uasmarns.com Created by T. Madas

asmaths.com Aasinanas Com I. K. C. 1st ORDER O.D.E. 1st ORDER U.L. Solutions by substitutions CLASHIGHING COM I. Y. C.B. MARIASIMANIS COM I.Y.C.B. MARIASIM

Question 1 (**+)

By using the substitution u = x + y find a general solution of the differential equation

giving the answer in the form y = f(x).

$$\frac{dy}{dx} = x + 2y$$
, with $y = -\frac{1}{4}$ at $x = 0$

By using the substitution v = x + 2y, show that the solution of the differential equation is given by

proof

 $y = Ae^{x} - x$

	m	0	- Ch
$\frac{\partial u}{\partial k} = \alpha + 2g$ $\Rightarrow + (\frac{\partial u}{\partial k} - i) = \vee$	$\begin{cases} v = \alpha_1 + 2\alpha_2 \\ \frac{d\mu}{d\alpha} = 1 + 2\frac{d\mu}{d\alpha} \end{cases}$	2	
$\Rightarrow \frac{dv}{da} - 1 = 2v$	$\begin{pmatrix} 2\frac{dy}{dx} = \frac{dy}{dx} - 1 \end{pmatrix}$	0	
$\Rightarrow \frac{d}{dt} = \frac{2N+1}{2}$	S APPCY CONDUTION (0, 74)		L
$\implies \frac{1}{2} \ln 2N+1 = x + C$	$-\frac{1}{2} = \frac{1}{2} \left(-\frac{1}{2} + \frac{1}{2} \right)$ $-\frac{1}{2} = -\frac{1}{2} + \frac{1}{2} \frac{1}{2}$	$ \text{Activity} \text{and} \frac{dy}{dx} - 2y = \infty. $	Sye= - = - = - = = = = = = = = = = = = = =
$\implies u 2V+U = 2x + C$	$\frac{ 4=0 }{\pi}$	$if = e^{\frac{1}{2} - 2d} = e^{-2d}$	$\begin{cases} y = -\frac{1}{2}x - \frac{1}{4} + Ae^{2x} \\ y = -\frac{1}{2}x - \frac{1}{4} + Ae^{2x} \end{cases}$
$\Rightarrow V = \frac{1}{2}(-1 + Ae^{23})$	$2y = -\frac{1}{2} - x$ $\Rightarrow 2y = -\frac{1}{2} (1 + 2x)$	⇒yen= Jaenda	$y = -\frac{1}{2}a - \frac{1}{4}$
$\Rightarrow \boxed{a+2y = \frac{1}{2}(-1+4e^{2\chi})}$	(=) y = - { + (2α+1) / +3 είρωση	W MOLI JER ET	y = - 1/(22+1)

3

(***) Question 3

By using the substitution $v = \frac{y}{x}$, where v = f(x), solve the differential equation

 $\frac{dy}{dx} = \frac{y}{x} - \left(\frac{y}{x}\right)^2, \ x > 0$

subject to the condition y = 1 at x = 1.

Smains.co

I.C.

Question 4 (***)

$$\frac{dy}{dx} = \frac{(4x+y)(x+y)}{x^2}, x > 0$$

a) Use the substitution y = xv, where v = f(x), to show that the above differential equation can be transformed to

$$x\frac{dv}{dx} = \left(v+2\right)^2.$$

b) Hence find the general solution of the original differential equation, giving the answer in the form y = f(x).

c) Use the boundary condition y = -1 at x = 1, to show that a specific solution of the original differential equation is

a) $\frac{\partial u}{\partial x} = \frac{(4\chi + \eta)(\pi + \eta)}{\chi^2}$	y = Va
$\Rightarrow \frac{dy}{dx} = \frac{4x^2 + 5xy + y^2}{x^2}$	$ \begin{array}{c} \frac{\partial y}{\partial x} = \frac{\partial y}{\partial x}x + yx \\ \frac{\partial y}{\partial x} = y + x \frac{\partial y}{\partial x} \end{array} $
$\Rightarrow \vee + x \frac{dy}{dx} = \frac{4x^2 + 5x(\sqrt{x}) + (\sqrt{x})}{x^2}$) ²
$\Rightarrow V + x \frac{dy}{dx} = \frac{4x^2 + 5yx^2 + y^2x^3}{x^2}$	him
$\implies \forall \vdash \propto \frac{dy}{dV} = A + SV + V^2$	
\Rightarrow $\frac{\partial x}{\partial v} = v_s + \pi v + \pi$	
$\Rightarrow 2 \frac{dv}{d2} = (v+2)^2 / (v+2)^2 $	
$\int \frac{1}{(v+2)^2} dv = -\frac{1}{2c} dz$	$\left(\rightarrow V = \frac{1}{4V} - 2 \right)$
$\Rightarrow \int \frac{1}{(v+2)^2} dv = \int \frac{1}{2} dz$	$\begin{cases} \frac{A - MX}{2} = \frac{1}{A - MX} = 2. \end{cases}$
$\implies -\frac{1}{h^{+2}} = h^{-2} + C$	$= 9 = \frac{x}{\sqrt{1-x}} - 2x$
$\Rightarrow \frac{1}{v+2} = A - \ln x$	-M-MT
\Rightarrow V+2 = $\frac{1}{4 - \ln x}$	
(c) x=1 y=-1	
$-1 = \frac{1}{ \mathbf{A}_{i-1} _{\mathcal{M}_{i}}} = 2.$	
$l = \frac{1}{A}$	
A	i ge 22

Question 5 (***)

anasmaths.

Use the substitution $t = \sqrt{y}$ to solve the following differential equation.

nadasn.

