1st ORDER ORDINARY DIFFERENTIAL EQUATIONS

Created by T. Madas

Question 1

Find a general solution for each of the following differential equations.

a) $\frac{dy}{dx} + \frac{2xy}{x^2 - 1} = 5x^2 - 1$

$$9x^2 + 4\Big)\frac{dy}{dx} + 9xy = 1$$

c)
$$x\frac{dy}{dx} + 5y = \frac{\ln x}{x}, x > 0$$

$$y = x^3 - x + \frac{A}{x^2 - 1}, \quad 3y\sqrt{9x^2 + 4} = \operatorname{arsinh}\left(\frac{3}{2}x\right) + C, \quad y = \frac{\ln x}{4x} - \frac{1}{16x} + \frac{A}{x^5}$$

 $\frac{dy}{d\lambda} + \frac{2xy}{\lambda^2 - l} = 2\chi^2 - l$ $\mathsf{IF} = e^{\int \frac{2\lambda}{\lambda^2 - 1} \, \mathrm{d} \lambda} = e^{\mathsf{I}_{\mathsf{h}} |\mathbf{x}^2 - 1|} = x^2 - 1$ $\frac{d}{d\lambda}\left(y(x_{-1}^2)\right) = (x_{-1}^2)(x_{-1}^2)$ $y(x^{2}-1) = \int Sx^{4} - Gx^{2} + 1 dx$ $y(x^{2}-1) = x^{5} - 2x^{3} + x + A$ $y = \frac{x^2 - 2x^2 + 2}{x^2 - 1} + \frac{A}{2x - 1}$ $\mathcal{Y} = \frac{\underline{x}^{2}(\widehat{x}^{2}-l) - \underline{x}(\widehat{x}^{2}-l)}{\underline{x}^{2}-l} + \frac{A}{\underline{x}^{2}-l}$ $y = x^2 - x + \frac{A}{x^2 - 1}$ (b) $(2^{2}+4)\frac{du}{d\lambda} + 92y = 1$ $\begin{aligned} \frac{dq}{d\Delta} &+ \frac{q_{\lambda}}{q_{\lambda}^{2} u^{4}} dt = \frac{1}{q_{\lambda}^{2} u^{4}} \\ |F &= e^{\int \frac{q_{\lambda}}{q_{\lambda}^{2} u^{4}} dt} &= e^{\int \frac{1}{q_{\lambda}^{2} u^{4}} dt} \end{aligned}$ (9x2+4)2 $\Longrightarrow \frac{d}{dx} \left[-\frac{1}{2} \left(\frac{\eta}{2}^2 + \psi \right)^{\frac{1}{2}} \right] = - \frac{1}{\frac{\eta}{2}^2 + \psi} \times \left(\frac{\eta}{2}^2 + \psi \right)^{\frac{1}{2}}$ $\Rightarrow \Im \left(q_{\lambda}^{2} q_{\lambda} \right)^{\frac{1}{2}} = \int \frac{1}{\sqrt{4 + q_{\lambda}^{2}}} d\lambda = \int \frac{1}{3 \left(\frac{4}{4 + 3^{2}} \right)^{\frac{1}{2}}} d\lambda$ $\Rightarrow \mathcal{Y} \left(\mathcal{Q}^2 + \mathcal{Y} \right)^{\frac{1}{2}} = \frac{1}{3} \int \frac{1}{N(\frac{2}{3})^2 + \chi^2} dL$ $\Rightarrow g(q_{1}^{2}+\psi)^{\frac{1}{2}} = \frac{1}{2} \operatorname{orsmb}(\frac{3\pi}{2}) + C$ $\rightarrow 3y\sqrt{q_0^2+y^1} = arrive(h(\frac{3\lambda}{2}) + C)$

Created by T. Madas

Question 2

Find a general solution for each of the following differential equations.

a)
$$\frac{dy}{dx} + y \cot x = 2\cos x$$

b)
$$\frac{dy}{dx} - y \tan x = \sec^2 x$$

c)
$$\frac{dy}{dx}\cos^3 x = 1 + y\sin x\cos^2 x$$

 $y = \sin x + \csc x$, $y = \sec x \left(\ln |\sec x + \tan x| + C \right)$, $y = \sec x \tan x + C \sec x$

