STRAIGHT LINE COORDINATE GEOMETRY

GRADIENTS AND INTERCEPTS

Question 1

For each of the following lines find its gradient, its y intercept and its x intercept.

- **a**) y = 2x + 3
- **b**) x = 4 2y
- c) 4x 3y = 15
- **d**) 4x 2y = 9
- **e)** 3x = 8 4y
- f) Which of the above lines are parallel or perpendicular to each other?

$$\begin{bmatrix} m=2 \\ (0,3) \\ \left(-\frac{3}{2},0\right) \end{bmatrix}, \begin{bmatrix} m=-\frac{1}{2} \\ (0,2) \\ (4,0) \end{bmatrix}, \begin{bmatrix} m=\frac{4}{3} \\ (0,-5) \\ \left(\frac{15}{4},0\right) \end{bmatrix}, \begin{bmatrix} m=2 \\ \left(0,-\frac{9}{2}\right) \\ \left(\frac{9}{4},0\right) \end{bmatrix}, \begin{bmatrix} m=-\frac{3}{4} \\ (0,2) \\ \left(\frac{8}{3},0\right) \end{bmatrix}, \begin{bmatrix} a\perp b \\ b\perp d \\ a\parallel d \\ c\perp e \end{bmatrix}$$

Question 2

For each of the following lines find its gradient, its y intercept and its x intercept.

- **a**) y = 3x + 2
- **b)** $y = \frac{1}{3}x 2$
- **c**) x = 2 3y
- **d**) 6y 3x = 2
- **e**) $2x = \frac{2y+1}{3}$
- f) Which of the above lines are parallel or perpendicular to each other?

USING STANDARD FORMULAE

Question 1

Given the points A(4,6) and B(8,18) find ...

- a) ... the coordinates of the midpoint of AB.
- **b)** ... the gradient of AB.
- c) ... the exact distance AB.
- **d)** ... the equation of the straight line which passes through A and B, giving the answer in the form y = mx + c, where m and c are constants.

$$M(6,12)$$
, $m=3$, $d=4\sqrt{10}$, $y=3x-6$

Question 2

Given the points A(5,-1) and B(3,5) find ...

- a) ... the coordinates of the midpoint of AB.
- **b)** ... the gradient of AB.
- c) ... the exact distance AB.
- **d)** ... the equation of the straight line which passes through A and B, giving the answer in the form y = mx + c, where m and c are constants.

$$M(4,2)$$
, $m=-3$, $d=2\sqrt{10}$, $y=-3x+14$

Question 3

Given the points A(3,1) and B(-6,22), find ...

- a) the exact coordinates of the midpoint of AB.
- **b)** ... the exact gradient of AB.
- c) ... the exact distance AB.
- **d)** ... an equation of the straight line which passes through A and B, giving the answer in the form ax + by = c, where a, b and c are integers.

$$M\left(-\frac{3}{2},\frac{23}{2}\right)$$
, $m = -\frac{7}{3}$, $d = \sqrt{522} = 3\sqrt{58}$, $7x + 3y = 24$

```
\begin{array}{c} \left(A_{0}^{2}\right) - B_{0}^{2}\left(\frac{3}{2}\right) & \frac{3}{2}\left(\frac{4}{2}\right) & \frac{3}{2}\left(\frac{4}{2}\right) & \frac{3}{2}\left(\frac{4}{2}\right) & \frac{3}{2}\left(\frac{3}{2}\right) & \frac{3}{2}\left(-\frac{5}{2}\right) & \frac{3}{2}\left(-\frac{5}{2}\right) & \frac{3}{2}\left(-\frac{5}{2}\right) & \frac{3}{2}\left(-\frac{5}{2}\right) & \frac{3}{2}\left(-\frac{5}{2}\right) & \frac{3}{2}\left(\frac{3}{2}\right) &
```

Question 4

Given the points A(-6,1) and B(2,7), find ...