Com

$$\frac{dy}{dx} = y + \sqrt{y}, \quad y > 0, \quad y(0) = 4.$$

202.Sm

Naths.com

1. Y. G.B. 11121/231

 $y = 9e^x - 6e^{\frac{1}{2}x}$

t= v5 t²= y

<u> 승</u>는 2+ 쁈

\$t= 3+NG

t.鉄 = ゼ+ヒ

(t40)

(3e¹x 1)

113.51

200

C.J.

Given the answer in the form y = f(x).

²03sm2

1.C.B. 1020/23

CO11

I.G.p

Created by T. Madas

Madasmal

00

Question 6 (***+)

By using the substitution y = xz, where z = f(x), solve the differential equation

$$xy\frac{dy}{dx} = x^2 + y^2, \ x > 0$$

subject to the boundary condition y = 1 at x = 1.

 $\overline{y} = x^2 \left(1 + 2\ln x \right)$

Question 7 (***+)

By using the substitution u = x + y, or otherwise, solve the differential equation

 $\frac{dy}{dx} = x^2 + 2xy + y^2,$

subject to the condition y(0) = 0.

 $y = -x + \tan x$

Question 8 (***+)

alasmaths.

I.V.C.B. Mad

I.C.p

20

By using the substitution y = xv, where v = f(x), solve the differential equation

202.51

17202

$$\frac{dy}{dx} = \frac{xy + y^2}{r^2}, \ x > 0$$

subject to the condition y = -1 at x = 1.

I.G.B.

х

1:0

1+

21/2.51

21/18

1. C.B. Madası

27

Question 9 (***+)

Use the substitution y = xv, where v = v(x), to solve the following differential equation

Question 10 (***+)

Q,

in C.P.

 $\frac{1}{y}\frac{dy}{dx} = 1 + 2xy^2, \ y > 0.$

a) Show that the substitution $z = \frac{1}{y^2}$ transforms the above differential equation

into the new differential equation

 $\frac{dz}{dx} + 2z = -4x.$

b) Hence find the general solution of the original differential equation, giving the answer in the form $y^2 = f(x)$.

Ae

2x + 1

C.B.

7 .1		- 110
	a) $\underbrace{G_{UL}}_{(z)} = \underbrace{G_{UL}}_{(z)} = G_{UL$	Ins ^y o
	SUBDITUTE INTO THE O.D.E.	RETUR
	$\begin{aligned} \frac{1}{2} \frac{dy}{dx} &= 1 + 2xy^2 \\ \frac{dy}{dx} &= 9 + 2xy^3 \\ -\frac{y^2}{2} \frac{dy}{dx} &= 9 + 2xy^3 \\ \frac{dy}{dx} &= -\frac{y}{2x} - 4y \\ \frac{dy}{dx} &= -\frac{y}{2x} - 4y \\ \frac{dy}{dx} &= -\frac{y}{2x} - 4y \end{aligned}$	
н	1 contract of the second secon	
ų	$\frac{\log 1}{\log 1 + \log \infty} = \log \frac{1}{\log 1 + \log 1}$	
	$\Rightarrow \frac{d}{dt} \left(\epsilon e^{t\lambda} \right) = -4\lambda e^{2t}$	
	$\Rightarrow ze^{2k} = \int -ike^{2k} dk$	
	1.00 M 100	

(***+) Question 11

 $\frac{x^2 + 3y^2}{xy}, \ x > 0, \ y > 0.$

Use the substitution y = xv, where v = f(x), and the boundary condition $y = \frac{1}{\sqrt{2}}$ at

x = 1, to show that	G'A	N2	Č,
	$y^2 = x^6 - \frac{1}{2}x^2.$		16.
asp ada	403 ₈₀₀	, proof	SNari
alls nath	alls	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
		$ \begin{array}{cccc} & \underbrace{\partial a}_{2} & \underbrace{a^{2} + \underline{a}^{2}}_{2} & \underbrace{a^{2}}_{2} &$	5
I.V. V.C.	1.1.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1.
	n 67	$\Rightarrow \int \frac{1}{\sqrt{2}} \frac{\partial^2 z}{\partial t} = \int \frac{1}{2} \frac{\partial t}{\partial t}$	<u>s</u>
adas nada	20/3SD	nado da	2020
Alla Shark	12/16	asnar,	~n ₂₁
	Con "Q		ч Ъ
Le le	1.2	1. Kon	<i>¶</i>
·Gp · · ·			
	Created by T. Madas	Man "	202
-435 - 435m	Ton .	asp	ND.

aths.com

ths.col

1.G.D.

Question 12 (****)

By using the substitution y = xv, where v = f(x), solve the differential equation

subject to the condition y = 1 at x = 1.

 $\overline{y^3} = x^3 \left(3\ln x + 1\right)$

Question 13 (****)

By using the substitution y = xz, where z = f(x), solve the differential equation

subject to the condition y = 0 at x = 1.

