2nd ORDER 6. SUBSTITUTION.

Question 1 (***+)

Ĉ.Ŗ

ic.p.

$$2y\frac{d^2y}{dx^2} - 8y\frac{dy}{dx} + 16y^2 = \left(\frac{dy}{dx}\right)^2, \ y \neq 0,$$

Find the general solution of the above differential equation by using the transformation equation $t = \sqrt{y}$.

Give the answer in the form y = f(x).

 $y = \left(Ae^{2x} + Bxe^{2x}\right)$ $\frac{\partial y}{\partial x^2} \frac{\partial^2 y}{\partial x^2} - \Theta y \frac{\partial y}{\partial x} + 16y^2 = \left(\frac{\partial y}{\partial x}\right)^2$ $\mathcal{H}^{2}\left[\mathcal{X}\frac{\partial \mathcal{H}}{\partial u^{2}} + 2\left(\frac{\partial \mathcal{H}}{\partial u^{2}}\right)^{2} - 8\mathcal{H}\left(\mathcal{X}\frac{\partial \mathcal{H}}{\partial u^{2}}\right) + 1\mathcal{H}^{2} = \left(\mathcal{X}\frac{\partial \mathcal{H}}{\partial u^{2}}\right)^{2}$ $\mathcal{H}^{2}\frac{\partial \mathcal{H}}{\partial u^{2}} + 4\mathcal{H}^{2}\left(\frac{\partial \mathcal{H}}{\partial u^{2}}\right)^{2} - 1\mathcal{H}^{2}\frac{\partial \mathcal{H}}{\partial u} + 1\mathcal{H}^{2} = 4\mathcal{H}^{2}\left(\frac{\partial \mathcal{H}}{\partial u^{2}}\right)^{2}$ $\frac{2 + \frac{dt}{dx} = \frac{dy}{dx}}{\frac{dy}{dx^2} = 2 \frac{dt}{dt} \frac{dt}{dx} + 2t \frac{dt}{dx}$

= $2t \frac{d^2t}{d\chi^2} + 2\left(\frac{dt}{d\chi}\right)^2$

Ĉ.

21/2.51

11₂₀₂₈₁

dig to

些一味+吐=

Question 2 (***+) The differential equation

R

P.C.A.

$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 3x, \ x \neq 0$$

is to be solved subject to the boundary conditions $y = \frac{3}{2}$, $\frac{dy}{dx} = \frac{1}{2}$ at x = 1.

a) Show that the substitution $v = \frac{dy}{dx}$, transforms the above differential equation into

$$\frac{dv}{dx} + \frac{2v}{x} = 3.$$

b) Hence find the solution of the original differential equation, giving the answer in the form y = f(x).

 $\overline{x^2 + \frac{1}{x} + 1}$

 $\frac{d^3 y}{dx^2} + 2\frac{dy}{dx} = 32$ $x \frac{dy}{dx} + 2y = 3x$ $\frac{dV}{dx} = \frac{d^2q}{dx^2}$ $\frac{dV}{dx} + \frac{2V}{x} = 0$ $a \frac{dv}{dx} + \frac{2V}{2} = 0$ $\frac{dv}{da} = P$ $\frac{dv}{dv} = -\frac{2v}{2}$ P+ == (B)=3 $\frac{1}{v} dv = \int -\frac{2}{x} dx$ |n|v| = -2|n|x| + $|\mathbf{h}_{\mathbf{N}}|_{\mathbf{N}}| = |\mathbf{h}|\frac{\mathbf{A}}{\mathbf{x}^{2}}|$ (OR TO IT BY INTHRATING FACTOR) $\rightarrow \frac{dy}{dx} = \frac{A}{32} + .2$ - A + 122+ B =) 9 = $\frac{1}{2} \frac{du}{dt} = \frac{1}{2}$ $+\frac{1}{2}a^{2}+\frac{1}{2a}$ $y = \pm (1 \pm \alpha \pm \alpha)$

Question 3 (***+)

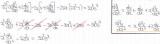
The curve C has equation y = f(x) and satisfies the differential equation

$$x^{2}\frac{d^{2}y}{dx^{2}} - 2x\frac{dy}{dx} - 2y(2x^{2} - 1) = 3x^{3}e^{x}, x \neq 0$$

is to be solved subject to the boundary conditions $y = \frac{3}{2}$, $\frac{dy}{dx} = \frac{1}{2}$ at x = 1

a) Show that the substitution y = xv, where v is a function of x transforms the above differential equation into

$$\frac{d^2v}{dx^2} - 4v = 3e^x.$$


It is further given that C meets the x axis at $x = \ln 2$ and has a finite value for y as x gets infinitely negatively large.

b) Express the equation of *C* in the form y = f(x)

