15u = 46080$
$ \Rightarrow (2r-1) = 0 $ $ \Rightarrow \frac{r+\frac{1}{2}}{r+\frac{1}{2}} $	⇒ <u>a = 3672</u>
$\frac{\varphi_{k}}{\varphi_{k}} = \frac{\varphi_{m} - 3}{\frac{3\sigma_{D}(1 - \sigma_{-5}k)}{1 - \sigma_{-5}}} = 614k - 3$	= 442= 447= 4x372×05= 6144
$3072 \left(1 - 0.5^{L}\right) = 6161 \times 0$ $1 - 0.5^{L} = \frac{20037}{2048}$ $\frac{1}{2040} = \left(\frac{1}{2}\right)^{L}$ $\frac{1}{2040} = \left(\frac{1}{2}\right)^{L}$ $\frac{1}{2040} = 10000000000000000000000000000000000$	$ \begin{array}{c} \mathbf{x} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

, a = 3072, k = 11

Question 58 (****)

The sum of the first two terms of a geometric progression is twice as large as the sum of its second and third term.

a) Show that the common ratio of the series is $\frac{1}{2}$

The sum to infinity of the geometric progression is 80.

b) Determine the exact value of the sum of the first six terms of the progression.

2	$S_6 = \frac{315}{4}$
70	
$(U_1 + U_1) = 2(U_2 + U_3)$ $\Rightarrow U_1 + U_2 = 2U_2 + 2U_3$ $\Rightarrow U_1 = U_2 + 2U_3$ $\Rightarrow 0 = -\alpha^2 + 2(\alpha r^2)$ $\Rightarrow 1 = -\Gamma + 2r^2 (\alpha r^2)$ $\Rightarrow 2r^2 + (-1) = 0$	(\bullet)
$\Rightarrow (2r - 1)(r + 1) = 0$ $\Rightarrow r_{=} < \frac{1}{2}$ (0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)($\begin{array}{c} (q, q) = \frac{q_{21}}{q_{11}} \\ (q, q) = \frac{q_{21}}{q_{21}} \\ (q, q) = $

Question 59 (****)

The fourth term and the seventh term of a geometric progression is 81 and 24, respectively.

a) Determine the sum to infinity of the progression.

The tenth term of the progression is denoted by u_{10} .

b) Show clearly that

 $\log_2(u_{10}) = 6 - 2\log_2 3$.

 $S_{\infty} = \frac{6561}{8}$

Question 60 (****)

 $X = 0.3\dot{2}\dot{1} = 0.321212121...$

By writing this decimal as the sum

 $X = 0.3 + 0.021 + 0.00021 + 0.0000021 + \dots$

show that $X = \frac{53}{165}$.

97 B. A.
X = 0.3 + 0.02(+ 0.0002(+ 0.00002) +
⇒ X = 0.3 + [0.021 + 0.00021 + 0.00000 21 +]
This is a G.P, a= 0.021
1 = 0•01
A PLUTION OF WILL SUM OF MUT
$\implies X = 0.3 + \frac{1000}{100} + 2.0 = X \iff$
Cr.
$\Rightarrow X = 0.3 + \frac{7}{330}$
\Rightarrow $X = \frac{3}{10} + \frac{7}{330}$
$\frac{1}{231} = \frac{1}{231} = \times \in$
12 cflores

proof

Question 61 (****)

A geometric series G, whose first term is a and common ratio is r, has a sum to infinity of 128.

Another geometric series G', with first term also a and common ratio 3r has a sum to infinity of 384.

Determine the exact value of the sum of the first five terms of G'.

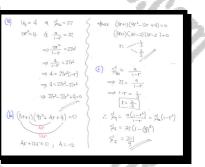
$\neq_{\infty} = \frac{\alpha}{\tau - c}$	THUS FOR G'
$128 = \frac{a}{1-r} = \frac{a}{384} = \frac{a}{1-3r}$	$\alpha \sim 96$ $\Gamma = 3r = \frac{3}{4}$
a = (280-r) a = 384(i-3r)	$\beta_{ij} = \frac{\alpha \left(1 - r^{ij}\right)}{1 - r^{ij}}$
126(1-r) = 384(1-3r) 1-r = 3(1-3r)	$S_{3} = \frac{96(1 - 0.7^{2})}{1 - 0.11}$
BL= 3 (-L= 3-dL	$\chi^2 = \frac{\frac{1}{4}}{\frac{1}{36(1-\frac{1054}{563})}}$
$\hat{q} = \frac{1}{128(1-r)}$	\$ = 384 (181)
$\alpha = 4t$	$z_2^2 = \frac{5343}{8}$

Question 62 (****)

The third term of a geometric series is 4 and its sum to infinity is 27.

a) Show that

C.b.


P.C.P.

 $27r^3 - 27r^2 + 4 = 0,$

where r is the common ratio of the series.

b) Given that one possible value of r is $-\frac{1}{3}$ find the other.

c) Given further that the first term of the series is 9, find in exact form the sum of the first five terms of the series.

F.G.B.

Question 63 (****)

The first three terms of a geometric series are

$$u_1 = 2^{2k+3}$$
, $u_2 = 4^{5-k}$ and $u_3 = 2^{2(2k+1)}$

- **a**) Find the value of k.
- **b**) Show that the sum of the first ten terms of the series is 65472.

(a) $\frac{u_2}{u_1} = \frac{u_3}{u_2}$	(b) $\left\{ \begin{array}{c} u_1 = 2^6 = 64 \\ u_2 = 4^{\frac{3}{2}} = 128 \end{array} \right\}$
$\Rightarrow (u_2)^{i_1} = u_1 u_3$	(U ³ = 5 ₈ = 520)
$\Rightarrow \left(4^{5-k}\right)^2 = 2^{2k+3} = 2^{2(2k+1)}$	10 F=2
$\Rightarrow 4^{10-2L} = 2^{2L+3+2(2L+1)}$	$\Rightarrow s_{4} = \frac{\alpha(r^{4}-1)}{r-1}$
$\Rightarrow 2^{2(j_0-2k)} = 2^{2k+3+q_{k+2}}$	$\Rightarrow \beta_{10} = \frac{64(2^{10}-1)}{10}$
$\Rightarrow 2^{20-4k} = 2^{4k+5}$ $\Rightarrow 20-4k = 6k+5$	\Rightarrow $\leq_{10} = 64 \times 1023$
= 15 = lok	$\Rightarrow \beta_m = 65472$
$\Rightarrow k = \frac{3}{2}$	Pro + + 12 + REPUIRED

Question 64 (****)

The amount of ± 33500 is to be divided into three shares, so that the three shares form the terms of a geometric progression.

Given that the value of the smallest share is $\pounds 2000$, find the value of the largest share.

, £24500

Question 65 (****)

The first term of a geometric series is 24 and the sum of its first four terms is 45.

a) Show that

I.C.B.

$$8r^3 + 8r^2 + 8r - 7 = 0$$

where r is the common ratio of the progression.

- **b**) Given that $r = \frac{1}{2}$ is a solution of the above equation, factorize the equation into a linear and a quadratic factor.
- c) Show that $r = \frac{1}{2}$ is the only real solution of the above equation.
- d) Determine the sum to infinity of the progression.

S...

F.G.B.

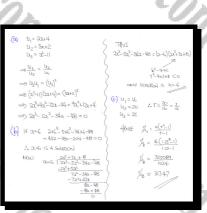
120

 $\overline{(2r-1)(4r^2+6r+7)}$

Question 66 (****)

The first three terms of a geometric series are

$$(2x+4)$$
, $(3x+2)$ and (x^2-11) ,


where x is a constant.

a) Show that x is a solution of the cubic equation

 $2x^3 - 5x^2 - 34x - 48 = 0.$

b) Show that x = 6 is the only real solution of the above equation.

c) Determine the sum of the first eight terms of the geometric series.

325089

 $S_8 = -$

≈ 317.47

12

Question 67 (****)

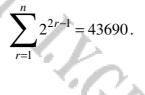
The figure above shows a pattern of 5 circles, touching externally, whose centres lie on a straight line of length L units.

The radii of these circles form a geometric progression, where the radius of the smaller circle is 3 units and that of the fifth (larger) circle is 48 units.

a) Find the common ratio of the geometric progression.

The pattern is extended by 5 more circles to 10 circles.

b) Determine the new value of L.


c) Calculate, in terms of π , the total area of the 10 circles of the new pattern.

۵)	USING Un = art
	======================================
<i>b</i>)	USING THE SUM GROUND FOR 19-10 of SUM, NOTING THAT IT
	NEEDER THE CHARLES STATEMENT) CHARLES TO 200344
	$ \begin{array}{l} \displaystyle L_{NEW} = 2.8 \cdot \frac{\Phi(2^{+}_{n-1})}{r_{n-1}} \text{f=}2_{1,0}\text{es}_{3,0} \text{ n=10} \\ \displaystyle L_{NEW} = 2.8 \cdot \frac{A(2^{+}_{n-1})}{2-1} \\ \displaystyle L_{NEW} = 6138 \end{array} $
c)	ROEM AN EXTREMAN TO SEE THE PATTERN
	$ \begin{array}{c} \underset{(x,y) \in \mathcal{A}}{ =} + \eta \times \underbrace{\vec{s}}_{(x,y)} + \eta \times \underbrace{\vec{s}}_{($
	$\rightarrow 4014 = 17 \times 3^{2} \left[1 + 3^{2} + 2^{4} + 2^{4} + 2^{4} + 2^{8} \right]$
	⇒ Neit4 = 3π x [1+4+ 16+64++262144]

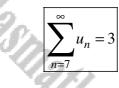
 $|r=2|, |L=6138|, |area=3,145,725\pi$

Question 68 (****)

Showing clearly your method, determine the value of n, given that

· .			
	n	=	8

$\sum_{r=1}^{h} 2^{2r-1} = 43690$	$= 43690 = \frac{2(4^{N}-1)}{4-1}$
2'+ 23 + 25 + + 22++ = 43690	}⇒ 65535 = 4 ⁶ -1
2+8+32++2=43690 () ⇒ 4 ⁴ = 65.536
$\begin{array}{c} G \stackrel{\mathcal{R}}{\rightarrow} & \text{ with } \alpha = 2\\ r = 4\\ \text{USING } S_{k_{i}} = \frac{\alpha (r^{k_{i-1}})}{r-1} \end{array}$	BY TBAC ФЛО ИмРезими NT7 N = 8


Question 69 (****)

	C. All Street, Name						
\mathbf{T}	1	- f -	geometric	All a straight the	1 1	1	
Ine n	term	OT A	geometric	series is	denoted	nv	u
1110 11		01 4	Scometile	berreb ib	aenotea	0,	^v n

It is further given that $u_1 = 1458$ and $u_6 = 6$.

i C.P.