$\begin{split} & \widehat{a}_{1}^{2} \frac{du}{dx} = x^{2} + y^{2} \\ & \widehat{a}_{1}^{2} + z \frac{du}{dx} = x^{2} + y^{2} \\ & \widehat{a}_{1}^{2} + z \frac{du}{dx} = (1 + 2^{2}) \\ & \widehat{a}_{2} + 2z \frac{du}{dx} = (1 + 2^{2}) \\ & \widehat{a}_{2} + z \frac{du}{dx} = (1 - 2^{2}) + \frac{2^{2}}{2^{2}} \\ & \widehat{a}_{2} \frac{du}{dx} = (2^{2})^{1/2} \\ & \widehat{a}_{1}^{2} \frac{du}{dx} = (2^{2})^{1/2} \\ & \widehat{a}_{2}^{2} \frac{du}{dx} = (2^{2})^{1/2} \\ & \widehat{a}_{2}^{2} \frac{du}{dx} = \frac{1}{2^{2}} \frac{du}{dx} \\ & \widehat{a}_{1}^{2} \frac{du}{dx} = \frac{1}{2^{2}} \frac{du}{dx} \\ & \widehat{a}_{2}^{2} \frac{du}{dx} = \frac{1}{2^{2}} \frac{du}{dx} \\ & \widehat{a}_{1}^{2} \frac{du}{dx} = \frac{1}{2^{2}} \frac{du}{dx} \\ & \widehat{a}_{2}^{2} \frac{du}{dx} \\ & \widehat{a}_{2}^{2} \frac{du}{dx} = \frac{1}{2^{2}} \frac{du}{dx} \\ & \widehat{a}_{2}^{2} \frac$	$\begin{cases} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$
$-\frac{z-1}{1} = \frac{1}{2}hx + C$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	$\dot{y} = 2 - \frac{2x}{2+by}$

Question 14 (****)

FGB.

Į.C.B.

By using the substitution y = xv, where v = f(x), solve the differential equation

$$x\frac{dy}{dx} - y = x\cos\left(\frac{y}{x}\right), \ x \neq 0$$

subject to the condition $y = \pi$ at x = 4.

The final answer may not involve natural logarithms.

Ś

21/2.51

11₂₀₂

Created by T. Madas

C.B.

200

F.G.B.

Question 15 (****)

maths,

Smalls.com

I.C.B.

By using the substitution $y = \frac{1}{z}$, or otherwise, solve the differential equation

 $x^2 \frac{dy}{dx} + xy = y^2$

62

subject to the condition y = 2 at $x = \frac{1}{2}$.

5

1.1.6.1

1. ada.	, y =
$\frac{\partial f_{i}}{\partial t} = \frac{1}{2} \xrightarrow{i} \frac{\partial f_{i}}{\partial t} = \frac{\partial f_{i}}{\partial t}$	$\Rightarrow \frac{g}{2x} = \int -\frac{1}{1^3} dx$ $\Rightarrow \frac{g}{2x} = -\frac{1}{23^2} + C$
$\begin{array}{c} \boxed{\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$\Rightarrow z = \frac{1}{2a} + (a)$ $\Rightarrow \frac{1}{2} = \frac{1}{2a} + C_{1}$ $\frac{1}{2} = \frac{1}{2a} + C_{2}$ $\frac{1}{2} = 1 + \frac{1}{2}C$ $\frac{1}{2} = 1 + \frac{1}{2}C$ $\frac{1}{2} = -\frac{1}{2}$ $C = -1$
$\frac{100t}{e} \frac{f_{A}}{dt} \frac{A_{A}}{dt} = e^{-h\alpha} = \frac{1}{e^{-h}} \frac{A_{A}}{dt} = \frac{1}{2}$ $\frac{1}{2} \frac{d\alpha}{dt} - \frac{a}{2^{2}} = -\frac{1}{2}$ $\frac{1}{2} \frac{d\alpha}{dt} - \frac{a}{2^{2}} = -\frac{1}{2}$ $\frac{1}{2} \frac{d\alpha}{dt} = -\frac{a}{2} = -\frac{1}{2}$	$\frac{1}{y} = \frac{1}{2x} = 2x$ $\frac{1}{y} = \frac{1-2x^{2}}{2x}$ $\frac{1}{y} = \frac{1-2x^{2}}{2x}$ $\frac{1}{y} = \frac{2x}{1-2x^{2}}$

lasmaths.com

I.C.

1.6.0

6

2*x*

dasmaths.com

 $-2x^2$

(****) Question 16

I.C.B.

I.C.P.

Use a suitable substitution to solve the following differential equation.

$$\frac{dy}{dx} + \sqrt{y+1} = y+1, \quad y > -1, \quad y(0) = 3$$

Given the answer in the form $y = f(x)$.

		A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER
$\begin{array}{c} \cos \left(n+r \sin \left(\pi n \right) \right) = \sqrt{3+r^{2}} \\ \Rightarrow \frac{d_{1}}{d_{2}} + \sqrt{3} \sqrt{3}r^{2} = \frac{3}{3}r^{2} + 1 \\ \Rightarrow 2 \frac{d_{2}}{d_{2}} + \sqrt{2}r^{2} = \frac{3}{3}r^{2} + 1 \\ \Rightarrow 2 \frac{d_{2}}{d_{2}} + 1 = r^{2} \\ \Rightarrow 2 \frac{d_{2}}{d_{2}} = r^{-1} \\ \Rightarrow \frac{2}{d_{2}} - \frac{1}{3}r^{2} = 1 \frac{d_{2}}{d_{2}} \\ \frac{hhcolog rate 2\pi r^{2}}{d_{2}} = \frac{2hr}{d_{2}} \\ \Rightarrow 2h r-1 = r + C \\ \Rightarrow h r-1 = r +$	ицептам)	$\begin{array}{c} \underbrace{\operatorname{German } H_{1} \operatorname{Barries} & \operatorname{Aux} & $
<u>APR/ (on2077rad</u> g(o)=3 => 12-1 > +=1 => 1/54	$\frac{1}{1-1} = e^{\frac{1}{2}\lambda}$	

Ś

nadasn.

Madasn.

 $\underline{y} = e^x \pm 2e^{\frac{1}{2}x}$

12.81

2017

21/18

I.F.G.B.

(****) Question 17

By using the substitution $z = \frac{1}{y}$, or otherwise, solve the differential equation

Question 18 (****)

K.C.B. Madasm

Smarns.com I.F.