- a) ... the coordinates of the midpoint of AB.
- **b)** ... the exact gradient of AB.
- c) ... the distance AB.
- **d)** ... an equation of the straight line which passes through A and B, giving the answer in the form ax + by + c = 0, where a, b and c are integers.

$$M(-2,4)$$
, $m = \frac{3}{4}$, $d = 10$, $3x - 4y + 22 = 0$

```
 \begin{cases} A_{1} \left( -\frac{2}{6}, \frac{1}{1} \right) & B_{1} \left( \frac{2}{3}, \frac{1}{3} \right) \\ A_{2} \left( -\frac{2}{6}, \frac{1}{3} \right) & B_{2} \left( -\frac{2}{3}, \frac{1}{2}, \frac{1}{2} \right) = \left( -2, 4 \right) \\ A_{3} \left( -\frac{2}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2} \right) & B_{2} \left( -\frac{2}{3}, \frac{1}{3}, \frac{1}{2} \right) \\ A_{3} \left( -\frac{2}{3}, \frac{1}{3}, \frac{1}{3},
```

Question 5

Given the points A(4,9) and B(-4,-11), find ...

- a) ... the coordinates of the midpoint of AB.
- **b)** ... the exact gradient of AB.
- c) ... the exact distance AB.
- d) ... an equation of the straight line which passes through A and B, giving the answer in the form ax + by + c = 0, where a, b and c are integers.

$$M(0,-1)$$
, $m = \frac{5}{2}$, $d = \sqrt{464} = 4\sqrt{29}$, $5x - 2y - 2 = 0$

Question 6

Given the points A(-1,8) and B(5,-2), find ...

- a) ... the coordinates of the midpoint of AB.
- **b)** ... the gradient of AB.
- c) ... the exact distance AB.
- **d**) ... an equation of the straight line which passes through A and B, giving the answer in the form ax + by + c = 0, where a, b and c are integers.

$$M(2,3)$$
, $m = -\frac{5}{3}$, $d = \sqrt{136} = 2\sqrt{34}$, $5x + 3y - 19 = 0$

Question 7

Given the points A(4,6) and B(-1,9), find ...

- a) ... the coordinates of the midpoint of AB.
- **b)** ... the gradient of AB.
- c) ... the exact distance AB.
- d) ... an equation of the straight line which passes through A and B, giving the answer in the form ax + by + c = 0, where a, b and c are integers.

$$M\left(\frac{3}{2}, \frac{15}{2}\right), m = -\frac{3}{5}, d = \sqrt{34}, 3x + 5y - 42 = 0$$

```
\begin{cases} A_{1}^{(3)} = \sum_{i=1}^{3} y_{i} \\ A_{2}^{(4)} = B_{2}^{(-1)} \\ A_{3}^{(4)} = B_{2}^{(-1)} \\ A_{3}^{(4)} = B_{2}^{(-1)} \\ A_{3}^{(4)} = B_{2}^{(4)} \\ A_{3}^{(4)} = B_{3}^{(4)} \\ A_{3}^{(4)} = B_{
```

Question 8

Given the points A(-12,7) and B(-6,-3), find ...

- a) ... the coordinates of the midpoint of AB.
- **b)** ... the gradient of AB.
- c) ... the distance AB.
- **d**) ... an equation of the straight line which passes through A and B, giving the answer in the form ax + by + c = 0, where a, b and c are integers.

$$M(-9,2)$$
, $m = -\frac{5}{3}$, $d = \sqrt{136} = 2\sqrt{34}$, $5x + 3y + 39 = 0$

Question 9

Given the points A(-3,2) and B(4,-7), find ...

- a) ... the coordinates of the midpoint of AB.
- **b)** ... the gradient of AB.
- c) ... the distance AB.
- d) ... an equation of the straight line which passes through A and B, giving the answer in the form ax + by + c = 0, where a, b and c are integers.

$$M(\frac{1}{2}, -\frac{5}{2})$$
, $m = -\frac{9}{7}$, $d = \sqrt{130}$, $9x + 7y + 13 = 0$

Question 10

Given the points A(-4,9) and B(2,-1), find ...