Evaluate showing clearly your method

$\begin{array}{c} \frac{1}{2H^2} = L_2 \\ \eta^c \in \mathcal{C} \\ \alpha \in H2\mathcal{B} \\ \end{array} \right\} \implies \begin{array}{c} \eta^c \in \alpha_{L_{\mathcal{B}}} \\ \alpha' \in \alpha_{L_{\mathcal{B}}} \\ \Rightarrow \end{array} \qquad \qquad$	
$\Gamma = \frac{5}{\sqrt{243}} \left(\Gamma = \frac{1}{3} \right)$ Now	
$\sum_{N=}^{\infty} U_{i_{j}} = \sum_{N=1}^{\infty} U_{i_{j}} - \sum_{N=1}^{6} U_{i_{j}} = S_{i_{0}} - S_{i_{0}}$	
$= \frac{\alpha}{1-r} - \frac{\alpha(1-r^{2})}{1-r} = \frac{\alpha}{1-r} \left[-(1-r^{2}) \right]$	
$= \frac{\alpha}{1-r} \times 1^{6} = \frac{\alpha r^{6}}{1-r} = \frac{1+58 \times (\frac{1}{2})^{4}}{1-\frac{1}{2}} = 3$	

Created by T. Madas

 $\sum_{n=7}^{n} u_n$

Question 70 (****)

The sum of the first *n* terms of a geometric series is denoted by S_n .

The common ratio of the series, r, is greater than 1.

- **a**) If $S_4 = 5S_2$ find the value of r.
- **b**) Given further that $S_3 = 21$ determine the value of S_{10} .

AL.	10.	_
8 YA	$r=2$, $r=2$, $S_{10}=3069$	
£ ?		6
-		TR.
	s THE WIRD GIVIN , 70-set this Equation	20
	$\beta_{t} = S\beta_{2}$ $\beta_{t} = \frac{\alpha(t^{2}-1)}{C-1}$ $s = s \times \frac{\alpha(t^{2}-1)}{C-1}$	
	$\frac{\alpha}{p-1}\left(\left\lceil \frac{p}{2} \right\rceil\right) = \frac{\alpha}{p-1} \times S\left(\left\lceil \frac{p}{2} \right\rceil\right)$	
	AS a \$0, C>1 WE MAY DULLE WITHIN	
-	$\begin{split} t^{k} t &= S t^{k} - S \\ t^{k} - S t^{k} + t &= 0 \\ (t^{k} - 4)(t^{k} - 1) &= 0 \\ t^{k} &= \begin{pmatrix} t^{k} \\ t \end{pmatrix} t^{k} - \begin{pmatrix} t^{k} \\ t \end{pmatrix} t^{k} - \begin{pmatrix} t^{k} \\ t \end{pmatrix} \end{split}$	
b) <u>Stre</u>	et by ANDING THE VALLE OF a	3
=	$\Rightarrow \beta_1 = 21$ $\Rightarrow \frac{\Delta(\frac{2^k}{2}-1)}{2^{-1}} = 21$	
	$\Rightarrow \exists a \approx 21$ $\Rightarrow a \approx 3$ $\therefore \qquad \Rightarrow \frac{\beta(a^{n-1})}{2a^{n-1}}$	
	$\therefore \qquad p_{\mu} \approx \frac{1}{2+1}$ $S_{\mu} \approx 3 \times \log_{2}$ $S_{\mu} \approx 3 \log q$	

201

I.C.B.

Question 71 (****)

The first three terms of a geometric series are

$$u_1 = q(4p+1),$$
 $u_2 = q(2p+3)$ and $u_3 = q(2p-3).$

a) Find the possible values of p.

The sum to infinity of the series is 250.

b) Find the value of q.

C.B.

C.4.

q) LOCAING- AT THE PATTING	AS THERE EXECTS + SUM TO INFINITY -1 < $\Gamma < 1$, IF $r_{F}^{\frac{3}{2}}$
u_1 u_2 u_3 q'(4p+1) $q'(2p+3)$ $q'(2p-3)$	$\Rightarrow \qquad \qquad$
×r ×r	\Rightarrow 250 = $\frac{-43}{1-\frac{3}{2}}$
FORMING TWO GAMPTIONS	$\Rightarrow 250 = \frac{254}{32}$
$\begin{array}{rcl} q(4p+1) \times \Gamma &= q(2p+3) & q(r(4p+1)) = q(2p+3) \\ q(2p+3) \times \Gamma &= q(2p-3) & \Rightarrow & q(r(2p+3)) = q(2p-3) \end{array}$	⇒ loo = 2≤¢
$\frac{(4p+1)(2p-3)=(2p+3)(2p+3)}{(4p+1)(2p-3)=(2p+3)(2p+3)} \implies (4p+1)(2p-3)=(2p+3)(2p+3)$	$\Rightarrow \underline{q} = \underline{t}$
$\frac{d\mathbf{r}(2p+3)}{d\mathbf{r}(2p+3)} \stackrel{\text{(2p+3)}}{\Rightarrow} \left(\frac{d\mathbf{r}}{\mathbf{r}}^{2} - (2p+3) - (2p+3$	
$\implies 2p^2 - 1 p - 6 = 0$ $\implies (2p+1)(p - 6)$	
$\Rightarrow P^{2} < \frac{6}{-\frac{1}{2}}$	
6 LOUGING AGAIN AT THE FIRST & THEMS	
• If $p = -\frac{1}{2}$, $u_1 = -\frac{1}{2}$, $u_2 = 2\frac{1}{2}$, $u_3 = -\frac{1}{2}$ $\implies \Gamma = -2$	
• If $P = c$ $u_1 = 25d$, $u_2 = 15d$, $u_3 = 1d \implies r = \frac{2}{5}$	

 $p = -\frac{1}{2}$

 $\bigcup p=6$, q=4

21/18

F.C.P.

1120281

Question 72 (****)

The terms of a geometric progression are $u_1, u_2, u_3, u_4, u_5, ...$

a) Given that $u_4 = 6$ and $u_3 + u_5 = 20$, show that

 $3r^2 - 10r + 3 = 0,$

where r is the common ratio of the progression.

b) Given further that the progression has a sum to infinity determine its value.

	$S_{\infty} = 243$
	2
a) USING THE FORMULA	$U_{ij} = \alpha \Gamma^{ij-1}$
$u_{\psi} = c$ $a\Gamma_{=}^{3}c$	$\sigma s^{2} = \frac{2}{2} U + \frac{2}{6} U$ $\alpha s = \frac{4}{7} n s^{2} r n$ $\alpha s = (\frac{2}{7} + 1)^{2} r n$
DIVIDING THE EQUATIONS	3
$\frac{\partial r^2(m^2)}{\rho(x)} = \frac{\infty}{6}$	$\Rightarrow \frac{1+1^{2}}{r} = \frac{N}{3}$ $\Rightarrow 5.(1+2) > 10^{1}$ $\Rightarrow 3^{2}+3.2 = 10^{1}$ $\Rightarrow \frac{3^{2}-10r+3}{r} = 0$ $\Rightarrow 4^{2}-10r+3.2 = 0$
o) sources the ources	$\Rightarrow (3r - 1)(r - 3) = 0$ $\Rightarrow r_{2} < \int V_{10} \cos r_{0} \ln r_{0} V_{10}$ He say to he way.
$\frac{426000}{3} = \frac{1}{3} =$	Loc 143 millio
FINALLY \$ 00 = 1-1 = 1	$\frac{62}{3} = \frac{162}{3} = \frac{243}{3}$

(****) Question 73

maths.

Y.C.B. Madasm

COM

I.F.G.B.

