2nd ORDER O.. PRACTICE Chandles com L.V.C.B. Madasmaths com L.V.C.B. Managar

Question 1

a)
$$2\frac{d^2y}{dx^2} + 7\frac{dy}{dx} + 3y = 0$$

$$dx^{2} dx$$
b) $\frac{d^{2}y}{dx^{2}} + 4\frac{dy}{dx} + 4y = 0$
c) $\frac{d^{2}y}{dx^{2}} + 4y = 0$
d) $\frac{d^{2}y}{dx^{2}} + 4\frac{dy}{dx} + 8y = 0$

c)
$$\frac{d^2y}{dx^2} + 4y = 0$$

d)
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 8y = 0$$

$$y = Ae^{-3x} + Be^{-\frac{1}{2}x}$$
, $y = Ae^{-2x} + Bxe^{-2x}$, $y = A\cos 2x + B\sin 2x$.
 $y = e^{-2x} (A\cos 2x + B\sin 2x)$

Question 2

a)
$$4\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 5y = 0$$

b)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$$

c)
$$4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 0$$

b)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$$

c) $4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 0$
d) $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 13y = 0$

$$y = e^{x} \left(A \cos \frac{1}{2} x + B \sin \frac{1}{2} x \right), \quad y = A e^{-x} + B e^{2x}, \quad y = A e^{\frac{1}{2} x} + B x e^{\frac{1}{2} x}, \quad y = A e^{\frac{1}{2} x} + B x e^{\frac{1}{2} x}, \quad y = A e^{-x} + B \sin 3x$$

Question 3

$$a) \quad \frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 3x$$

b)
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 6y = 36x$$

b)
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 6y = 36x$$

c) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 17y = 17x + 36$
 $y = A6$

$$y = Ae^{-3x} + Bxe^{-3x} + \frac{1}{3}x - \frac{2}{9}, \quad y = Ae^{x} + Be^{-6x} - 6x - 5,$$
$$y = e^{-x} (A\cos 4x + B\sin 4x) + x + 2$$

Question 4

$$a) \quad \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 10\sin x$$

b)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 17y = 17x + 36$$

$$\mathbf{c)} \quad \frac{d^2y}{dx^2} + 4y = 12\cos x$$

$$y = e^{-x} (A\cos 2x + B\sin 2x) + 2\sin x - \cos x$$
, $y = e^{-x} (A\cos 4x + B\sin 4x) + x + 2$,

$$y = A\cos 2x + B\sin 2x + 4\cos x$$

Question 5

$$a) \quad \frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = \sin x$$

b)
$$\frac{d^2y}{dx^2} + 4y = 8x^2 + 9\sin x$$

b)
$$\frac{d^2y}{dx^2} + 4y = 8x^2 + 9\sin x$$

c) $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 10\sin x$
 $y = Ae^{3x} + Be^{-2x} + \frac{1}{50}(\cos x)$

$$y = Ae^{3x} + Be^{-2x} + \frac{1}{50}(\cos x - 7\sin x), \quad y = A\cos 2x + B\sin 2x + 3\sin x + 2x^2 - 1,$$
$$y = Ae^{-x} + Be^{-3x} + \sin x - 2\cos x$$

Question 6

Find the solution of each of the following differential equations.

a)
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = \cos 3x$$
,

subject to the conditions $y = \frac{1}{2}$, $\frac{dy}{dx} = 0$ at x = 0.

subject to the conditions
b)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 10,$$
subject to the conditions

subject to the conditions y = 0, $\frac{dy}{dx} = 0$ at x = 0.

c)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 8e^{3x}$$
,

subject to the conditions y = 1, $\frac{dy}{dx} = 2$ at x = 0.

$$y = \frac{1}{2}e^{-3x} + \frac{4}{3}xe^{-3x} + \frac{1}{18}\sin 3x, \quad y = 2 - e^{-x}\left(2\cos 2x - \sin 2x\right),$$

$$y = \frac{1}{2}e^{3x} + \frac{1}{2}e^{-x} + xe^{-x}$$

Question 7

Find the solution of each of the following differential equations.

a)
$$\frac{d^2y}{dx^2} - 4y = 10e^{3x}$$
,

subject to the conditions y = 3, $\frac{dy}{dx} = 8$ at x = 0.

b)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 3y = 15e^{2x}$$
,

subject to the conditions y = 9, $\frac{dy}{dx} = 4$ at x = 0.

c)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 8e^{3x}$$
,

subject to the conditions x = 0, y = 1, $\frac{dy}{dx} = 2$

$$y = e^{2x} + 2e^{3x}$$
, $y = 4e^x + 2e^{-3x} + 3e^{2x}$, $y = 2e^{3x} - e^{-x} - 5xe^{-x}$

Question 8

Find the solution of each of the following differential equations.