I.F.G.B.

By using the substitution $t = \frac{1}{v^2}$, or otherwise, solve the differential equation

subject to the boundary condition $y = \frac{1}{\sqrt{2}}$ at x = 0.

Give the answer in the form $y^2 = f(x)$.

K.G.B.

N.C.

6

nadasm.

The co	$ \begin{array}{c} dy \\ dy \\ +y \\ +y \\ +y \\ +y \\ +y \\ +y \\$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$
	(r. e ^{l-2d} , e ⁿ	46xx y ^a = 1

nadasmaths.com

I.F.C.B. Madasn

Created by T. Madas

00

Madasmaths.com

I.V.C.B.

Question 19 (****)

By using the substitution $z = y^2$ or otherwise, solve the differential equation

COM

2011

I.F.G.B.

madasmaths.com

5

 $xy\frac{dy}{dx} + 2y^2 = x$

subject to the boundary condition y = 0 at x = 1.

I.G.B.

1.1.64

N.G.B. Madasm

Smaths.com

I.F.G.B.

Give the answer in the form $y^2 = f(x)$.

Madasmaths.com

I.V.C.B. Madash

4.6.0

1+

nadasm.

Question 20 (****)

> $\frac{dy}{dx} + \frac{2y}{x}$ $= y^4, x > 0, y > 0.$

3

E.

1+

Use the substitution $u = y^{-3}$ and the boundary condition y = 1 at x = 1, to show that

Question 21 (****)

By using the substitution $t = \frac{1}{y^2}$ or otherwise, solve the differential equation

 $\frac{dy}{dx} + \frac{xy}{1+x^2} = y^3$

subject to the boundary condition y = 1 at x = 0.

Give the answer in the form $y^2 = f(x)$.

I.F.G.B.

I.F.C.B.

I.G.B. ma

I.F.G.B

20

F.G.D.

N.

2017

5

Question 22 (****)

(G.p.

F.G.B.

By using the substitution z = x + y solve the differential equation

$$\frac{dy}{dx} = \frac{x+y}{4-3(x+y)},$$

. R

0

i.C.B.

mada

subject to the boundary condition y = 1 at x = 0.

1+

Question 23 (****)

By using the substitution $u = \frac{1}{y^4}$, or otherwise, solve the differential equation

 $\frac{dy}{dx} = y\left(1 + xy^4\right)$

subject to the condition y = 1 at x = 0.

I.C.p

I.V.C.

11202

I.V.C.B. M.

I.F.G.B.

27

21/15

I.V.G.B.

Mada

27

2

A.C.S.

Question 24 (****)

By using the substitution y = xv, where v = f(x), or otherwise, solve the differential equation

$$\frac{dy}{dx} = \frac{3x+2y}{3y-2x},$$

 $3y^2 - 4xy - 3x^2 = 12$

subject to the condition y = 3 at x = 1.

Give the final answer in the form F(x, y) = 12

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
$\begin{array}{l} (4SIND - THE SUBSTITUTION GIVEN) \qquad \rightarrow h \mid 3^{47} \\ \Rightarrow 0 = 2 \cdot V(0) \\ \Rightarrow 0 = 2 \cdot V(0) + 2 \cdot 0 \\ \Rightarrow 0 = 2 \cdot V(0) + 2 \cdot 0 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 0 + 2 \cdot 0 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2 \\ \Rightarrow 0 = 2 \cdot 2$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\frac{ALTE-BNATIVE BY MULTIVARIABLE CALCULS}{2}$ $\Rightarrow \frac{d_{11}}{d_{12}} = \frac{3x_{12}x_{23}}{3y_{12}-2x}$ $\Rightarrow (\frac{1}{3y_{12}-2x}) \frac{d_{12}}{d_{12}} = (\frac{3x_{12}x_{23}}{3y_{12}-2x}) \frac{d_{12}}{d_{12}} = (\frac{3x_{12}x_{23}}{3y_{12}-2x}) \frac{d_{12}}{d_{12}} = (\frac{3x_{12}x_{23}}{2y_{12}-2x}) \frac{d_{12}}{d_{12}} = (\frac{3x_{12}x_{23}}{2y_{12}-2x}) \frac{d_{12}}{d_{12}} = \frac{d_{12}}{d_{12}} = 2$ $\frac{d_{11}x_{12}x_{12}}{d_{12}x_{12}} + (\frac{d_{12}x_{23}}{2x}) \frac{d_{12}x_{23}}{d_{12}x_{23}} = \frac{d_{12}x_{23}}{d_{12}x_{23}} = 2$ $\frac{d_{11}x_{12}x_{12}}{d_{12}x_{23}} + (\frac{d_{12}x_{23}}{2x}) \frac{d_{12}x_{23}}{d_{12}x_{23}} = \frac{d_{12}x_{23}}{$	
Iladash Is Com	adasmaths aths com	nadasmaths Com	12025) Con
	Created by T. Mad	as	nada

Question 25 (****)

By using the substitution $y = e^z$, or otherwise, solve the differential equation

 $x\frac{dy}{dx} + y\ln y = 2xy,$

subject to the condition $y = e^2$ at x = 1.

v = e

1+

Question 26 (****)

5

By using the substitution $z = \sin y$, or otherwise, solve the differential equation

 $x\frac{dy}{dx}\cos y - \sin y = x^2\ln x,$

subject to the condition y = 0 at x = 1.

Question 27 (****)

a) By using the substitution $z = x^2 + y^2$, solve the following differential equation

$$2xy\frac{dy}{dx} + y^2 = 2x - 3x^2,$$

subject to the condition y = 1 at x = 1.

b) Verify the answer to part (**a**) by using the substitution $z = y^2$ to solve the same differential equation and subject to the same condition.