Three consecutive terms of a geometric series are given in terms of a constant x.

$$U_3 = (x+5), U_4 = (4x-1)$$
 and $U_5 = (2x+3).$

Find the sum to infinity of the series.

~~~ [ 	$S_{\infty} = \frac{243}{40} = 6.075$
n 1	
LOOKING AT THE "BOWHTER PATTHEN"	If $\lambda = -\frac{1}{2}$ , we get $f = -\frac{2}{3}$ , so winth $U_{\mu} = qr^{n-1}$
$\begin{array}{c} u_{\pm} & u_{\pm} & u_{s} \\ \hline 2+5 & 4s-1 & 2s+3 \\ \hline \textbf{FReline, two equilibrius} \\ (2+K)\Gamma = 4s-1 \\ (2+K)\Gamma = 4s-1 \\ (b-1)\Gamma = 4s-1 \end{array}$	$ \Rightarrow  \mathbf{u}_{\lambda} = \frac{\mathbf{e}}{2} $ $ \Rightarrow  \mathbf{o}(\mathbf{r}^{\lambda_{n}} \in \frac{\mathbf{e}}{2}) $ $ \Rightarrow  \mathbf{o}(-\frac{\mathbf{e}}{2})^{2} = \frac{\mathbf{e}}{2} $ $ \Rightarrow  \frac{\mathbf{d}}{\mathbf{q}}\mathbf{q} = \frac{\mathbf{e}}{2} $
	⇒ a = <del>8</del>
$\frac{(\lambda_{1}+\lambda_{2})}{(\lambda_{2}+\lambda_{2})} = \frac{\lambda_{2}-1}{(\lambda_{2}+\lambda_{2})} \implies (\lambda_{2}-1)^{2} = (\lambda_{2}+\lambda_{2})(\lambda_{2}+\lambda_{2})$ $\implies (\lambda_{2}-\lambda_{2}+1) = \lambda_{2}^{1}+\lambda_{2}\lambda_{2}+\lambda_{2}$ $\implies (\lambda_{1})^{2}-\lambda_{2}-\lambda_{2}-\lambda_{2}$ $\implies (\lambda_{2}-\lambda_{2}) = 0$ $\implies (\lambda_{2}-\lambda_{2})$ $\implies (\lambda_{2}-\lambda_{2})$ $\implies (\lambda_{2}-\lambda_{2})$	$\begin{array}{c} \hline \hline h M hay The sun to when the device r_{0,h} and r_{0,h} and r_{0,h} and r_{0,h}\Rightarrow  \overrightarrow{r_{h}} = -\frac{1}{1-r_{1}} \Rightarrow  \overrightarrow{r_{h}} = \frac{1}{1-(-\frac{1}{2})} \Rightarrow  \overrightarrow{r_{h}} = \frac{6/6}{\frac{5}{2}} \Rightarrow  \overrightarrow{r_{h}} = \frac{6/6}{\frac{5}{2}}$
$\begin{array}{c} \underline{USINC}  \mbox{Hell} \ \ \mbox{of} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	

nadasm.

Inadasn.

Madasmaths.com

I.F.C.B.

Created by T. Madas

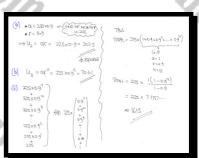
COM

Y.C.

Smaths,

00

#### Question 74 (****)


Liquid is kept in containers, which due to evaporation and ongoing chemical reactions, at the end of each month the volume of the liquid in these containers reduces by 10% compared with the volume at the start of the same month.

One such container is filled up with 250 litres of liquid.

- a) Show that the volume of the liquid in the container at the end of the second month is 202.5 litres.
- **b**) Find the volume of the liquid in the container at the end of the twelfth month.

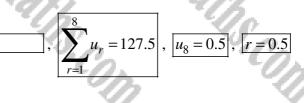
At the start of each month a new container is filled up with 250 litres of liquid, so that at the end of twelve months there are 12 containers with liquid.

c) Use an algebraic method to calculate the total amount of liquid in the 12 containers at the end of 12 months.



≈ 70.6,

≈1615


Question 75 (****)

It is given that

 $\sum_{r=1}^{n} u_r = 128 - 2^{7-n},$ 

where  $u_r$  is the  $r^{\text{th}}$  term of a geometric progression.

- a) Find the sum of the first 8 terms of the progression.
- **b**) Determine the value of  $u_8$ .
- c) Find the common ratio of the progression.



a)	$\frac{0.5119G}{5} \frac{11}{8} \frac{1}{8} \frac{1}{10} \frac{1}{1$
P)	UDING THE SUNMATION
	$r_{s}^{c} - g_{s}^{b}^{c} = g_{s}^{b} = g_{s}^{b} \leftarrow \sum_{1-s_{s}}^{r-s_{s}} - g_{s}^{c} = g_{s}^{b} \leftarrow \sum_{1-s_{s}}^{r-s_{s}} - g_{s}^{c} = g_{s}^{c} \leftarrow \sum_{1-s_{s}}^{r-s_{s}} - g_{s}^{c} = g_{s}^{c} \leftarrow g_{s}^{c}$
	$\Rightarrow \overline{n^8 = 0.2}$
	Find the first tend $\Rightarrow a = u_1 = S_1^{-1}$ $\Rightarrow a = 126 - 2^{n-1}$
	$\Rightarrow \underline{a} = \underline{b} \underline{4}$
	Enter
	$\Rightarrow U_8 = \alpha r^7 \Rightarrow S_2 = u_1 + u_2 = 128 - 2^{7-2}$
	$\Rightarrow \frac{1}{7} = 64 \times r^7$ $\Rightarrow$ $u_1 + u_2 = 120 - 32$
	$\Rightarrow r^2 = \frac{1}{120} \Rightarrow 64 \pm 412 = 96$
	$\rightarrow$ (= ) $\frac{1}{12}$ $\Rightarrow$ $\frac{1}{12}$
	$\Rightarrow \underline{r_2} \qquad \therefore \underline{r_2} \qquad \therefore \underline{r_2} \qquad \underbrace{v_1}_{u_1} = \underbrace{32}_{64} = \underbrace{1}_{2}$

Ĉ.Ŗ.

madasn,

### **Question 76** (****)

A certain type of plastic sheet blocks 7% of the sunlight.

It is required to block at least 95% of the sunlight by placing N of these plastic sheets on top of each other.

Use algebra, to determine the least value of N

,	N = 42

#### NODEL \$5 ROLOW

NE NGED TO LUT MIT AT LAKET 95.45 OF THE WORT, IF ANNUAL AT WORT 57.45

- $u_{\eta} = \alpha r^{n-1}$
- $20.0 \ge c^{\prime} \ell^{0} 0 \ll$
- $\rightarrow n \log(0.45) \leq \log(0.05)$ 
  - $\implies n \geqslant \frac{\log(0.05)}{\log(0.43)} \quad \left[ \frac{\log(0.43)}{\log(0.43)} < \circ \right]$ 
    - : h= 42

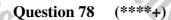
#### Question 77 (****+)

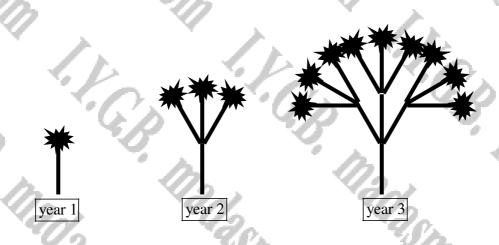
A geometric has positive terms and positive common ratio r.

The difference between the first and the fourth term of a geometric progression is five times as large as the difference between its second and its third term.

a) Show that the common ratio r of the progression is a solution of the equation

 $r^3 - 5r^2 + 5r - 1 = 0.$ 


b) Find, in exact surd form where appropriate, the solutions of the above equation.


The sum to infinity of the progression is  $\sqrt{6} + \sqrt{2}$ .

c) Determine, in exact surd form, the first term of the progression.

	$=1, 2-\sqrt{3}, 2+\sqrt{3}$ , $a=2\sqrt{3}$
· · · · · · · · · · · · · · · · · · ·	n u
a) $\frac{1}{2} \frac{1}{2} \frac$	(c): The counter 2480 is 2-63, 45 This is the Car where $d \in \Gamma$ which the counter $4 + 50d$ to Norman (-1 < $\Gamma < 1$ ) $\implies \int_{0}^{2} e^{-\frac{\alpha}{1-\Gamma}}$ $\implies f_{0}^{2} + f_{0}^{2} = \frac{\alpha}{1-(\alpha-\Gamma)}$ $\implies f_{0}^{2} + f_{0}^{2} = \frac{\alpha}{1-(\alpha-\Gamma)}$ $\implies a = (f_{0}^{2} + f_{0}^{2})(-1+f_{0}^{2})$ $\implies a = 2f_{0}^{2} + f_{0}^{2} - f_{0}^{2}$ $\implies a = 2f_{0}^{2}$