a)
$$2\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 2y = 2x + 9$$
,

subject to the conditions y = 3, $\frac{dy}{dx} = -1$ at x = 0.

subject to the conditions
$$y$$

b) $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 27x$,
subject to the conditions

subject to the conditions y = 2, $\frac{dy}{dx} = 6$ at x = 0.

c)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = 2x + 3,$$

subject to the conditions y = 2, $\frac{dy}{dx} = -5$ at x = 0.

$$y = e^{-2x} + x + 2$$
, $y = 3x(1 + e^{3x}) + 2$, $y = x^2 + x - 4 + 6e^{-x}$

Question 9

Find the solution of each of the following differential equations.

a)
$$2\frac{d^2y}{dx^2} - 7\frac{dy}{dx} - 4y = 8\sin x - 19\cos x$$
,

subject to the conditions y = 0, $\frac{dy}{dx} = 11$ at x = 0.

b)
$$2\frac{d^2y}{dx^2} - 7\frac{dy}{dx} - 4y = 8\sin x - 19\cos x$$
,

subject to the conditions y = 0, $\frac{dy}{dx} = 11$ at x = 0.

c)
$$2\frac{d^2y}{dx^2} - 7\frac{dy}{dx} - 4y = 8\sin x - 19\cos x$$
,

subject to the conditions y = 0, $\frac{dy}{dx} = 11$ at x = 0.

$$y = e^{-2x} + x + 2$$
, $y = 3x(1 + e^{3x}) + 2$, $y = 2e^{4x} - 4e^{\frac{1}{2}x} + \sin x + 2\cos x$

$$y = 2e^{4x} - 4e^{\frac{1}{2}x} + \sin x + 2\cos x$$

Question 10 (harder PIs)

Find the solution of each of the following differential equations.

a)
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 2e^{-2x}$$
,

subject to the conditions y = 2, $\frac{dy}{dx} = 0$ at x = 0.

subject to the condition

b)
$$\frac{d^2y}{dx^2} + 9y = \cos 3x,$$
subject to the condition

subject to the conditions y = 0, $\frac{dy}{dx} = 3$ at x = 0.

$$\mathbf{c)} \quad \frac{d^2y}{dx^2} + \frac{dy}{dx} = x.$$

subject to the conditions y=1, $\frac{dy}{dx}=3$ at x=0.

$$y = 6e^{-x} - 2(x+2)e^{-2x}$$
, $y = \sin 3x + \frac{1}{6}x\sin 3x$, $y = \frac{1}{2}x^2 - x + 5 - 4e^{-x}$

Question 11 (harder PIs)

Find the solution of each of the following differential equations.

a)
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 4y = 10e^x$$
,

subject to the conditions y = 1, $\frac{dy}{dx} = 3$ at x = 0.

b)
$$\frac{d^2y}{dx^2} + 16y = 8\cos 4x$$
,

subject to the conditions y = 2, $\frac{dy}{dx} = 0$ at x = 0.

c)
$$\frac{d^2y}{dx^2} + 100y = 2\cos 10x$$
,

subject to the conditions y = 0, $\frac{dy}{dx} = 0$ at x = 0.

$$y = e^{x} (2x+1)$$
, $y = 2\cos 4x + x\sin 4x$, $y = \frac{1}{10}x\sin 10x$

Question 12 (harder PIs)

Find the solution of each of the following differential equations.

$$a) \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x,$$

subject to the conditions y = 1, $\frac{dy}{dx} = 2$ at x = 0.

subject to the conditions
b)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x}$$
,
subject to the conditions

subject to the conditions y = 1, $\frac{dy}{dx} = -1$ at x = 0.

$$c) \quad \frac{d^2y}{dx^2} - 5\frac{dy}{dx} = 100x,$$

subject to the conditions y = 2, $\frac{dy}{dx} = 1$ at x = 0.

$$y = (\frac{1}{2}x^2 + x + 1)e^x$$
, $y = (\frac{1}{2}x^2 + 1)e^{-x}$, $y = e^{5x} + 1 - 4x - 10x^2$

2nd ORDEN. EULER TYP. Hallashallason I. K. B. Hallason I. K. B. Hallaso Clasmaths com I.V.C.B. madasmaths com I.V.C.B. manasm

Question 1

Find the solution of each of the following differential equations.

a)
$$x^2 \frac{d^2 y}{dx^2} - 6x \frac{dy}{dx} + 12y = 0$$
,

subject to the conditions x = 1, y = 1, $\frac{dy}{dx} = 0$

b)
$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = 0$$
,

subject to the conditions x = 1, y = 3, $\frac{dy}{dx} = 7$

c)
$$x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 4y = 0$$
,

subject to the conditions x = 1, y = 5, $\frac{dy}{dx} = 8$

$$y = 4x^3 - 3x^4$$
, $y = \frac{1}{x} + 2x^4$, $y = 4x + x^4$