 $y = \frac{1}{2}xe^{2x} - xe^{x}$

 $\frac{d^2y}{dx^2} = x \frac{d^2y}{dx^2} + 2\frac{dy}{dx}$

22 d2y $-2\alpha \frac{du}{d\alpha} - 2y(2\alpha^2 - 1) = 3\alpha^2 e^2$ $\frac{dy}{dx} = V + 2 \frac{dy}{dx}$

444

y= 1 xe2 - xe

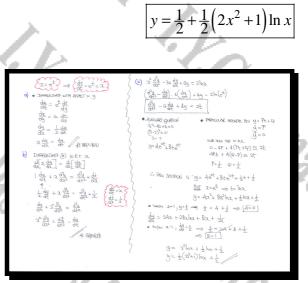
Question 4 (***+)

Given that if $x = e^t$ and y = f(x), show clearly that ...

a) ...
$$x \frac{dy}{dx} = \frac{dy}{dt}$$
.

I.G.B.

I.C.B.


b) ... $x^2 \frac{d^2 y}{dx^2} = \frac{d^2 y}{dt^2} - \frac{dy}{dt}$.

The following differential equation is to be solved

$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2\ln x$$

subject to the boundary conditions $y = \frac{1}{2}, \frac{dy}{dx} = \frac{3}{2}$ at x = 1.

c) Use the substitution $x = e^t$ to solve the above differential equation.

.C.B.

Maga

ŀ.G.B.

10.21/2.SI

Question 5 (****)

C.P.

P.C.P.

The differential equation

$$(x^{3}+1)\frac{d^{2}y}{dx^{2}} - 3x^{2}\frac{dy}{dx} = 2 - 4x^{3}$$

is to be solved subject to the boundary conditions y = 0, $\frac{dy}{dx} = 4$ at x = 0.

Use the substitution $u = \frac{dy}{dx} - 2x$, where *u* is a function of *x*, to show that the solution of the above differential equation is

 $y = x^4 + x^2 + 4x.$

03 -2 du = 1 + 22 - 24 $= \frac{du}{dx} + 2$ INSC $\Rightarrow (x^{3}+i)\frac{d^{2}y}{dx} - 3t^{2}\frac{dy}{dx}$ -123 $\Rightarrow (3^{3}+1)(\frac{du}{dx}+2) - 3\lambda^{2}(u+2x) = 2 - 4\lambda^{3}$ \Rightarrow $(\mathfrak{X}^{3}+1) \frac{d\mathfrak{u}}{d\mathfrak{X}} + 2(\mathfrak{X}^{3}+1) - \mathfrak{M}_{\mathfrak{u}} - 6\mathfrak{X}^{3} = 2 - 4\mathfrak{X}^{3}$ $= (a^{3}+1) du + 2a^{3}+2 - 3ua^{2} - 6a^{3} = 2 - 4a^{3}$ = (23+1) = - 342 - 342 = - 42 $\Rightarrow (2^{2}+1)\frac{du}{dx} = 3ux^{2}$ NELCT $|n|u| = |n|x^{2} + 1| + |nA|$ $|h||u| = |h||A(t^3+1)||$ A(x3+1)

REVERSING THE TRANSBRNATION = da -22 = AG2+1) $\Rightarrow \frac{dy}{dt} = A(x^3+1) + 2x$ INTHREATING W. R. F J $\Rightarrow y = A(\frac{1}{2}x^{4}+x) + x^{2} + B$ USING THE CONDITION GUEN a=0, y=0 -= 0 = E 2=0, du=4 = 4 = 4 : $y = 4(2x^4+x) + x^2$ $\mathcal{Y} = \mathcal{X}^4 + \mathcal{Y} \mathcal{X} + \mathcal{X}^2$

i C.B.

proof

ins,

Con

(****) **Question 6**

Smaths,

ŀ.G.p.

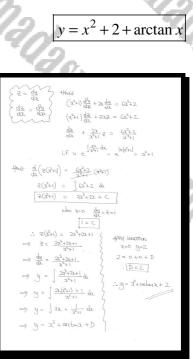
$$x\frac{d^2y}{dx^2} + (6x+2)\frac{dy}{dx} + 9xy = 27x - 6y$$

Use the substitution u = xy, where u is a function of x, to find a general solution of the above differential equation.

Question 7 (****)

By using the substitution $z = \frac{dy}{dx}$, or otherwise, solve the differential equation

 $(x^{2}+1)\frac{d^{2}y}{dx^{2}}+2x\frac{dy}{dx}=6x^{2}+2,$


subject to the conditions x = 0, y = 2, $\frac{dy}{dx} = 1$

I.F.G.B.

Com I.Y.C.B.

21/15,

I.F.G.B.

am

nn

N.G.S.

1

Created by T. Madas

l.Y.G.p

Question 8 (****)

$$\frac{d^2y}{dx^2} - (1 - 6e^x)\frac{dy}{dx} + 10ye^{2x} = 5e^{2x}\sin(2e^x).$$

a) By using the substitution $x = \ln t$ or otherwise, show that the above differential equation can be transformed to

$$\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 10y = 5\sin 2t.$$

b) Hence find a general solution for the original differential equation.