$ = \left( \left[ -2, 1 \right]^{2}, \frac{2}{2} + \left[ +2 \right] \right) $ $ \Rightarrow \left[ \left[ -2, 2 \right]^{2}, \frac{2}{3}, \frac{2}{3} \right] $ $ \Rightarrow \left[ -2, 2 + \frac{1}{3} \right] $ $ \Rightarrow \left[ 1 + 2 + \frac{1}{3} \right] $ $ \therefore \left[ 1 + \frac{2}{3} + \frac{1}{3} \right] $	

 $\overline{2}$ 





The figure above shows a flowering plant. In year 1 it produces a single stem with a flower at the end.

In year 2, the flower withers and in its place three more stems are produced, with each new stem having a new flower at its end, i.e. 4 stems in total.

In year 3, the flowers wither again and in each of their places a new stems is produced, with each new stem having a new flower at its end, i.e. 13 stems in total.

This flowering pattern continues every year.

**a**) Find an expression for ...

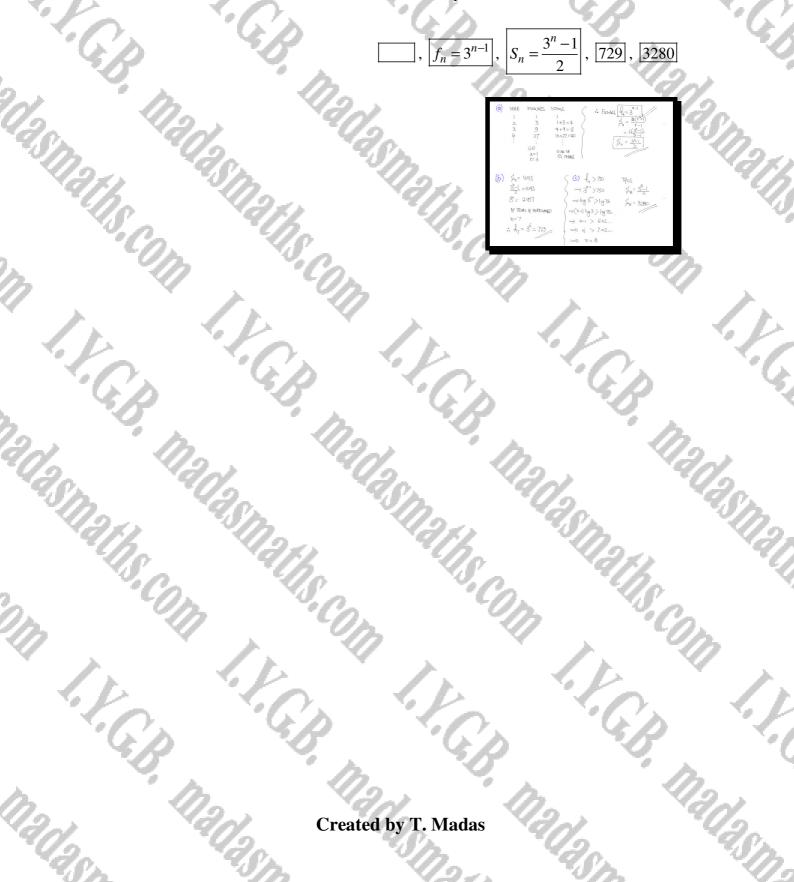
i. ... the number of flowers in the  $n^{\text{th}}$  year.

**ii.** ... the number of stems in the  $n^{\text{th}}$  year.

One such plant has 1093 stems.

b) Determine the number of flowers of this plant.

[continues overleaf]


31/15.CO

ths.com

#### [continued from overleaf]

A different plant of the above variety has over 750 flowers.

c) Determine the **least** number of stems of this plant.



### Question 79 (****+)

The sum of the first 2 terms of a geometric progression is 40.

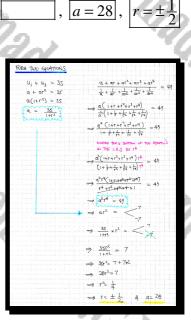
The sum of the first 4 terms of the same geometric progression is 130.

Determine the two possible values of the sum of the first 5 terms of the geometric progression.

a((2+1)(2-1)( ______(1≠1)  $S_5 = 211$  or  $S_5 = -275$ 

- = - 27.5

1+


madasn.

### Question 80 (****+)

A geometric series has first term a and common ratio r.

The ratio of the sum of the first 5 terms of the series, to the sum of the reciprocals of the first 5 terms of the series, is 49.

Given further that the sum of the first and third term of the series is 35, determine the value of a and the two possible values of r.



#### Question 81 (****+)

Anton is planning to save for a house purchase deposit over a period of 5 years.

He opens an account known as a "Homesaver" and plans to pay into this account  $\pounds 200$  at the start of every month, and continue to do so for 5 years.

The account pays 0.5% compound interest **per month**, with the interest credited to the account at the end of every month.

a) Show clearly that at the **end** of the third month the balance of the account will be £606.02.

**b**) Calculate the total amount in Anton's "Homesaver" account after 5 years.



	START OF AR	에 놓	600 OF WOUDH	
	1	200	200×1.005 = 201	
	2	200+201	401 × 1.005 = 403.005	
	3	200+403.005	25 005 0 200 ± 200 1× 200 603	
			€ 606.02	
			As Depire	40
(d	MONTH GND			
7		200 × 1.005		
	2	200×10052	+ 200×1.005	
	3	200× 1.0053	$+ 200 \times 1005^{2} + 200 \times 1005^{1}$	
			말 분만 한 것 같 같 한	
	60	200×105 +	200 × 1.005 + 300×1.005 + + 300×1.	1
+	truce the re	POILED TOTAL IS		
	Tay - 200×100	+ 200 x Long	+ 200×1003 + + 200×1005 =	
			0023 + + 1.0024.	
7	wh - 200 [ 1	.003 T 1003 + H	003 + 1 1.003	
		1. 8	This is a G.P. with an Loss	
		1000 ( 50 -	$f = \frac{1}{2} 14.023.70$	

### Question 82 (****+)

The second term of a geometric series is -12 and its sum to infinity is 16.

a) Show that the first term of the series is 24.

The sum of the first n term of the series is denoted by  $S_n$ .

**b**) Show clearly that

F.C.B.

 $S_{2k} = 16 - 4^{2-k}$ 

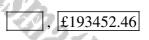
· · · · · · · · · · · · · · · · · · ·	
(a) $\alpha \Gamma = -12$ $\downarrow (5 = \frac{\alpha}{1-r^2})$ $\Rightarrow (5 = \frac{\alpha}{1-r^2})$ $\Rightarrow \Gamma > (\frac{-\frac{1}{2}}{2})$ $\Rightarrow \Gamma > (\frac{-\frac{1}{2}}{2})$ $\Rightarrow \Gamma = -\frac{1}{2}$	
(b) $\begin{array}{l} \beta_{x} = \frac{\Omega(1-p^{x})}{1-p^{x}} \\ \Rightarrow \beta_{x} = \frac{\Omega(1-(p^{x}))}{1-(p^{x})} \\ \Rightarrow \beta_{x} = \frac{2\lambda(1-(p^{x}))}{1-(p^{x})} \\ \Rightarrow \beta_{x} = \frac{2\lambda(1-(p^{x}))}{1-(p^{x})} \\ \Rightarrow \beta_{x} = \frac{\lambda(1-(p^{x}))}{1-(p^{x})} \\ \Rightarrow \beta_{x} = \frac$	

proof

F.C.B.

Mana.

è


#### Question 83 (****+)

A pension contribution scheme is scheduled as follows.

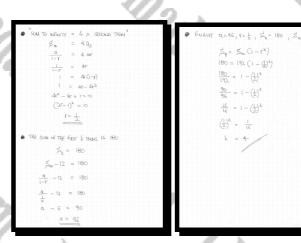
A £1250 contribution is made at the **start** of every year.

The total money in the scheme at the end of every year is re-invested at a constant compound interest rate of 6% per annum.

- a) Show that at the start of the third year, after the annual contribution has been made, the amount in the pension scheme is £3979.50.
- **b)** Calculate the amount in the pension scheme at the start of the fortieth year, after the annual contribution is made.



STRET	1:	1250	
6ND	1 %	1520	


SMACT 2 : 1250 + (1250 × 1.06)	
60D 2: [1250+(1250×1-06)]×1-06 = 1250×	106 + 1250 × 1-06 ²
STARE 3 : 1250 + 1250 × 106 + 1250 × 1062 =	3979 5 45 910000
END 3: (1250 + 1250×106 + 1250×1062)×	1.06 = 1250x1.06 + 1250x1.06 + 1250x1.06
START 4: 1250 + 1250 × 106 + 1250 × 1.06 +	1250 x ( 063
So	
START 40: 1250+1250×106+1250×106+125	0×1.06 + + 1250 ×1.06
$5TAL = 1290 \left[ 1 + 1.06 + 1.06^{2} + 1.06^{3} + \dots \right]$	+ 1.05 34
G.P with a	-1
A 5 T	= 1·06
- 1250x 1 (1.0640-1) 4	= 40
$= 1250 \times \frac{1}{1(1.06^{40}-1)}$	
= 193452,457	192 1152 116

#### Question 84 (****+)

The sum of the first k terms of a geometric progression is 180.

It is further given that the sum of the first k terms of this geometric progression is **twelve less** than its sum to infinity.