Question 28 (****+)

A curve C passes through the point (1,1) and satisfies the differential equation

$$\frac{dy}{dx} - \frac{y}{x} = \frac{x^3}{4y^3}, \ x > 0, \ y > 0,$$

subject to the condition y = 1 at x = 1.

a) Find an equation of C by using the substitution $z = y^4$.

b) Find an equation of C by using the substitution $v = \frac{x}{v}$

Give the answer in the form $y^4 = f(x)$.

 $\frac{y}{x} = \frac{3^3}{4y}$ (b) $\frac{dy}{dz} - \frac{y}{x} = \frac{x^3}{4y^3}$ $\frac{1}{q-q} = q^{q}$ 9 y = 3 $\frac{dz}{dz} = dy^3 \frac{dy}{dz}$ $\frac{du}{da} = \sqrt{1} + \alpha (-\sqrt{2}) \frac{dv}{da}$ $\Rightarrow \frac{dx}{dy} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac{dy}{dy}$ $\Rightarrow \left(\frac{1}{\sqrt{1}} - \frac{3}{\sqrt{2}}\frac{du}{dx}\right) - \frac{1}{\sqrt{2}} = \frac{1}{4}\sqrt{3}$ $=\frac{1}{\pi}d\chi$ $e_n = e_n = \frac{\pi}{2} a_n$ $\int - d \Lambda_{-2} \, q \Lambda = \int \overline{T} \, q S$ o 순(ج) = 23 Inx + B Ina + B <u>y</u>+ = x4(lnx+A) $\propto^{4}(hx + B)$ y4 = x4 (lnx++) a = i y = i $i = i (lnt + 4) \Rightarrow d = i$ $\therefore g^{4} = x^{4}(1 + \ln x)$

 $y^4 = x^4 \left(1 + \ln x\right)$

Question 29 (****+)

By using the substitution y = xv, where v = f(x), solve the differential equation

$$\frac{dy}{dx} = \frac{x - y}{x + y}$$

subject to the condition y = 1 at x = 1.

USE THE SUB	smancel your, where vova
-9 .0	g= Vx
	$\frac{dv}{dt} = \frac{dv}{dt} \times a + v \times 1$
3 9	$\frac{\partial u}{\partial x} = v + x \frac{\partial u}{\partial x}$
towe we only T	RANSFORM THE O.D.E
- dy	$=\frac{3-9}{2+9}$
$\rightarrow \frac{dy}{dx}$	$\frac{x - \sqrt{x}}{x + \sqrt{x}}$
⇒ V+3	$t \frac{d\omega}{dk} = \frac{1-v}{1+v}$
$\Rightarrow s \frac{ds}{dv}$	$= \frac{1-V}{1+V} - V$
्र दा भ	= <u>1-V~V(I+V)</u>
$\Rightarrow r \frac{qr}{qh}$	= 1-2V-V2 V+V
-V ² -2	$\frac{1}{(+1)} dv = \frac{1}{2} dz$
⇒ <u>∫</u> _,	$\frac{2v-2}{r^2-2v+1}\mathrm{d}v = \int \frac{-2}{2}\mathrm{d}z$
-9 br -	$v_{-2i+i}^2 = -2\ln x + \ln A$
⇒ hli.	$-2v \sim v^2 = \ln \left \frac{4}{x^2} \right $
- 1-2	$N-N^2 \simeq \frac{A}{N}$

F.C.B.

REVERSING THE TRANSPORMATIONS WE OBTAIN $\implies 1-2\left(\frac{y_1}{x}\right)-\left(\frac{y_1}{x}\right)^2 = \frac{A}{x^2}$ \implies 1 - $\frac{2y}{x}$ - $\frac{y^2}{x^2}$ = $\frac{A}{x^2}$ $\Rightarrow a^2 - 2ay - y^2 = A$ APPLYING THE COUDITION (1,1) YIELDS A = -2 \Rightarrow $x^2 - 2y - y^2 = -2$ $=9 - 9^2 + 2xy - x^2 = 2$ ALTERNATIVE USING PARTIAL DIFFREENTIATION

 $\Rightarrow \frac{dy}{dx} = \frac{x-y}{x+y}$ => (2-y) dx = (2+y) dy

 $\Rightarrow (x-y)dx + (x-y)dy = 0$ $\frac{\partial f}{\partial x} dx + \frac{\partial F}{\partial y} dy = df$ GHEOK FOR "EXACTIVESS" • $\frac{\partial F}{\partial x} = x - y = 0$ $\frac{\partial F}{\partial \partial x} = -1$ - EXACT

 $\frac{\partial F}{\partial x} = x - y$ ● 2f = -x-y $T(x_1y_1) = -z_1y_1 - \frac{1}{2}y_2 + B(x)$ $F(x,y) = \frac{1}{2}x^2 - xy + f(y)$ COMPARING GAPRASSIONS FOR F(21,13) GIVES $f(\partial) = -\frac{1}{2}\partial_x^2 \quad \text{if } \quad \partial(x) = \frac{1}{2}x_5$

 $y^2 + 2xy - x^2 =$

FINALLY WE HAVE $f(x_{ij}) = \frac{1}{2}x^2 - x_{ij} - \frac{1}{2}y^2$

 $\frac{d}{dt} = \frac{d}{dt} = \frac{d}{dt} = \frac{d}{dt} = \frac{d}{dt}$

 $\implies \frac{1}{2}x^2 - xy - \frac{1}{2}y^2 = constraint$ $\Rightarrow y^2 + 2xy - x^2 = constraint$ 4 canno (1,1) finites the constraint As 2

 $\therefore y^2 + 2y_2 - a^2 = 2$ 45 86R84

F.G.B.