 $y = e^{-3e^x}$

<	91%		Ch.
a) START BY OBTIMUS "AREFORE $a = \ln t$ DIPRESSIMATE WET IS $a = \frac{1}{2} \frac{dt}{dy}$	· 出生 · 出 MARGENTATE W.ET 工	Marchendry Hit Canodice (1) Marchendry Canodice (1) Marchendry Canodice (1) Marchendry Canodice (1) $\sim 3^2 + 6^3 + 0 = 0$ $\sim 3^2 + 5^2 + 5^2 = 0$	AD GEVATION PARTICLYR WHERAL y = POSSH + OSMOL y = -28sm2+ 2000st
$ \begin{array}{c} dy = \xi \ dy \\ \Rightarrow \ dy = \xi \ dy \\ \Rightarrow \ dy = \xi \ dy \\ \Rightarrow \ by \\ f = \xi \\ dy = \xi \\ $	=====================================	$(\lambda + 3)^{2} = -1$ $\Rightarrow \lambda + s = \pm i$ $\Rightarrow \lambda = -3 \pm i$ computed to λ $g = e^{-3t}(\lambda act + Bant)$	<u>υ</u> = - ffωst- fesnt <u>306 μηση6 c.D.E</u> <u>μ</u> = - ffωst- fesnt <u>μ</u> = - ffωst- fesnt + fg = 129cat- 129snt + log = 109cat+ 109cmt + 100 full couloners
10 3 HT CAN 2017/17282 1 - 3 HT CAN 2017/17282 - 第(53-1) - 第 (- 2) - 第(53-1) - 第 (- 2) -	$\frac{dy}{dt} + \log t^2 = 5t^2 \sin(2t)$ $6t^2 \frac{4}{3}t + 10t^2 g = 5t^2 \sin_2 t$ $\delta = 5t^2 (\sin 2t)$	Hade THE GAUGAL Sources $\Rightarrow \mathfrak{Y} = e^{2k} (Aude + Bane \Rightarrow \mathfrak{Y} = e^{2k} [Aude] + 8 sn$	$\begin{array}{c} (P+12Q)(aQ1+P)\\ +\\ +\\ (Q-12)(an)2t\\ +\\ (Q-12)(an)2t\\ +\\ (Q-12)(an)2t\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\$

 $\left[A\cos\left(e^{x}\right)+B\sin\left(e^{x}\right)\right]+\frac{1}{6}\sin\left(2e^{x}\right)-\frac{1}{3}\cos\left(2e^{x}\right)\right]$

Ĉ.

Question 9 (****)

KR,

I.Y.C.P.

Use the substitution $w = \frac{dy}{dx}$ to solve the following differential equation

 $(1-x^2)\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = (1-x)^2, |x| < 1$

subject to the boundary conditions y = -4.5 and $\frac{dy}{dx} = -1$ at x = 0.

Give the answer in the form $y = \alpha (x-3)^2 + \beta \ln (x+1)$, where α and β are constants to be found.

	10
Liture Korramzare HAT-CUNZU	
$\frac{(1-\chi^2)}{d\chi^2} + 2 \frac{d\mu}{d\chi} = (1-\chi)^2$	
$(1-\chi^2)\frac{dw}{d\chi} + 2w = (1-\chi)^2$	
$\frac{dw}{dx} + \frac{2}{1-2^2}w = \frac{(1-2)^2}{1-2^2}$	
$\frac{dw}{dx} + \frac{2}{(1-x)(1+x)} W = \frac{(1-x)^2}{(1-x)(1+x)}$	
$\frac{dW}{d\lambda} + \left(\frac{1}{1+\lambda} + \frac{1}{1-\lambda}\right)W \approx \frac{1-\lambda}{1+\lambda}$	
the PMRTMAL REACTIONS BY INSPECTION	
FIND THE INTRACATING FACTOR	
$e^{\int \frac{1}{1+\lambda} + \frac{1}{1+\lambda} d\lambda} = e^{h(1+\lambda) - h(1-\lambda)} = e^{h(\frac{1+\lambda}{1-\lambda})}$	$\left(\right) = \frac{H_{2}}{1-\chi}$
4640E WE NOW HHUE	
$\frac{d}{d\lambda} \left[W\left(\frac{1+\chi}{1-\chi}\right) \right] = \frac{1-\chi}{1+\chi} \left(\frac{1+\chi}{1-\chi}\right)$	
$\frac{d}{d\lambda} \left[W \left(\frac{1+\chi}{1-\chi} \right) \right] = 1$	
$W\left(\frac{1+\chi}{1-\chi}\right) = \int 1 dx$	
$w\left(\frac{1+\lambda}{1-\lambda}\right) = x + A$	
APPRY CONDITION 2=0, W* dg = -1	
-1 = A	
. W (1+X)	= x-1