If the sum to infinity of the geometric progression is four times as large as its second term, use algebra to determine the value of k.



k = 4

Question 85 (****) Evaluate showing clearly your method

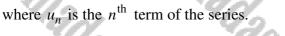


$$\begin{split} \frac{1+z_1^{N}}{z_1} &= \sum_{k=1}^{\infty} \left( \frac{1}{z_1} + \frac{z_1^{N}}{z_1^{N}} \right) &= \sum_{k=1}^{\infty} \left[ \frac{1}{z_1} + \frac{z_1^{N}}{z_1^{N}} \right] \\ &= \sum_{k=1}^{\infty} \left[ \frac{1}{z_1^{N}} + \frac{z_1^{N}}{z_1^{N}} \right]_{N}^{N} \dots H_{N} \frac{1}{z_1^{N}} \frac{1}{z_1^{N}} \dots \\ &= \left( \frac{1}{z_1} + \frac{1}{z_1} + \frac{z_1}{z_1} + \dots \right) + \left( \frac{z_1}{z_1} + \frac{z_1}{z_1} + \frac{z_1}{z_1} + \dots \right) \\ &= \frac{1}{z_1 - \frac{1}{z_1}} + \frac{z_1}{z_1} - \frac{z_1}{z_1 - \frac{z_1}{z_1}} = \frac{1}{z_1} + 2 = \frac{z_2}{z_1} \right] \end{split}$$

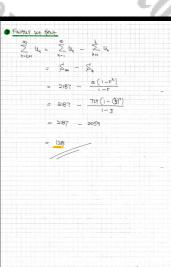
 $\frac{5}{2}$ 

### Question 86 (****+)

The sum to infinity of a geometric series is 2187.


The  $(k-1)^{\text{th}}$  and  $k^{\text{th}}$  term of the same series are 96 and 64, respectively.

n=k+1


Determine the value of

1

P.C.A



$u_{k-1} = 96$ $u_k = 64$ $ar^{k+2} = 96$ $ar^{k-4} = 64$	Soc ≈ 2187
ROW THE FIRST TWO DELATIONSHIPS	
$\Gamma = \frac{U_{k}}{U_{k+1}} = \frac{64}{36} = \frac{2}{3}$	
ROW THE THED RELATIONSTOP	
a = 2187 $1 - \frac{2}{3}$	
$\frac{a}{\frac{1}{3}} = 21\%7$	
a = 729	
NEXT WE HAVE	
u _k = 6¢	
$\sigma v_{F^{+}} = eff$	
$729 \times \left(\frac{2}{3}\right)^{k-1} = 64$	
$\left(\frac{3}{3}\right)^{k-1} = \frac{64}{529}$	
BY INSPECTION, TELAL & IMPROVEMENT	57 (AS K IS A POSITIVE IMITIVE)
$\frac{2\lambda_{k}}{2} = \frac{2\lambda_{k+1}}{2}$	



 $u_n = 128$ 

C.B.

#### (****+) Question 87

Liquid is kept in containers, which due to evaporation and ongoing chemical reactions, at the end of each month the volume of the liquid in these containers reduces by 4%compared with the volume at the start of the same month.

At the start of each month a new container is filled up with 200 litres of liquid, so that at the end of thirty months there are 30 containers with liquid.

Calculate the total amount of liquid in the 30 containers at the end of 30 months.

MON244	START	610	77hs.us
1	200	200× 0.96	a
2	200×0.96	200× 0.962	C.
3	200 x D-962	200× 0.963	h
4	200×0.963	200 × 0.964	$\implies \text{TOTAL} = 2 \text{ or } \mathbf{x} = \frac{0 \cdot \mathbf{e} \mathbf{c}}{1 - 0 \cdot \mathbf{e}}$
	24		=> 101/fL = 200 ×
ĸ	200 x 0.96	200 × 096 E	1
looking at f	Hu THE 35 Causi	200 × 046	→ TOTAL = 4800 (1 - 0.95*)
looking at f	Hu THE 35 Causi		→ TOTAL = 4800 (1 - 0.95 th )
looking at + 30 wastit Per 1	Hu THE 35 Causi		→ TOTAL = 4800 (1 - 0.95*)
	Hu THE 35 Causi		→ TOTAL = 4800 (1 - 0.95*)

≈ 3389

+ 0.163 + ... + 0.94

\$ = a(1-r)

(*****) Question 88

The  $r^{th}$  term of a progression is given by

 $u_r = ak$ 

where a and k are non zero constants with  $k \neq \pm 1$ 

Show that

Smaths.com i.v.

I.V.G.B

alasmaths,

 $\sum_{r=1}^{n} (u_r \times u_{r+1}) =$  $a^2k(1-k^{2n})$ adasmaths.



ths.com

4.6.0

6

20251121

· 100	100	$U_{\mathbf{r}} \doteq \alpha k^{\mathbf{r} \cdot \mathbf{i}} \implies \left\{ \begin{array}{ccc} u_{\mathbf{i}} & u_{\mathbf{i}} & u_{\mathbf{i}} & \dots & u_{\mathbf{i}} \end{array} \right. \\ \alpha & \alpha k & \alpha k^{2} & \alpha k^{3} & \dots & u_{\mathbf{i}} \end{array} \right\}$
20.00	· (O)	$ \int_{n_1}^{n_2} (u_1 u_{n_1}) = u_1 u_2 + u_2 u_3 + u_3 u_4 + \dots + u_n u_{n_1} $
× 0/2		$= \alpha(\alpha k) + \alpha k(\alpha k^3 + \alpha k^{\alpha} (\alpha k^3) + \dots + \alpha k^{\alpha - 1} (\alpha k^n)$ = $\alpha^2 k + \alpha^2 k^3 + \alpha^2 k^2 + \dots + \alpha^n k^{2n-1}$
1. 4		$= \alpha^{2} \left[ 1 + k^{2} + k^{*} + \dots + k^{2n-2} \right]$
10	/ Y.	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$
60	10	$= \frac{\alpha^{k} k}{\alpha^{k} (1 - k^{2})^{n}} $ $= \frac{\alpha^{k} k}{(1 - k^{2})^{n}} (1 - k^{2})^{n}$
-	60	- O
· m		
, ¹ 20		7 V
0. 4	?e. ``	an.
982	n.	20
12.	AN.	"On
""Ch	18-	dr.
150	~ Cn	
i On	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n $c$
1. 9		* 入、 *
S.P.	1.	6.V-
	The second se	

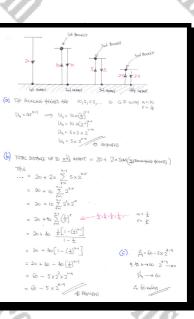
Madasmaths.com

Created by T. Madas

I.C.B.

### Question 89 (*****)

An elastic ball is dropped from a height of 20 metres, and bounces repeatedly.


The ball bounces off the ground to a height which is  $\frac{1}{2}$  the height from which it was last dropped.

- a) Show that after the  $n^{\text{th}}$  bounce the ball reaches a height of  $5 \times 2^{2-n}$  metres.
- b) Show clearly that the total distance covered by the ball up and including the  $n^{\text{th}}$  impact is given by

# $60-5\times 2^{4-n}.$

The ball keeps bouncing off the ground in this fashion until it comes to rest.

c) Determine the total distance covered by the ball until it comes to rest.



60 metres

#### (*****) Question 90

nadasma

COM

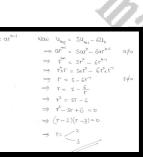
N.G.B. Madasm

011

I.C.B

0

The  $n^{\text{th}}$  term of a geometric progression is denoted by  $u_n$ .


Find the possible values of the common ratio given that I.V.G.B.

C.J.

 $u_{n+2} = 5u_{n+1} - 6u_n \,.$ 

Inadasn

COM



I.G.B.

COM

2017

ths.com

r = 2, 3

6

11202sm21

COM

K.C.B. Madasn

Created by T. Madas

nadasmana nathsi

2017

#### Question 91 (*****)

The trapezium rule with n equally spaced intervals is to be used to estimate the value of the following integral

 $2^x dx$ .