17202

Question 30 (****+)

By using the substitution v = xy, where y = f(x), solve the differential equation

$$\frac{dy}{dx} = \frac{1 - xy + x^2 y^2}{x^2 - yx^3}, \ x > 0,$$

subject to the condition y = 0 at x = 1.

 $2xy - x^2y^2 = 2\ln x$

Question 31 (****+)

Use the substitution v = xy, where y = f(x), to find a general solution for the differential equation

$$\frac{dy}{dx} = \frac{y - xy^2}{x + yx^2}, \ x \neq 0$$

and the second se	10 Million (1997)
$x = \frac{1}{80} - \frac{1}{2}$ $y = \frac{1}{80} - \frac{1}{10}$ $y = \frac{1}{10} - \frac{1}{10}$ $y = \frac{1}{10} - \frac{1}{10}$ $y = \frac{1}{10} - \frac{1}{10}$ $y = \frac{1}{10}$ $y = \frac{1}{10} - \frac{1}{10}$ $y = \frac{1}{10}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{l} \qquad \qquad$

 $y e^{xy} = Cx$

Question 32 (****+)

By using the substitution v = xy, where y = f(x), solve the differential equation

adasm.

ion,

$$\frac{dy}{dx} = -\frac{xy^2 + y}{x + yx^2 + x^3y^2}, \ x \neq 0, \ y > 0,$$

subject to the condition y = 1 at $x = \frac{1}{2}$.

nadasmaths

COM

N.G.B. Madasm

COM

I.C.B.

 $2x^2y^2\ln y = 2xy+1$

60

1.4

Madasm.

I.Y.C.B. Madasn

Created by T. Madas

2017

(****+) Question 33

Smaths,

COM

Smaths.com

I.F.G.B.

$$\frac{dy}{dx} = \tan(x^2 + 2y + \pi) - x, \quad y(0) = \frac{1}{4}\pi \; .$$

Solve the above differential equation to show that ¥.G.B.

nadasmans.com

I.G.B.

I.V.G.B

 $\frac{1}{2} \left[x^2 + \pi + \arcsin\left(e^{2x}\right) \right].$

20250

	90			
Da	$\frac{t}{t} = \frac{1}{2} + \frac{1}$			
"alls.	$\begin{array}{c} \frac{\mathrm{d} \chi}{\mathrm{d} \chi} & + \mathrm{d} \kappa_{1}(x^{2} + \mathrm{d} \mu_{1} x) - x, \\ \frac{\mathrm{d} \chi}{\mathrm{d} \chi} & + \mathrm{d} \kappa_{1}(x^{2} + \mathrm{d} \mu_{1} x) - x, \\ \frac{\mathrm{d} \kappa}{\mathrm{d} \kappa} & = 2 + \mathrm{d} \kappa + -x, \\ \frac{\mathrm{d} \kappa}{\mathrm{d} \kappa} & = 2 + \mathrm{d} \kappa + -x, \\ \frac{\mathrm{d} \kappa}{\mathrm{d} \kappa} & = 2 + \mathrm{d} \kappa + -x, \\ \int \mathrm{d} \kappa + \mathrm{d} \kappa + - \int \mathrm{d} \kappa + -x, \\ \int \mathrm{d} \kappa + \mathrm{d} \kappa + - \int \mathrm{d} \kappa + -x, \\ \frac{\mathrm{d} \kappa}{\mathrm{d} \kappa} & =x, \\ \mathrm{d} \kappa +x, \\ \mathrm{d} \kappa + -x, \\ $	$\begin{array}{l} \underbrace{4\hbar\gamma_{T}}_{q} (c_{N}b_{1}(\mathbf{x}_{2}), \mathbf{x}_{2}, \mathbf{y}_{2}, \overline{\mathbf{x}}_{2}) \\ \Longrightarrow & \sum_{n} \left\{ \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix} = \mathbf{A}_{n}^{n} \\ \Longrightarrow & -1 = \mathbf{A} \\ \vdots & \sum_{n} \left\{ \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{1} + \mathbf{a}_{n} \right\} \\ \mathbf{x}_{1}^{1} + \mathbf{x}_{2} + \mathbf{x}_{1}^{2} + \mathbf{a}_{n} + \mathbf{a}_{n} \\ \underbrace{\mathbf{x}_{1}^{1} + \mathbf{x}_{2} + \mathbf{x}_{1}^{2} + \mathbf{a}_{n} + \mathbf{a}_{n} \\ \underbrace{\mathbf{x}_{1}^{1} - \mathbf{x}_{n}^{2} - \mathbf{a}_{n} \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}^{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{a}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}^{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{a}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}^{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{a}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}^{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{a}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}^{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}^{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}^{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{a}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{x}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{x}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{x}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{x}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{x}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{x}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}_{1}^{1} - \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{1}, \mathbf{f} + \mathbf{x}_{n} \\ \mathbf{x}_{n} \end{bmatrix} \right) \\ \underbrace{\mathbf{x}$		
I.Y.G.	sut = Ae^{2r} on $(2^{2}+2g rq) = Ae^{2r}$	Gp		
	m.	1		

nadasmaths.com

Madasm.

the com

proof

14.0

Created by T. Madas

COM

madasmans.com

Question 34 (****+)

20

ŀ.G.B.

I.C.B.

 $\frac{dy}{dx} = \frac{x+y+3}{x+y-1}, \ y(0) = 0.$

Use the substitution z = x + y, to show that the solution of the above differential equation is

 $y-x-2\ln\left(x+y+1\right)=0.$

F.G.B.

m

proof

1.4

nadasm

172/251

The

F.G.B.