-)	$W = \frac{(1-\chi)(\chi_{-1})}{1+\chi}$
-	$\frac{dq}{dt} = -\frac{(\alpha - t)^2}{3\alpha + t}$
	$\frac{dq}{d\lambda} = -\frac{\chi^2 - \chi + 1}{\chi + 1}$ to us the probability of the pro
\rightarrow	$\frac{dy}{dL} = -\frac{x(x+1)-x(x+1)+4}{x+1}$
	$\frac{du}{dt} = -\left[\alpha - 2 + \frac{b}{\alpha + 1}\right]$
\rightarrow	$g = -\left[\frac{1}{2}x^2 - 3x + 4h(x_H)\right] + C$
+PPU	CONDITION 2=0 y=-45 To agriting C=-45.
	$y = -\frac{1}{2}a^2 + 3a - 45 - 4bn(xxx)$
	$\int dx = -\frac{1}{2} \left(\chi^2 - \zeta \chi + q \right) - 4 \ln(\chi + q)$
	$y = -\frac{1}{2}(x-y)^{2} - 4\ln(x+1)$
	$l \in \underline{\alpha} = -\frac{1}{2}$
	b = -4

F.C.P.

], $y = -\frac{1}{4}(x-3)^2 - 4\ln(x+1)$

1.6

Question 10 (****)

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx}\tan x - y\sec^4 x = 0.$$

The above differential equation is to be solved by a substitution.

- **a**) If $t = \tan x$ show that ...
 - **i.** ... $\frac{dy}{dx} = \frac{dy}{dt} \sec^2 x$
 - ii. $\dots \frac{d^2 y}{dx^2} = \frac{d^2 y}{dt^2} \sec^4 x + 2\frac{dy}{dt} \sec^2 x \tan x$
- **b**) Use the results obtained in part (**a**) to find a general solution of the differential equation in the form y = f(x).

dy seen - y seen = 0 $\frac{d^2y}{dt^2} - y = 0$ = sear dy Sta du As Exporen T) NOOD DIFFE y= Aet + Bet $\frac{d}{dx}\left(\frac{du}{dx}\right) = \frac{d}{dx}\left(3t\partial_x \frac{du}{dt}\right)$ ma+Bet dy = 2002 tays dy + set d (dy) 250 Lanz dy + side dy x dt dy = 2sta lours dy + still dy sta $\frac{d^3y}{dt^2} = \frac{d^3y}{dt^2} \operatorname{stell} + 2\frac{dy}{dt} \operatorname{stell} + 2\frac{dy}{dt}$ $\frac{d^2y}{dy^2} - 2 \frac{dy}{dx} \tan x - y_{\text{sec}_{2}}^{\phi} = 0$ = (dy set + 2 dy at lay) - 2 (stady) lay - y set =0

 $y = A e^{\tan x} + B e^{-\tan x}$

4= Prosht + Qsinht

(****) Question 11

Show clearly that the substitution $z = \sin x$, transforms the differential equation

$$\frac{d^2 y}{dx^2} \cos x + \frac{dy}{dx} \sin x - 2y \cos^3 x = 2\cos^5 x,$$

nation

 $\frac{d^2y}{dz^2} - 2y = 2\left(1 - z^2\right)$

into the differential equation

2028m

I.G.B.

I.F.C.

Inaths.com

N.C.B. Madasm

COM

1211s,

I.F.G.B.

proof

aths com

Inadası

I.F.G.B.

4.4.0

K

	12.	$\frac{d_{y_1}^2}{dx^2}\cos x + \frac{dy_1}{dx}\sin x -$	21.3 2.5
	111	• Z= SINA	• $\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\cos \frac{dy}{dx} \right)$
	10	$\frac{d}{dy}(z) = \frac{d}{dy}(su_{R})$	$ \begin{array}{c} \mathbf{e} & \frac{1}{2} \left(\frac{dy}{dx} \right) = \frac{1}{2} \left(\frac{dy}{dx} \right) = \frac{1}{2} \left(\frac{dy}{dx} + \frac{1}{2} \left(\frac{dy}{dx} \right) \right) \\ \frac{dy}{dx} = -\sin x \frac{dy}{dx} + \cos x \frac{dy}{dx} \left(\frac{dy}{dx} \right) \\ \end{array} $
-	10	$\frac{dz}{dy} = \cos \frac{dx}{dy}$ $\frac{dz}{dy} = \frac{dz}{dy}$	$\frac{dy}{dx^2} = -\sin x \frac{dy}{dz} + \cos x \frac{d^2y}{dz} \frac{dz}{dx}$
Co	-0	$\frac{dy}{da} = \cos \frac{dy}{dz}$	$\frac{ds_y}{dx^2} = -sin_2 \frac{dy}{dt} + (ss_2 \frac{dy}{dt^2} + ss_2)$
Un.	4	Zufit	$\frac{d^2y}{dz^2} = \cos \frac{d^2y}{dz^2} - \sin 2 \frac{dy}{dz}$
		$= \frac{b}{b} x^{2} x^{2} = \frac{b}{b} x^{2} x^{2} = \frac{b}{b} x^{2} x^{2} = \frac{b}{b} $	$a + \left[\log \frac{4}{42} \right] = 2 \log \frac{1}{2}$ + source $\frac{4}{42} = 2 \log \frac{1}{2}$
7	1.	= 62 dy - marine dy = 62 dy - 2y were =	
	612	$\implies \frac{d^2 q}{d z^2} - 2y = 26s$	2 £2
>	1 Con	$\implies \frac{d^2y}{dz^2} - 2y = 2(1 -$	$-Su_{\mathcal{R}}^{2}$
	16.5	$\implies \frac{d^2 u}{dt^2} - 2y = 2(1 - \frac{1}{2})$	//
A	5/4		AS REPURED
0.			
12	2	m.	4
120	20	na.	, 4
1720	250	1720	
1120	35172-	1120	1 ?s
1730	asmark.	1120	1981D
1120	asmarhe	11200	asmari
1130	asmarhs,		asmarijo
	asmarns.	10202 202	asmarhs
1730 	asmarhs.	10202 2010	asmanas
(13) (. ()	asmarns.	11202 2011	asmarins.