Show that the value of this estimate is given by  $\left[\frac{2^{\frac{1}{n}}+1}{2^{\frac{1}{n}}-1}\right]$  $\frac{1}{2n}$ proof 2 2 2 2 2 ລໍ  $\approx \frac{ \left[ \widehat{\mathrm{Thom}}_{\mathrm{S}} \sum_{n} \right] }{2} \left[ \left[ \widehat{\mathrm{Th}}_{\mathrm{S}} \mathrm{T} + \mathrm{U}_{\mathrm{S}} \mathrm{T} + 2 \times \mathbb{R} \mathrm{t} \mathrm{T} \right] \right]$  $\simeq \frac{\frac{1}{2}}{2} \left[ 2^{\circ} + 2^{1} + 2 \left( 2^{\frac{1}{2}} + 2^{\frac{3}{4}} + 2^{\frac{3}{4}} + \dots + 2^{\frac{3-1}{4}} \right) \right]$  $\approx \frac{1}{2m} \left[ 1 + 2 + 2 \left[ \left( 2^{\frac{1}{2}} \right) + \left( 2^{\frac{1}{2}} \right)^{\frac{1}{2}} + \left( 2^{\frac{1}{2}} \right)^{\frac{3}{2}} + \cdots + \left( 2^{\frac{1}{2}} \right)^{\frac{1}{2}} \right]$  $\simeq \frac{1}{2n} \left[ 3 + 2 \times \frac{2^{\frac{1}{n}} \left[ (2^{\frac{1}{n}})^{\frac{n-1}{n}} \right]}{2^{\frac{1}{n}} - 1} \right]$ SN= a(r=1) r-1  $\hat{c}_{j}$  $\simeq \frac{1}{2\eta} \left[ 3 + 2 \times \frac{(2^{\frac{1}{\eta}})^{\frac{1}{\eta}} - 2^{\frac{1}{\eta}}}{2^{\frac{1}{\eta}} - 1} \right]$  $\simeq \frac{1}{2n} \left[ 3 + 2 \times \frac{2 - 2^{\frac{1}{n}}}{2^{\frac{1}{n}}} \right]$  $\simeq \frac{1}{2h} \left( \frac{3x2^{\frac{1}{4}} - 3 + 4 - 2x2^{\frac{1}{4}}}{2^{\frac{1}{4}} - 1} \right)$ ~ 1 (2++1) Ĉ.p. C.P. Created by T. Madas

### Question 92 (*****)

It is given that 0 < r < 1, 0 < R < 1 and r < 2R.

It is further given that

$$\sum_{n=0}^{\infty} R^n = \left(\sum_{n=0}^{\infty} r^n\right)^2$$

Show clearly that

1. C.B. Madası

I.C.p

20

$$\sum_{n=0}^{\infty} \left(\frac{r}{2R}\right)^n = \frac{2(2-r)}{3-2r}.$$

20

12

1.C.

AS F & R ARE NOUHRICALLY LESS THAN 1, THESE TWOD SPRESENT THE SOMS TO INFINITY
$ \xrightarrow{S}_{k=0}^{S} x_{i}^{k} = \left[ \sum_{k=0}^{N} r^{n} \right]^{2} $ $ \xrightarrow{S}_{k=0}^{i} \frac{1}{1 + r} = \left( \frac{1}{1 + r} \right)^{2} $ $ \xrightarrow{S}_{k=0}^{i} \frac{1}{1 + r} = \left( \frac{1}{1 + r} \right)^{2} $
$- \frac{1}{1 - 12} = \frac{1}{1 - 2r + t^2}$
== 1-R = 1-2r+12
= 21-12 = R
$\int_{-\infty}^{\infty} \frac{1}{2(x-1)^{2}} = \frac{1}{2(x-1)^{2}} + $
$= \frac{2(2r-t^{3})}{2(2r-t^{3})-r} \longrightarrow true = \frac{2(2r-t^{3})}{2(2r-t^{3})-r}$ $= \frac{2(2r-t^{3})}{2(2r-t^{3})-1} \longrightarrow true = \frac{2(2r-t^{3})}{2(2r-t^{3})-1}$
$=\frac{2(2-r)}{4-2r-1}$
= 2(2-17) 3-27 78 Bywleio

200

I.G.B.

nn

madasm

, proof

18.COM

nadasn.

I.G.B.

1

6

#### (*****) **Question 93**

Evaluate showing clearly your method



#### Question 94 (*****)

An elastic ball is dropped from a height of h metres.

The ball bounces off the ground to a height which is r times the height from which it was dropped, where 0 < r < 1.

 $\frac{d-h}{d+h}.$ 

proof

$$\begin{split} d &= h + 2hr + 2hr^{2} + 2hr^{3} + \dots \\ d &= h \begin{bmatrix} 1 + 2r + 2r^{2} + 2r^{3} + \dots \end{bmatrix} \\ d &= h \begin{bmatrix} 1 + 2(r_{1} + r^{2} + r^{3} + \dots) \end{bmatrix} \end{split}$$

r (2h+61-h)]

= 20

The ball keeps bouncing off the ground in this fashion until it comes to rest.

Given the ball covers a total distance d show that

#### Question 95 (*****)

I.V.G.B. Mag

I.C.p

10

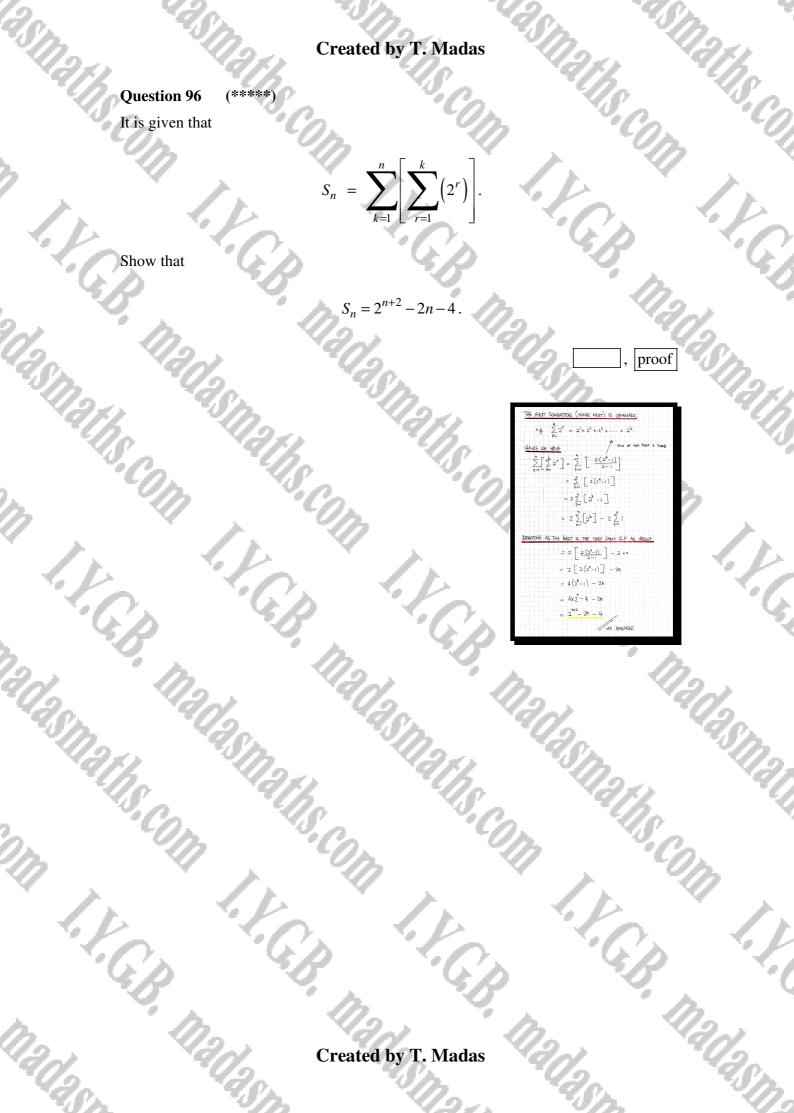
The 2nd, 3rd and 4th terms of a geometric progression are  $\cos\theta$ ,  $\sqrt{2}\sin\theta$  and  $\sqrt{3}\tan\theta$ , respectively, where  $0 < \theta < \frac{\pi}{2}$ .

Show clearly that the sum of the first 6 terms of the progression is

# $\frac{43}{12} \left( 6 + \sqrt{6} \right).$

naths C	$\begin{split} U_{2} &= (a_{1}^{*}Q) \\ U_{3} &= \sqrt{2} \operatorname{SMB} \\ U_{4} &= \sqrt{2} \operatorname{SMB} \\ (b_{1}^{*} &= \sqrt{2} \operatorname{SMB} \\ & \Rightarrow & \frac{(2a_{1}a_{2})}{U_{2}} &= \frac{(1_{4}^{*})}{U_{3}} \\ & \Rightarrow & \frac{(2a_{2}a_{1}a_{2})}{(a_{2}a_{2})} &= \frac{(2a_{3}a_{1}a_{2})}{(a_{2}a_{2})} \\ & \Rightarrow & \frac{(2a_{3}a_{1}a_{2})}{(a_{2}a_{3})} \\ & \Rightarrow & \frac{(2a_{3}a_{1}a_{2})}{(a_{2}a_{3})} \\ & \Rightarrow & \frac{(2a_{3}a_{1}a_{2})}{(a_{3}a_{3})} \\ & \Rightarrow & 2a_{3}^{*}B &= \sqrt{3} \operatorname{SmB} \\ & \xrightarrow{(2a_{3}a_{3})} \\$	$\begin{array}{c} \begin{array}{c} U_{2} = U_{2} \\ U_{2} \\ U_{2} = U_{2} \\ U_{2} = U_$
I.C.p	1. Do	C.B.

Madasn.


I.Y.G.B.

M202

2017

proof

1+



COM

 $S_{\infty} > 5$ 

0 < x < 20

adasmana

F.G.B.

10-2

14

?nn

212.SM

Inadası

#### Question 97 (*****)

FG.B.

I.C.P.

COM

The first two terms of a geometric series are 10 and (10-x).

Given that the series is convergent determine ...

- **a**) ... the range of values of x.
- **b**) ... the range of the sum to infinity of the series.

nadasma,

Question 98 (*****)

> $\frac{1}{1+x} + \frac{1}{(1+x)^2} + \frac{1}{(1+x)^3} + \frac{1}{(1+x)^4} + \dots$ 1 +

It is given that the above series is convergent.

adasmaths.

I.C.B.

1.01

COM

K.C.B. Madasm

00

I.C.p

Determine its sum to infinity in terms of x, and the range of the possible values of x.

F.G.B.

Madasmaths.com

nadasn.

. Com

1+xx < -2 or x > 0q = 1 $\Gamma = \frac{1}{1+2}$  $\frac{1}{1-1} = \frac{1}{1-\frac{1}{1-1}} = \frac{1}{1-\frac{1}{1-1}} = \frac{1}{1-1}$ 

Madasmaths.com

202.Sm

The Com

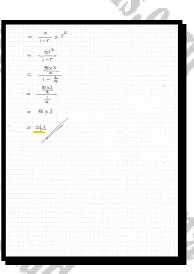
Created by T. Madas

00

#### Question 99 (*****)

The  $(k-1)^{\text{th}}$  and  $k^{\text{th}}$  term of a convergent geometric progression are 108 and 81, respectively.

Determine the value of


i.G.B.

. K.G.B.



where  $u_n$  is the  $n^{\text{th}}$  term of the series.

		18
	$ \begin{array}{c}                                     $	u, . ?
👩 ADOM THE FI	est Two Peration)sthas	
$\Gamma = \frac{u_k}{u_{k-1}}$	= = 108 = = =	
-OMIZO CAFF 👟	u _k = €l	
$\alpha r^{k-l} = \alpha \left(\frac{3}{4}\right)^{k-l}$	= 81	<u>81x3</u> 4
• Finally like th = = = = = =	$= \sum_{k=1}^{\infty} u_{k} - \sum_{k=1}^{k} u_{k}$ $= \beta_{k} - \beta_{k}$	
	$s_{\infty} - s_{\infty}(1-r^k)$	



FGB.

.G.B.

 $u_n = 243$ 

è

Created by T. Madas

#### Question 100 (*****)

The first two terms of a geometric series are 2 and x.

Given the series is convergent determine the range of the sum to infinity of the series.

· Kon		$S_{\infty} > 1$