- a) ... the coordinates of the midpoint of AB.
- **b)** ... the gradient of AB.
- c) ... the distance AB.
- **d)** ... an equation of the straight line which passes through A and B, giving the answer in the form ax + by = c, where a, b and c are integers.

$$M(-1,4)$$
, $m = -\frac{5}{3}$, $d = \sqrt{136} = 2\sqrt{34}$, $5x + 3y = 7$

Question 11

Given the points A(5,-2) and B(7,5), find ...

- a) ... the coordinates of the midpoint of AB.
- **b)** ... the gradient of AB.
- c) ... the distance AB.
- d) ... an equation of the straight line which passes through A and B, giving the answer in the form ax + by + c = 0, where a, b and c are integers.

$$M(6,\frac{3}{2}), m = \frac{7}{2}, d = \sqrt{53}, 7x - 2y - 39 = 0$$

Question 12

Given the points A(-5,8) and B(15,-8), find ...

- a) ... the coordinates of the midpoint of AB.
- **b)** ... the gradient of AB.
- c) ... the distance AB.
- **d**) ... an equation of the straight line which passes through A and B, giving the answer in the form ax + by = c, where a, b and c are integers.

$$M(5,0)$$
, $m = -\frac{4}{5}$, $d = \sqrt{656} = 4\sqrt{41}$, $4x + 5y = 20$

Question 13

Find an equation of the straight line that passes through the points A(1,3) and B(4,9), giving the answer in the form y = mx + c, where m and c are constants.

$$y = 2x + 1$$

```
\begin{array}{ll} A_{i,j}^{(N,l)} & B_{i,j}^{(N,l)} \\ GORDINJ + B &= \frac{y_2 - y_1}{2a_1 - 2a_1} = \frac{a_2 - a_2}{4 - 1} = \frac{a_2}{3} = 2 \\ + 10v_2 & y_2 - y_3 = 2v_1(x_1 - x_2) & w_1 = 2 \\ y_3 &= 2(2v_1) & (1)3 \\ y_3 &= 2x_2 - 2 \\ & y_3 &= 2x_3 + 1 \end{array}
```

Question 14

Determine the equation of the straight line that passes through the points A(5,6) and B(2,-3), giving the answer in the form y = mx + c, where m and c are constants.

$$y = 3x - 9$$

Question 15

Determine the equation of the straight line that passes through the points A(3,2) and B(5,12), giving the answer in the form y = mx + c, where m and c are constants

$$y = 5x - 13$$

```
\begin{array}{l} (+(3,2)) & 8(3,12) \\ \bullet & 68A018A7 + 18 = \frac{13-19}{38-24} + \frac{12-2}{2-3} + \frac{10}{22} - (5) \\ \bullet & 9 - 9 + 9 + (2-36) \\ 9 - 2 = 5(2-3) \\ 9 - 2 = 5x - 15 \\ 9 - 2 = 5x - 15 \end{array}
```

Question 16

Determine the equation of the straight line that passes through the points A(1,4) and B(3,-6), giving the answer in the form y = mx + c, where m and c are constants

$$y = -5x + 9$$

$$\begin{array}{ll} (A(1_14)) & B(3_1+6) \\ \bullet & (A(1_14)) & B(3_1+6) \\ \bullet & (A(1_14)) & B(3_1+3_1) & \frac{-6-4}{3-1} & \frac{-10}{2} & = (\tau) \\ \bullet & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{1}{3_1-3_1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} & = (\tau) \\ & (3_1-3_1) & \frac{-6-4}{3-1} & \frac{-6-4}{3-1} & = \frac{-10}{2} &$$

PARALLEL AND PERPENDICULAR LINES

Question 1

The straight line L_1 has equation

$$y = 2 - 3x$$
.