Question 12 (****+)

Ý.G.B.

I.C.B.

Use the substitution $z = \sqrt{y}$, where y = f(x), to solve the differential equation

$$\frac{d^2 y}{dx^2} + \frac{1}{y} \left(\frac{dy}{dx}\right)^2 - 5\frac{dy}{dx} + 2y = 0,$$

語をなんてい

subject to the boundary conditions y = 4, $\frac{dy}{dx} = 44$ at x = 0.

Give the answer in the form y = f(x).

<u>.</u>	12
$\frac{1}{2} - \frac{1}{24} \left[\frac{1}{2} + \frac{1}{24} \right] - \frac{1}{26} = 0$	$ \begin{cases} \left(\frac{1}{2}^2 = A_{1} \frac{e^{2k}}{e^{2k}} B_{2} \frac{e^{2k}}{2} \right) \\ \frac{1}{2} \frac{1}{2} \frac{1}{4k} = e^{2k} \frac{1}{2} \frac{e^{2k}}{2k} \\ \frac{1}{4k} \frac{1}{2} \frac{1}{4k} = 3ke^{2k} - 23e^{2k} \\ \frac{1}{2} \frac{1}{2} \frac{1}{k} \frac{1}{4k} \frac{1}{4k} \frac{1}{4k} \\ \frac{1}{2} \frac{1}{4k} \frac{1}{4k} \frac{1}{4k} \frac{1}{4k} \\ \frac{1}{2} \frac{1}{4k} \frac{1}{4k} \frac{1}{4k} \frac{1}{4k} \frac{1}{4k} \\ \frac{1}{2} \frac{1}{4k} \frac{1}{4k$
$\begin{split} & \left(\begin{matrix} \frac{1}{200} + 22 \frac{1}{200} & \frac{1}{200} + 22 \frac{1}{200} \\ + 12 \frac{1}{200} & \frac{1}{200} & \frac{1}{200} & \frac{1}{200} \\ + 12 \frac{1}{200} & \frac{1}{200} & \frac{1}{200} & \frac{1}{200} \\ + 12 \frac{1}{200} & \frac{1}{200} & \frac{1}{200} & \frac{1}{200} \\ + 12 \frac{1}{200} & \frac$	$\therefore y^{\pm} = 3e^{\pm} - e^{\pm}$
инс (qutta) 2-6=0)(2+2)=0 <3 -2	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$
$4e^{3k} + Be^{-3k}$ $4e^{3k} + Be^{-2k}$	4

200

 $y = 9e^{6x} - 6e^x + e^{-4x}$

 $\frac{2A+B=4}{3A-2B=1} \xrightarrow{\text{ADD}}$ $\frac{5A=15}{[A=3]}$

20,

I.C.B.

Question 13 (****+)

$$2x\frac{d^2y}{dx^2} + \left(1 - 3x^{\frac{1}{2}}\right)\frac{dy}{dx} + y = 0.$$

The above differential equation is to be solved by a substitution.