1250	$\begin{split} & \underset{l_{1}=2}{\overset{(l_{1}=2)}{\bigcup_{2}=\lambda}} \xrightarrow{(l_{1}=2)} (l$	$ \begin{array}{c}  f & \operatorname{CONHIGAT} -1 < f < 1 \\ & -1 < \frac{2}{2} < 1 \\ \hline & -2 < 2 < 2 \\ \hline & -2 \\ \hline & -2 < 2 \\ \hline & -2 \\ \hline &$

#### Question 101 (*****)

A convergent geometric progression has positive first term and positive common ratio.

Show that the sum to infinity of the progression is at least four times as large as its second term.

	<u> </u>
STADING WITH THE GUINS	
$\sum_{k=1}^{n} e^{\frac{1-k}{2}}  0 < k < 1 \qquad n^{S} = \sigma k$	
NOW CONSIDER THE RATIO BELION	
$\frac{\int_{-\infty}^{\infty}}{\langle q_2} = \frac{\alpha}{-\frac{1-\Gamma}{c_1-\Gamma}} = \frac{\alpha}{0\tau(i-\Gamma)} = -\frac{1}{\tau(i-\Gamma)}$	
PLETIAL ABACTING (BY LOWIE UP)	
$\frac{5}{0} \frac{5}{0} = \frac{1}{\Gamma} + \frac{1}{1-\Gamma} = \frac{1}{\Gamma} - \frac{1}{\Gamma-1}$	10
NOW COLLEGE A NOW FRITTION of CILLEULD	
$\frac{5\infty}{U_2} = \frac{1}{r} = \frac{1}{r-1}$	
$\frac{1}{2}(r) = -\frac{1}{r^2} + \frac{1}{(r-r)^2}$	
$\frac{1}{\sqrt{k}} \left( \vec{r} \right) = \frac{2}{r_{x}} - \frac{2}{(k-1)} r$	
LOOK FOR STATIONARY BOINTS	10.0
$= \frac{1}{r_{\ell}} + \frac{1}{r_{\ell}} = 0$	
$\Rightarrow \frac{1}{(l-1)^k} = \frac{1}{l^k}$	
$\Rightarrow (r_1)^2 = r^2$	
⇒ r ² -3r + r ² +	
→ / = 2r-	
⇒ r-±	

	σ.	_
$\frac{f(T_{2})}{f(T_{2})} = \frac{T_{2}}{M_{2}} = \frac{1}{T_{1}} - \frac{1}{T_{2}} + \frac{1}{T_{1}}$		
+ (±) = -22 = 16+16 = 32 >0 . (* LOOU ) . (* LOOU ) . (* LOOU )	UNIMUM	
	2	
	1= +00	
$\therefore  \frac{1}{\sqrt{n}} \ge 1$		
47 BAVED		

proof

140

1.6

#### (*****) **Question 102**

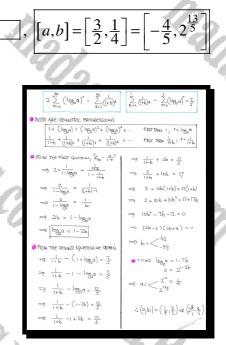
2

By showing a detailed method, sum the following series.



#### (*****) Question 103

K.C.B. III


I.G.p

Solve the following simultaneous equations.

**Created by T. Madas**  
estion 103 (*****)  
we the following simultaneous equations.  

$$2\sum_{r=0}^{\infty} [\log_2 a]^r = \sum_{k=1}^{\infty} (1+b)^{-k} \text{ and } \sum_{k=1}^{1} (1+b)^{-k} - \sum_{r=0}^{1} [\log_2 a]^r = \frac{7}{5}.$$

You may leave the answers as indices in their simplest form, where appropriate.



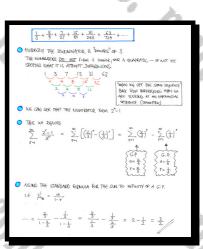
27

1. C.B. Madası

#### Question 104 (*****)

11₂₀₂₈₁

I.F.G.p.


naths.com

I.F.G.B.

Sum the following series of infinite terms.

 $\frac{1}{3} + \frac{3}{9} + \frac{7}{27} + \frac{15}{81} + \frac{31}{243} + \frac{63}{729} + \frac{15}{27} + \frac{15}{2$ 

madası,



 $\frac{3}{2}$ 

6

173.81

Question 105 (*****) Sum the following series of infinite terms.

.K.C.

 $\frac{1}{2} + \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{5}{32} + \frac{8}{64} + \frac{13}{128} + \dots$ 

- 9.S.
$\frac{1}{2} + \frac{1}{4} + \frac{\theta}{2} + \frac{3}{16} + \frac{3}{2} + \frac{\theta}{4} + \frac{13}{12\theta} + \dots$
E NOUNSPATCO IS THE FRENULCI SPELES, THE DINCOUNDATOR IS $+$ G.P. ITH COMMON SPATCO 2. ) OR $\pm$ for the Unique FRAGEWAR TRAM
tus let THE EXPLOSED SOM BE SI
$5^{2} = \frac{1}{2} + \frac{1}{4} + \frac{2}{6} + \frac{3}{16} + \frac{5}{32} + \frac{9}{64} + \frac{1}{129} + \dots$
$\frac{1}{25} = -\frac{1}{4} - \frac{1}{6} - \frac{3}{16} - \frac{3}{26} - \frac{3}{64} - \frac{1}{64} - \frac{1}{64} - \cdots$

2

NG  $\frac{1}{4}\beta = \frac{1}{2}$ 

\$=2

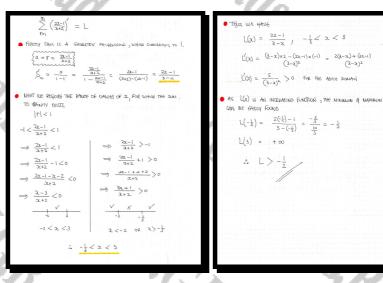
#### Question 106 (*****)

I.V.G.B. Ma

I.F.G.B.

It is given that the following series converges to a limit L.




COM

he,

207

6

Determine with full justification the range of possible values of L.



Created by T. Madas

1.1.63

#### Question 107 (*****)

A factory gets permission to dispose, at the start of every day, 600 kg of waste into a stream of water.

The running stream removes 40% of the any waste present, by the end of the day.

Determine a simplified expression for the amount of waste present in the stream at the end of the  $n^{\text{th}}$  day.

 $u_n = 900 | 1 -$ 



INCAUT	ENG		
Un =	360 [1+04+062+064+		6-1
	GROUNTER PROGRASIO	a womt	a= 1 P=0.6
	1(1 0 0%)		IN THEMS

(*****) Question 108

Evaluate the following expression



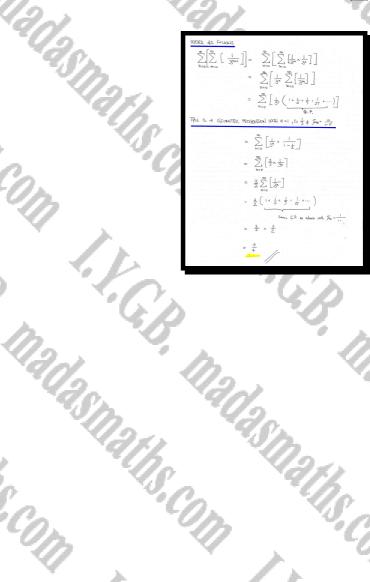
KGA

nadasn.

Detailed workings must be shown.

Madasmaths.com

Y.G.B.


I.Y.C.B.

I.V.G.B. Madasm

COM

I.F.G.B

alasmaths,



adasmaths.com

V

The Com

<u>9</u> 4

. G.D.

1.4

20351131

Created by T. Madas

i C.p.

2017

The Com

 $\frac{8}{3}$ 

V

 $= 2\left[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{6} + \cdots\right] - 2\left[\frac{1}{2} + \frac{1}{6} + \frac{1}{32} + \frac{1}{128} + \cdots\right]$ 

Madasmaths.com

1.0

11-4-

nadasman

#### (****) Question 109

Evaluate the following expression

 $\left\lfloor \frac{1}{2^{m+n}} \right\rfloor$ 

Detailed workings must be shown.

nadasn.

I.V.C.B. Madasm

COM

I.V.G.B

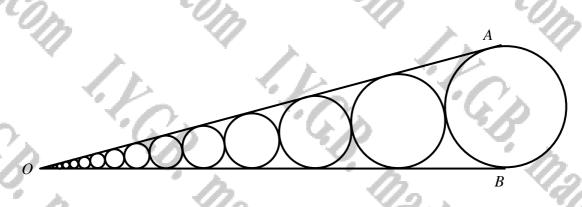
alasmarns,

	No. 10
	WORK 45 FOUNDS
9	$\sum_{n=1}^{\infty} \sum_{j=1}^{n} \left[ \frac{1}{2^{n+j}} \right] = \sum_{k=0}^{\infty} \left[ \sum_{j=1}^{n} \left[ \frac{1}{2^{m}} \times \frac{1}{2^{n}} \right] \right]$
	$= \sum_{k=1}^{2^{n}} \left[ \frac{1}{2^{n}} \sum_{k=1}^{n} \left( \frac{1}{2^{n}} \right) \right]$
n -	N#5 · · · · · · · ·
10.	$=\sum_{n=0}^{\infty}\left[\frac{1}{2^{n}}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}+\cdots+\frac{1}{2^{n}}\right)\right]$
ON.	G-P compt a=1 r>± n+1 tions
· ()_	$\varphi_{n}^{l} = \frac{\alpha(l-r^{n})}{1-r}$
N.P	South - a (1-F the second seco
201	$= \sum_{h=0}^{\infty} \left[ \sum_{2^{h}}^{1} \times \frac{I(1 - \langle \frac{h}{2} \rangle^{h+1})}{1 - \frac{h}{2}} \right]$
С.	$= \sum_{i=1}^{\infty} \left[ \frac{1}{2^{i}} \times \Im \times \left( i - \left( \frac{1}{2^{i}} \right)^{i_{i+1}} \right) \right]$
A	$= \mathcal{X} \sum_{i=1}^{\infty} \left[ \frac{1}{2} \left( (-\frac{1}{2} \sqrt{n}) \right) \right]$
	N=0