- a) Find an equation of the straight line L_2 which is parallel to L_1 and passes through the point with coordinates (2,5).
- **b)** Find an equation of the straight line L_3 which is perpendicular to L_1 and passes through the point with coordinates (-3,7).

$$L_2: y = -3x + 11$$
, $L_3: 3y = x + 24$

Question 2

The straight line L_1 has equation

$$4y-3x-20=0$$
.

- a) Find an equation of the straight line L_2 which is parallel to L_1 and passes through the point with coordinates (8,2).
- **b)** Find an equation of the straight line L_3 which is perpendicular to L_1 and passes through the point with coordinates (7,-5).
- c) Find the coordinates of the point of intersection between L_2 and L_3 .

$$L_2: 3x-4y-16=0$$
, $L_3: 3y+4x=13$, $(4,-1)$

Question 3

The straight line L_1 has equation

$$2y = x - 8$$
.

- a) Find an equation of the straight line L_2 which is parallel to L_1 and passes through the point with coordinates (6,1).
- **b)** Find an equation of the straight line L_3 which is perpendicular to L_1 and passes through the point with coordinates (1,-3).
- c) Find the exact coordinates of the point of intersection between L_2 and L_3 .

$$L_2: 2y = x - 4$$
, $L_3: y + 2x + 1 = 0$, $(\frac{2}{5}, -\frac{9}{5})$

Question 4

Find an equation of the straight line that passes through the point (1,2) and is perpendicular to the straight line with equation 3x + 2y = 5.

Give the answer in the form ax + by = c, where a, b and c are integers.

$$3y - 2x = 4$$

Question 5

The straight line L_1 has equation

$$2y + 3x = 34$$
.

- a) Find an equation of the straight line L_2 which is perpendicular to L_1 and passes through the point with coordinates (-2,7).
- **b)** Find the coordinates of the point of intersection between L_1 and L_2 .

$$L_2: 3y = 2x + 25$$
, (4,11)

Question 6

The straight line L_1 has equation

$$4y - 3x = 12$$
.

- a) Find an equation of the straight line L_2 which is perpendicular to L_1 and passes through the point with coordinates (14,1).
- **b)** Find the coordinates of the point of intersection between L_1 and L_2 .

$$L_2: 3y + 4x = 59$$
, $(8,9)$

Question 7

The line straight L_1 has equation

$$3y + 2x = 9.$$

- a) Find an equation of the straight line L_2 which is perpendicular to L_1 and passes through the point with coordinates (-5,2).
- **b)** Find the coordinates of the point of intersection between L_1 and L_2 .

$$L_2: 2y = 3x + 19$$
, $(-3,5)$

Question 8

The points A and B have coordinates (1,7) and (-3,-1), respectively.

Find an equation of the straight line that is perpendicular to the straight line AB, and passing through the midpoint of AB.

$$2y + x = 5$$

Question 9

The points A and B have coordinates (-1,5) and (7,11), respectively.

Show that the equation of the perpendicular bisector of AB is 4x + 3y = 36.

proof

Question 10

A straight line L has equation 4x + 2y = 3 and the point A has coordinates (5,2).

Find the coordinates of the points where the straight line that is parallel to L and passing through A, crosses the coordinate axes.

(0,12),(6,0)

Question 11

A straight line L has equation 3x - y = 3 and the point A has coordinates (2,12).

Find an equation of the straight line that passes through A and is parallel to L.

$$y = 3x + 6$$

Question 12

A straight line L has equation 3x + 2y = 3 and the point A has coordinates (2,10).

Find an equation of the straight line that passes through A and is perpendicular to L.

$$3y = 2x + 26$$

Question 13

The points A and B have coordinates (3,4) and (7,-6), respectively.

Find an equation of the straight line that passes through A and is perpendicular to AB, giving the answer in the form ax + by + c = 0 where a, b and c are integers.

2x - 5y + 14 = 0