- **a**) Given that y = f(x) and $t = x^{\frac{1}{2}}$, show clearly that ...
 - **i.** ... $\frac{dy}{dx} = \frac{1}{2t} \frac{dy}{dt}$.

ii. ...
$$\frac{d^2 y}{dx^2} = \frac{1}{4t^2} \frac{d^2 y}{dt^2} - \frac{1}{4t^3} \frac{dy}{dt}$$
.

b) Hence show further that the differential equation

$$2x\frac{d^2y}{dx^2} + \left(1 - 3x^{\frac{1}{2}}\right)\frac{dy}{dx} + y = 0,$$

can be transformed to the differential equation

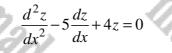
$$\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 0.$$

c) Find a general solution of the **original** differential equation, giving the answer in the form y = f(x).

a) $f = x^{\frac{1}{2}}$ b) $f = x^{\frac{1}{2}}$ c) $f = x^{\frac{1}{2}}$

 $y = A e^{\sqrt{x}} + B e^{2\sqrt{x}}$

Question 14 (****+)


Show clearly that the substitution $z = y^2$, where y = f(x), transforms the differential equation

$$\frac{d^2y}{dx^2} + \frac{1}{y}\left(\frac{dy}{dx}\right)^2 - 5\frac{dy}{dx} + 2y = 0$$

into the differential equation

F.G.B.

I.C.P.

1+

m

I.C.p

KGA

2

Question 15 (****+)

Given that if $x = t^{\frac{1}{2}}$, where y = f(x), show clearly that

a)
$$\frac{dy}{dx} = 2t^{\frac{1}{2}}\frac{dy}{dt}$$
.

b) $\frac{d^2 y}{dx^2} = 4t \frac{d^2 y}{dt^2} + 2\frac{dy}{dt}$.

The following differential equation is to be solved

$$x\frac{d^2y}{dx^2} - (8x^2 + 1)\frac{dy}{dx} + 12x^3y = 12x^5$$

subject to the boundary conditions $y = \frac{10}{3}$, $\frac{d^2y}{dx^2} = 10$ at x = 0.

c) Show further that the substitution $x = t^{\frac{1}{2}}$, where y = f(x), transforms the above differential equation into the differential equation

$$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 3y = 3t \; .$$

d) Show that a solution of the **original** differential equation is

 $y = e^{3x^2} + e^{x^2} + x^2 + \frac{4}{3}.$

 $= Ae^{a^2} + Be^{3a^2} + a^2 + \frac{a}{3}$

2=0 y-10

(a) $\begin{aligned} \begin{array}{l} (\mathbf{a}) & \sum_{\mathbf{a}} z = \frac{1}{2} \sum_{\mathbf{a}} z \\ & \sum_{\mathbf{a}} \sum_{\mathbf{b}} \sum_{\mathbf{a}} z \\ & = \sum_{\mathbf{b}} \sum_{\mathbf{b}} z \\ & = \sum$	$ \begin{array}{l} c) \alpha, \frac{\partial g}{\partial t^{2}} - (B_{t}^{2}t_{t})) \frac{\partial g}{\partial t_{t}} + 12t_{t}^{2}y_{t} = 123^{d} \\ \Rightarrow \frac{d^{2}t_{t}}{dt} - \left(B_{t}^{2}t_{t}\right) \frac{\partial g}{\partial t_{t}} - \left(Bt+1\right) \times tt_{t}^{d} \frac{\partial g}{\partial t_{t}} + 12t_{t}^{d}y_{t} = 12t_{t}^{2} \\ \Rightarrow 0 \text{ the } y_{t} + t \\ \Rightarrow 0 \text{ the } \frac{\partial g}{\partial t_{t}} + 2\frac{\partial g}{\partial t_{t}} - \left(I(t+2)\frac{\partial g}{\partial t_{t}} + 12ty_{t} = 12t^{2} \\ \Rightarrow -4t\frac{\partial g}{\partial t_{t}} + 2\frac{\partial g}{\partial t_{t}} - (I(t+2)\frac{\partial g}{\partial t_{t}} + 12ty_{t} = 12t^{2} \\ \Rightarrow -4t\frac{\partial g}{\partial t_{t}} - 16t\frac{\partial g}{\partial t_{t}} - 2t\frac{\partial g}{\partial t_{t}} + 12ty_{t} = 12t^{2} \\ \Rightarrow -4t\frac{\partial g}{\partial t_{t}} - 16t\frac{\partial g}{\partial t_{t}} + 17ty_{t} - 12t^{2} \\ \Rightarrow \frac{\partial g}{\partial t_{t}} - 4t\frac{\partial g}{\partial t_{t}} + 3y_{t} = 3t \\ \Rightarrow \frac{\partial g}{\partial t_{t}} - 4t\frac{\partial g}{\partial t_{t}} + 3y_{t} = 3t \\ \end{array} $
$ \Rightarrow \frac{\partial a_1}{\partial x} = t^{-\frac{1}{2}} \frac{d d t}{d t} + a_t^{-\frac{1}{2}} \frac{d d t}{d t} $ $ \Rightarrow \frac{d a_1}{\partial x} = t^{-\frac{1}{2}} \frac{d t}{d t} + a_t^{-\frac{1}{2}} \frac{d d t}{d t} $ $ \Rightarrow \frac{d a_1}{\partial x} = t^{-\frac{1}{2}} x_2 t^{\frac{1}{2}} \frac{d t}{d t} + 2 t^{\frac{1}{2}} \frac{d d t}{d t} x_2 t^{\frac{1}{2}} $ $ \Rightarrow \frac{d a_1}{\partial x} = a \frac{d t}{d t} + t(\frac{d a_1}{d t}) $	$ \begin{array}{c} (4) \begin{array}{c} (4) & \underline{f}_{1}(\underline{x}) & \underline{f}_{2}(\underline{x}) \\ & \overline{f}_{2}^{2} - 4\underline{x}_{1} + 3 = 0 \\ & \overline{f}_{2}^{2} & \underline{f}_{2}^{2} - \underline{f}_{2}^{2} + 4\underline{f}_{2} \\ & (1 - 3)(\lambda - 1) = 0 \\ & \overline{f}_{2}^{2} & \underline{f}_{2}^{2} & \underline{f}_{2}^{2} \\ & \overline{f}_{2}^{2} & \underline{f}_{2}^{2} \\ & \overline{f}_{2}^{2} & \underline{f}_{2}^{2} \\ & \overline{f}_{2}^{2} & \underline{f}_{2}^{2} \\ & \underline{f}_{2}^{2} & \underline{f}_{2}^{2} \\$