,	(a) $\frac{dy}{dx} + y_{cotx} = 2\cos x$ (b) $\frac{dy}{dx} - \frac{y_{coux}}{2\cos x} = 3\sqrt{2}x$	<) dy cost = 1+ysmacost
ľ	$\exists \frac{d}{dt} \begin{bmatrix} g_{3NRL} \end{bmatrix} = 2iag_{3NRL} \\ = 2iag_{3NRL} \end{bmatrix} = 2iag_{3NRL} \\ = cosz \\ \end{cases}$	$\frac{dQ}{dx} = \frac{d}{dx} + \frac{d}{dx}$ $\frac{dy}{dx} - \frac{d}{dx} = sc^{2}x$ $\frac{dy}{dx} - gt_{anx} = sc^{2}x$
-	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$ \begin{cases} IF = e^{-f_{\text{class}} dA} \\ = \cos \left(a_{\text{class}} i_{\text{class}} (b_{\text{class}}) \right) \end{cases} $
	=) $y = \sin x + A \cos x$	$\frac{a}{dx}(y \cos x) = \cos x \sin^2 x$ $y \cos x = \int \sec^2 x dx$ $y \cos x = \tan x + A$
	· · · · · · · · · · · · · · · · · · ·	y = seatura + Aseca

Question 3

Find a general solution for each of the following differential equations.

a)
$$\frac{dy}{dx} - y \tanh x = \sinh 2x$$

b)
$$\frac{dy}{dx} - \frac{y}{x} = x \tanh x$$

```
c) x\frac{dy}{dx} + \frac{xy}{\coth x} = \operatorname{sech} x
```

```
y = 2\cosh^2 x + A\cosh x, y = x\ln(\cosh x) + Cx, y = \ln|x| + C \operatorname{sech} x
```

Created by T. Madas

Question 4

Find a solution for each of the following differential equations, subject to the boundary conditions given.

- **a**) $\frac{dy}{dx} + \frac{y}{x} = x$, subject to x = 1, y = 1
- **b**) $\frac{dy}{dx} + \frac{y}{x} = \frac{\ln x}{x}$, subject to x = 1, y = 0
- c) $\frac{dy}{dx} + \frac{y}{x} = e^{x^2}$, subject to x = 1, $y = \frac{1}{2}e^{x^2}$

$$y = \frac{1}{3}\left(x^2 + \frac{2}{x}\right)$$
, $y = \frac{1}{x} - 1 + \ln x$, $y = \frac{e^{x^2}}{2x}$

Question 5

Find a solution for each of the following differential equations, subject to the boundary conditions given.

a)
$$\frac{dy}{dx} - \frac{y}{x} = x^2$$
, subject to $x = 1$, $y = 1$

b)
$$\frac{dy}{dx} + \frac{3y}{x} = (x^4 + 3)^{\frac{1}{2}}$$
, subject to $x = 1$, $y = \frac{1}{5}$

c) $\frac{dy}{dx} + 2y = e^{-3x}$, subject to x = 0, y = 1

$$y = \frac{1}{2}x(x+1)$$
, $10yx^3 = (x^4+3)^{\frac{5}{2}} - 30$, $y = 2e^{-2x} - e^{-3x}$

Question 6

Find a solution for each of the following differential equations, subject to the boundary conditions given.

a)
$$x\frac{dy}{dx} + 2y = \frac{\sin 2x}{x}$$
, subject to $x = \frac{\pi}{4}$, $y = \frac{8}{\pi^2}$

- **b**) $\frac{dy}{dx} + y \tan x = \sin x$, subject to x = 0, y = 0
- c) $\frac{dy}{dx} y \tan x = 4x^3 \sec x$, subject to x = 0, y = 1

$$y = \frac{1}{2x^2}(1 - \cos 2x) = \frac{\sin^2 x}{x^2}$$
, $y = \cos x \ln|\sec x|$, $y = (x^4 + 1)\sec x$