Question 35 (****+)

$$\frac{dy}{dx} = \frac{3x - y + 1}{x + y + 1}, \ y(1) = 2.$$

a) Show that the transformation equations

$$x = X - \frac{1}{2}$$
$$y = Y - \frac{1}{2}$$

transform the above differential equation to

$$\frac{dY}{dX} = \frac{3X - Y}{X + Y} \,.$$

b) Use the substitution Y = XV, where V = f(x), to show that the solution of the original differential equation is

$$(y-x)(y+3x+2) = 7$$
.

proof

(a)
$$\frac{dy}{dx} = \frac{3x-y+1}{xx+y+1}$$

 $x = x - \frac{1}{2} \Rightarrow \frac{dy}{dx} = \frac{dx}{dx} \Rightarrow \frac{dx}{dx} = \frac{dx}{dx}$
 $y = y' - \frac{1}{2} \Rightarrow \frac{dy}{dx} = \frac{dx}{dx} \Rightarrow \frac{dx}{dx} = \frac{dx}{dx}$
 $\frac{dy}{dx} = \frac{3(x-y)-(y-\frac{1}{2})+1}{(x-\frac{1}{2})+(y-\frac{1}{2})+1}$
 $\frac{dy}{dx} = \frac{3(x-y)}{x+y}$
 $\frac{dy}{dx} = \frac{3(x-y)-y^2}{1+y}$
 $\frac{dy}{dx} = \frac{3(x-y)-y$

B		
$-3 = \frac{b}{X^2}$	5	APPLY CONDITION 2=1, y=
$(v-1) = \frac{B}{100}$	5	(2+3+2)(2-1) = B
$(Y_{-1}) = B$	() = a
(X) XZ	2	: (y+3a+2)(y-z)=7
$X \left[\left(Y - X \right] = \frac{G}{X^2}$	2	
$(\gamma - \chi) = B$	>	-ds elfe
(x+z)][(y+z)-(x+z)]=B	>	
2(y-x) = B	1	

Question 36 (****+)

$$\frac{dy}{dx} = \frac{2x+5y+3}{4x+y-3}, \ y(1) = 1.$$

a) Show that the transformation equations

$$x = X + 1$$
$$y = Y - 1$$

transform the above differential equation to

$$\frac{dY}{dX} = \frac{2X + 5Y}{4X + Y}$$

b) Use the substitution Y = XV, where V = f(x), to show that the solution of the original differential equation is

$$(y-2x+3)^2 = 2(x+y).$$

, proof

Question 37 (****+)

R,

I.C.B.

 $\frac{dy}{dx}\left(x+y^2\right) = y\,.$

- a) Solve the above differential equation, subject to y = 1 at x = 1, by considering $\frac{dx}{dy}$, followed by a suitable substitution.
- b) Verify the validity of the answer obtained in part (a).

F.C.P.

02

 $v^2 = x$

è

Question 38 (*****)

I.C.B.

I.C.P.

Use a suitable substitution to solve the following differential equation.

$$\frac{dy}{dx} = (x - y + 2)^2, \quad y(0) = 4.$$

Given the answer in the form y = f(x).

1.4

I.F.G.B.

11₂₀₂

Created by T. Madas

I.C.

Question 39 (****+)

I.G.B.

I.C.p

Given that $v = yx^{-2}$ find a general solution for the following differential equation.

$$\frac{dy}{dx} - \frac{2y}{x} = \log_v e, \quad u > 0, \quad u \neq 1$$

Given the answer in the form f(x, y) = constant.

2

200

I.V.C.B. Mada

Question 40 (*****)

.C.

I.C.B.

Use a suitable substitution to solve the following differential equation.

$$\frac{dy}{dx} + 8xy = y^2 + 16x^2, \quad y(0) = -6$$

Given the answer in the form y = f(x).

REWRITH THE O.D.E
$\Rightarrow \frac{dy}{dt} + Bay = y^2 + 16x^2$
$\implies \frac{du}{dx} = y^2 - 8xy + 16x^2$
$\Rightarrow \frac{dq}{d\lambda} = (q - \psi_{\lambda})^{2}$
μοπυτπαεια + ωσμ
V = y - 42
⇒\$t= \$t-4
$\implies \frac{dy}{dx} = \frac{dy}{dx} + \psi$
3.0.0 HHI NORZANST
$\Rightarrow \frac{du}{dt} + U = -u^2$
$-\frac{d_{N}}{d_{n-1}} = \lambda_{n-1} +$
$\Rightarrow \frac{dv}{d\lambda} = (v-z)(v+z)$
SEPARATE UARIARIES
$\rightarrow \frac{1}{(v-2)(v+2)} dv = 1 dx$
C I I 1 1 1

	·U0
	PHEMIAL FRACTIONS BY INSPECTION
	$\implies \int \frac{4}{v-2} = -\frac{4}{v+2} dv = \int dy$
	$\implies \int \frac{1}{V-2} - \frac{1}{V+2} \mathrm{ch}_2 = \int \mathrm{d} \mathrm{d} \mathrm{d} \mathrm{d} \mathrm{d} \mathrm{d} \mathrm{d} \mathrm{d}$
	$\implies h[v-2] - h[v+2] = 4u + C$
	$\implies b_{1}\left(\frac{V-2}{V+2}\right) = d_{X}+C$
	$\Rightarrow \frac{V-2}{V+2} = Ae^{4\chi}$
	$ = \frac{y - y_2 - 2}{y - y_2 + 2} = \frac{1}{2} e^{y_2} \qquad \frac{4e^{y_2}}{(0 - 6) = 2} = \frac{1}{2} e^{y_2} = \frac{1}$
p	$\Rightarrow t = \frac{3}{-4} = 2$
į.	FINANS MAKE of THE CORDECT
d	→ y-4x-2 = 2e ⁴ (y-4x+2)
ş	= U-m-2 = Sten-8xem+160
	= Bren-42-4en-2= 2yen-y
	$\implies \forall x (e^{t_{u}}_{e^{-1}}) - 2 (e^{t_{u}}_{e^{-1}}) = \bigcup (2e^{t_{u}}_{e^{-1}})$
	$= \frac{4}{\sqrt{2}} \left(\frac{2}{2} \left(\frac{2}{2} \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} \left(\frac{2}{2} - \frac{2}{2} \right) - 2 \left(\frac{2}{2} - \frac{2}{2$

 $4x(2e^{4x}-1)$

 $-2(2e^{4x}+1)$

Y.C.B.