Question 16 (****+)

Y.C.B. Madasm

COM

I.C.B.

The curve with equation y = f(x) satisfies

$$x^{2}\frac{d^{2}y}{dx^{2}} + 5x\frac{dy}{dx} + 13y = 0, \ x > 0$$

By using the substitution $x = e^{t}$, or otherwise, determine an equation for y = f(x),

112/12

00

given further that y = 1 and $\frac{dy}{dx} = -2$ at x = 1.

		The second se	
$\begin{array}{c} (\begin{array}{c} (\end{array}{c} (\begin{array}{c} (\end{array}{c} ()))))))))))))))$	$\begin{split} \underbrace{\lim_{X \to X} A h X H (k_0 + k_0)}_{X \to 1 \to 1} & A h X H (k_0 + k_0) \\ & A^+ + \lambda H (k_0 - k_0) \\ & (k_0 + 1)^2 + \lambda H (k_0 - k_0) \\ & (k_0 + 1)^2 + \lambda H (k_0 - k_0) \\ & (k_0 + 1)^2 + \lambda H (k_0 - k_0) \\ & B T = \frac{k_0 + k_0}{k_0 + k_0 + k_0 + k_0} \\ & B T = \frac{k_0 + k_0}{k_0 + k_0 + k_0 + k_0} \\ & B T = \frac{k_0 + k_0}{k_0 + k_0 + k_0 + k_0} \\ & B T = \frac{k_0 + k_0}{k_0 + k_0 + k_0 + k_0} \\ & B T = \frac{k_0 + k_0}{k_0 + k_0 + k_0} \\ & B T = \frac{k_0 + k_0}{k_0 + k_0 + k_0} \\ & H = \frac{k_0 + k_0}{k_0 + k_0 + k_0} \\ & H = \frac{k_0 + k_0}{k_0 + k_0 + k_0} \\ & H = \frac{k_0 + k_0}{k_0 + k_0 + k_0} \\ & H = \frac{k_0 + k_0}{k_0 + k_0 + k_0} \\ & H = \frac{k_0 + k_0}{k_$	$\beta = \frac{1}{2r} \left[\frac{\beta_{rel}(3)\alpha}{\beta} + \frac{\beta_{rel}(3)\alpha}{\beta} \right] \qquad \begin{cases} \alpha \\ \beta \\$	54 54 51 51 51 51 51 51 51 51 51 51 51 51 51

 $y = \frac{\cos(3\ln x)}{x^2}$

nadasmaths,

I.F.G.B.

Com

1720251

2017

Question 17 (****+)

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx}\cot x + 2y\csc^2 x = 2\cos x - 2\cos^3 x.$$

Use the substitution $y = z \sin x$, where z is a function of x, to solve the above differential equation subject to the boundary conditions y = 1, $\frac{dy}{dx} = 0$ at $x = \frac{\pi}{2}$.

Give the answer in the form

Ĉ.B.

F.C.B.

$$y = a\sin^2 x + b(1 - \sin x)\sin 2x,$$

where a and b are constants to be found.