	$= \Im \sum_{N=0}^{\infty} \left[ \frac{1}{2^{n}} - \frac{1}{2^{n}} \right]$
100 Y	
- 0.0	
- 7.15	101.15
	n. 10
	F. M. M

madasmaths.com

Created by T. Madas

COM


I.Y.C.B.

#### (****) Question 110

Show that the following equation has only one real solution.

The Com  $27n = 4 \sum_{r=2} (1+n)^{-r} .$ I.F.G.p. 5 Ś  $\frac{2}{3}$  $n \neq$ alasmaths.com 1720 THE SUM TO INFINITY f 27×1+22×1-4= A DULLING VARIABLE - (3n-1) 15 4 PACEDR  $27_{H} = 4 \sum_{l=2}^{\infty} (1+h)^{-l}$ BY CONSE DIOGEON) OR MANIPULATION  $\Im 7_{H} = 4 \sum_{l=2}^{\infty} \frac{l}{(l+H)!}$ =) 27m3+27m2-4=0  $= 9 \eta^2 (3n-1) + 12n(3n-1) + 4(3n-1) = 0$  $\Im 7_{\eta} = 4 \left[ \frac{1}{(1+\eta)^2} + \frac{1}{(1+\eta)^3} + \frac{1}{(1+\eta)^4} + \frac{1}{(1+\eta)^6} + \cdots \right]$  $\Rightarrow$   $(3n-1)(q_{h^{2}+12n}+4)=c$ = (3h-1)(3n+2)2=0  $= \frac{\alpha}{1-p}$ > n=< 1/3  $\Rightarrow T_{H} = \frac{\frac{4}{(h+\eta^{2})}}{1 - \frac{1}{h+1}}$ ON BORH WANTS SATISFY THE QUASIRATIC HOWKIER WE NEED TO CHEOK Son -1<1  $\Im \Im \eta = \frac{4}{(n+1)^2 - (n+1)}$ n= 13  $=\frac{4}{\eta^2+2n+1-\eta-1}$  $\Gamma = \frac{1}{h+1} = \frac{1}{5+1} = \frac{1}{45} = \frac{3}{4}$  $=\frac{4}{h^2+n}$  $\eta \ge -\frac{2}{3}$  $r = \frac{1}{\eta_{41}} = \frac{1}{-\frac{2}{3}+1} = \frac{1}{\frac{1}{3}} = 3 > 1$ NUY h= 5 15 4 SOUTH +1, +2, +4 1.4 nadasm nadasn aths com (D)]] 2011 00 1.1.6.3 1. V. C. B. 11130/2371 I.Y.G.B. Created by T. Madas

Question 111 (*****)



The figure above shows a infinite sequence of circles of decreasing radius, the radius of the larger circle being  $\frac{4}{3}$ .

The centres of these circles lie on a straight line. The straight lines OA and OB are tangents to every circle in the sequence, the angle AOB denoted by  $2\theta$ .

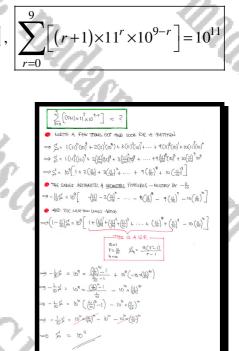
Given that the total area of these circles is  $2\pi$ , determine the value of  $\theta$ .

• STAT WITH & GOD DATED	s G a C
20	
2. Cent Cr. Cr.	
• COCKANS AT THE REPUE ABOVE WE BET $SMB = \frac{\Gamma_{ext}}{2c}$ $\dot{A} = SMB = \frac{\Gamma_{e}}{2cF_{e}+\Gamma_{e}}$	elt R Douct Cut
	$l = \Theta_{W2}S + \Theta_{WR} + S \iff l$
• GUUWATE 2	$\Rightarrow$ R+ RSm $\theta = 1 - Sm\theta$
$u = \frac{\Gamma_{v+1}}{S_{W}\Theta} \implies SW\Theta = \frac{\Gamma_{v}}{\frac{\Gamma_{v+1}}{S_{W}\Theta} + \Gamma_{v} + \Gamma_{v+1}}$	BML-1 = (QNL+1) = - 200
	$= \Re R = \frac{1 - \Im R \Theta}{1 + \Im R \Theta}$
$=$ $I_{HH} + I_{H}SINUT + \Gamma_{L}SINUT = ($	
$\implies \int_{H_{H}} + f_{\mu} \sin \theta + \int_{H_{H}} \int_{H_{H}} \sin \theta = f_{\mu}$ $\implies \frac{f_{\mu_{1}}}{G_{\mu}} + \sin \theta + \frac{f_{\mu_{1}}}{G_{\mu}} + \frac{f_{\mu}}{G_{\mu}} + f_{\mu$	

S WILL THE ADDI FORM A G.P. WHICH CONDERCES SO WILL THE MEMAS OF THE CARLES	$\Rightarrow 9\left[\frac{1+2sm\theta+sm\theta-1+2sm\theta-smf\theta}{(1+sm\theta)^2}=8$
$\Rightarrow \mathcal{H}\mathcal{U}\mathcal{H} = \pi \dot{\alpha}^2 + \pi \eta^2 + \pi \eta^2 + \pi \eta^2 + \pi \eta^2 + \eta \eta^2 + \dots$	$\Rightarrow \frac{365m\Theta}{(1+5M\Theta)^2} = 8$
$ = \pi \mathcal{H}_{A} = \pi \left[ a^{\alpha} + (a \mathcal{R})^{2} + (a \mathcal{R}^{2})^{2} + (a \mathcal{R}^{3})^{\alpha} + (a \mathcal{R}^{4})^{\alpha} + \dots \right] $ $ = \mathcal{H}_{A} = \pi \left[ a^{2} + a^{2} \mathcal{R}^{2} + a^{2} \mathcal{R}^{4} + a^{2} \mathcal{R}^{6} + a^{2} \mathcal{R}^{8} + \dots \right] $	$\implies \frac{9 \text{sm}\theta}{(+2 \text{sm}\theta + \text{sm}^2\theta)} \sim 2$
$\Rightarrow A \mathcal{U} \mathcal{A} - \pi R^2 \left[ 1 + P^2 + D^4 + P^4 + P^8 + \cdots \right]$	$\implies$ 9.5mb = 2 + 4.5mb + 2.5m ² b
$\Rightarrow \Im \pi \leftarrow \pi \left(\frac{4}{5}\right)^{c} \left(\frac{1}{1-p_{2}}\right) \Leftrightarrow - \overset{i' a}{\underset{(op_{2} \text{ stringer and } BNOMIAL)}{(op_{2} \text{ stringer and } BNOMIAL)}$	→ 2sm90 - Ssin0 + 2 =0
$\Rightarrow 2 = \frac{16}{9} \left( \frac{1}{1-2^2} \right)$	0=(c_ \$m2)(1-8m2S) ==
$\Rightarrow q = 8\left(\frac{1}{1-l^2}\right)$	$\Rightarrow$ sm $\theta = < \frac{1}{2}$
$\Rightarrow \Im(\iota - \mathfrak{p}_2) = \mathfrak{B}$	$\Rightarrow \theta = \frac{\pi}{4}$
$\Rightarrow q\left(1 - \left(\frac{1-Sing}{1+Sing}\right)\right) = 8$	
$\implies 9 \left[ \frac{(1+SmG)^2 - (1-SmG)^2}{(1+SmG)^2} \right] = 8$	

 $\theta = \frac{1}{6}\pi$ 

#### Question 112 (*****)


ĈŖ.

P.C.B.

By showing a detailed method, sum the following series.

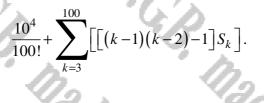
$$\sum_{r=0}^{9} \left[ (r+1) \times 11^r \times 10^{9-r} \right].$$

You may leave the answer in index form.



C.F.

19


#### Question 113 (*****)

A family of infinite geometric series  $S_k$ , has first term  $\frac{k-1}{k!}$  and common ratio  $\frac{1}{k}$ , where  $k = 3, 4, 5, 6, \dots, 99, 100$ .

Find the value of

I.C.B.

I.F.G.B.



2

 $\sum_{k=3}^{100} \left[ \frac{1}{(k-3)!} - \frac{1}{(k-1)!} \right] :$ 

 $\frac{10}{1001} + \sum_{k=1}^{10} \left[ \left[ (k-1(k-2)-1) \right] \right]$ 

 $\left(\frac{1}{961} + \frac{1}{991}\right)$ 

I.F.G.B.

- White the filter for that is the enclose decounter theorem.  $\Rightarrow \int_{k}^{k} e^{-\frac{k-1}{k+1}} + \frac{k-1}{k+1} + \frac{k-1}{k+1} + \frac{k-1}{k+1} + \frac{k-1}{k+1} + \frac{k-1}{k+1} + \dots$   $\Rightarrow \int_{k}^{k} e^{-\frac{k-1}{k+1}} + \frac{k-1}{k+1} + \frac{k-1}{k+1} + \frac{k-1}{k+1} + \dots$   $\Rightarrow \int_{k}^{k} e^{-\frac{k-1}{k+1}} + \frac{k-1}{k+1} + \frac{k-1}{k+1} + \frac{k-1}{k+1} + \dots$
- $\implies S_k = \frac{k-1}{k!} \times \frac{k}{k-1}$

- $= \sum_{k=3}^{100} \left[ \frac{(k-1)(k-2)-1}{(k-1)!} \right]$ =  $\sum_{k=3}^{100} \left[ \frac{(k-1)(k-2)}{(k-1)!} - \frac{1}{(k-1)!} \right]$
- $= \sum_{k=3}^{\infty} \left[ \frac{1}{(k-1)!} + \frac{1}{(k-1)!} \right]$
- $=\sum_{k=3}^{\infty} \left[ \left( \frac{1}{(k-3)!} \frac{1}{(k-1)!} \right] \right]$

I.V.C.