7201

 $2e^{4x}-1$

Question 41 (*****)

Sketch the curve which passes through the point with coordinates (1,2) and satisfies

Question 42 (*****)

2

Solve the differential equation

$$\frac{d}{dx}(xy^2) = \frac{x^4 + x^2y^2 + y^4}{x^2}, \ y(e) = \sqrt{2}e.$$

COM

 $x^2(1+\ln x)$

 $\ln x$

20

1720251

I.F.G.B.

0

 $y^{2} =$

6

Give the answer in the form $y^2 = f(x)$.

Created by T. Madas

I.V.C.J

I.F.G.B.

Question 43 (*****)

By using a suitable transformation, or otherwise, find a general solution for the following differential equation

(*****) Question 44

The curve with equation y = f(x) has as asymptote the line y = 1 and satisfies the differential equation

$$x^3 \frac{dy}{dx} - x = xy + 1, \ x \neq 0.$$

KR,

 $\frac{1}{x}$. 1

 $(1+y)e^{y} - \int e^{y} dy$ ale - er]+C

x

 $y = e^{-1}$

Solve the above differential equation by using ...

a) ... the substitution ux = xy + 1, where u = g(x).

b) ... an integrating factor.

and the second sec			And a second sec
(a) $a^{2}\frac{da}{da} - x = 2a + 1$ $\Rightarrow a^{2}\left[\frac{da}{da} + \frac{1}{2a}\right] - x = xa + 1$ $\Rightarrow a^{2}\frac{da}{da} + \frac{1}{2a}\left] - x = xa + 1$ $\Rightarrow a^{2}\frac{da}{da} + x^{2} - x = a\left[1 - \frac{1}{2a}\right]$ $\Rightarrow a^{2}\frac{da}{da} = xa - 1 + 1$ $\Rightarrow a^{2}\frac{da}{da} = xa$ $\Rightarrow a^{2}\frac{da}{da} = xa$	$\Rightarrow y = -\frac{1}{4} + he^{\frac{1}{4}}$	$\begin{split} & \mathcal{D}_{1}^{2} \frac{dq}{d\lambda} - \mathcal{D}_{2} = 2\mathbf{y}_{1} + \mathbf{I} \\ & \frac{dq}{d\lambda} - \frac{1}{\lambda^{2}} = \frac{y}{2\lambda} + \frac{1}{\lambda^{2}} \\ & \frac{dq}{d\lambda} - \frac{1}{\lambda^{2}} = \frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}} \\ & \frac{dq}{d\lambda} - \frac{q}{\lambda^{2}} = \frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}} \\ & \frac{dq}{d\lambda} - \frac{q}{\lambda^{2}} = \frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}} \\ & \frac{dq}{d\lambda} - \frac{q}{\lambda^{2}} = \int (\frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}}) e^{\frac{1}{\lambda}} \\ & \frac{dq}{d\lambda} - \frac{1}{\lambda^{2}} \\ & \frac{dq}{d\lambda} - \frac{1}{\lambda^{2}} \\ & \frac{dq}{d\lambda} - \frac{1}{\lambda^{2}} \\ & \frac{dq}{d\lambda} = -\frac{1}{\lambda^{2}} du \\ & \frac{dq}{$	$\begin{cases} \Rightarrow g e^{\frac{1}{A}} = -\left[e^{y} + ue^{-y}\right]^{2} \\ \Rightarrow g e^{\frac{1}{A}} = -ue^{y} + c \\ \Rightarrow g e^{\frac{1}{A}} = -ue^{y} + c \\ \Rightarrow g e^{\frac{1}{A}} = -\frac{1}{A}e^{\frac{1}{A}} + c \\ \Rightarrow g = -\frac{1}{A} + ce^{\frac{1}{A}} \\ \Rightarrow g = -\frac{1}{A} + ce^{\frac{1}{A}} \\ \text{if } g = -\frac{1}{A} + ce^{\frac{1}{A}} \\ \text{if } g = -\frac{1}{A} + e^{\frac{1}{A}} \\ g = -\frac{1}{A} + e^{\frac{1}{A}} \\ g = e^{\frac{1}{A}} - \frac{1}{A} \end{cases}$
		$y e^{\frac{1}{2}} = -\int (1+u)e^{u} du$ By FARTI $\frac{1+u}{e^{u}} = \frac{1}{e^{u}}$	

Question 45 (*****)

Smaths,

I.F.G.p

Use the substitution $v = \frac{y-x}{y+x}$, $y+x \neq 0$, to solve the following differential equation

 $x\frac{dy}{dx} - y = \frac{(1-x)(x^2 - y^2)}{x^3 + x^2 + x + 1}, \quad y(0) = 1.$

A.C.

1

 $y = x^2 + x + 1$

21/18

22

Give the answer in the form y = f(x).

Created by T. Madas

I.V.C.B