The set of the set	
0 () = 52MX	< B NOW HUNILLARY
• $\frac{d}{dt} = \frac{d}{dt} s_{NL} + 2c_{NL}$ • $\frac{d}{dt} = \frac{d}{dt} s_{NL} + \frac{d}{dt} c_{NL} + \frac{d}{dt} c_{NL} - 2s_{NL}$	C @ 74/2TIQUAL WITH
• $\frac{1}{10^{+}}$ $$	-4Psm22
→ \$**** + \$*****************************	E les smothes
$ = \frac{\partial g}{\partial t} \sup_{\lambda \in \mathcal{M}} - \frac{\partial g}{\partial t} \sup_{\lambda \in \mathcal{M}} - \frac{\partial g}{\partial t} - \frac{\partial g}{\partial t} - \frac{\partial g}{\partial t} = 2 \operatorname{dist}^{-1} \operatorname{dist}^{-1} \operatorname{dist}^{-1} $ $ = \frac{\partial g}{\partial t} \sup_{\lambda \in \mathcal{M}} - \frac{\partial g}{\partial t} - \frac{\partial g}{\partial t} - \frac{\partial g}{\partial t} = 2 \operatorname{dist}^{-1} (-\omega \tilde{\Delta}_{\lambda}) $ $ = \frac{\partial g}{\partial t} \sup_{\lambda \in \mathcal{M}} - \frac{\partial g}{\partial t} - \frac{\partial g}{\partial t} = 2 \operatorname{dist}^{-1} \operatorname{dist}^{-1} = 2 \operatorname{dist}^{-1} = 2 \operatorname{dist}^{-1} \operatorname{dist}^{-1} = 2 \operatorname{dist}^{-1} \operatorname{dist}^{-1} = 2 \operatorname{dist}^{-1} \operatorname{dist}^{-1} = 2 \operatorname{dist}^{-$	
$\implies \frac{d^2_{21}}{dx^2} - 2 \left[\frac{sd_{21}^2 + 2ss_{21}^2 - 2}{ss_{11}^2 x} \right] = 2ss_{21}^2 ss_{11} x.$	/ Naw a=I_1y=1 y=>m2+Asm2
$\Rightarrow \frac{\partial q_{\pm}}{\partial x} = 2 \left[\frac{s_{\pm} h_{\pm} + 2(j - g_{\pm} h_{\pm}) - 2}{s_{\pm} h_{\pm} - 2} \right] = s_{\pm} y_{\pm} 2$	41 = 2640(1092+22 410 21=2; 43=0
$\mathcal{L}gue. = \left(\frac{\hat{G}ue}{\mathcal{L}gue}\right) \leq -\frac{gu}{\mathcal{L}h} \in =$	ζ
$\Rightarrow \frac{d_2}{d\lambda^2} + \pm = \sin 2\lambda$	्र सु= इन्द्र () भू = योदे +

 $b = \frac{1}{3}$

COM

nana

i C.B.

a=1.

Question	18	(****+)

The function y = f(x) satisfies the following relationship.

$$4x\frac{d^2y}{dx^2} + 4x\left(\frac{dy}{dx}\right)^2 + 2\frac{dy}{dx} - 1 = 0$$

 $\frac{d^2v}{dt^2}$

It is further given that $x = t^2$ and $y = \ln v$.

Show that

I.V.C.B. Madasm

Smaths.com

I.V.G.B

Smaths,

20

2

	<u> </u>
$4\alpha \frac{d^2_u}{da^2} + 4\alpha \left(\frac{du}{da}\right)^2 + 2\frac{du}{da} -$	1 = 0
Let $x = t^2$ DIFREGUNTE	wert
DIFFRENTIATE WILL M	$\frac{dx}{dt} = 2t$
$\frac{du}{dx} = 2t \frac{dt}{dy}$	$\frac{dt}{dx} = \frac{1}{2t}$
$\frac{d^2 y}{dt^2} = \left(-\frac{1}{2t^2}\frac{dt^2_1dy}{dt^2_1} + \frac{1}{2t}\left(\frac{d^2 y}{dt^2_2}\frac{dt}{dt}\right)$	
$\frac{d^2y}{dx^2} = -\frac{1}{2t^2} \frac{1}{2t} \frac{dy}{dt} + \frac{1}{2t} \frac{d^2y}{dt^2} \frac{1}{2t}$	
$\frac{d u}{d a^2} = \frac{1}{4t^2} \frac{d u}{d a^2} = \frac{1}{4t^2} \frac{d u}{d t}$	
<u>80BSTITOTING WE OBTAIN</u> → 4t ² [the the - the the] + 4t ² [the	$\frac{du}{dt}$ + 2 $\left[\frac{1}{2t}\frac{du}{dt}\right]$ -
- da Lat (du)2. 1 de	C 1 - 0

$\implies \frac{d\underline{h}}{dt^2} + \left(\frac{d\underline{u}}{dt}\right)^2 - 1 = 0$
Next we use $M = \ln V$
DIFFERENTIATE W. R.T. E
du = L du
DIFFERENTIATE WRT t. ARM
Finitury substituting into the epotition
$\implies \frac{1}{T} \frac{q_{12}}{q_{2}} - \frac{1}{T} \left(\frac{q_{1}}{q_{1}} \right)_{5} + \left(\frac{1}{T} \frac{q_{2}}{q_{1}} \right)_{5} - 1 = 0$
$\Rightarrow \sqrt{\frac{dy}{dt_2}} - \sqrt{\frac{1}{2}} \left(\frac{dw}{dt_1}^2 + \sqrt{\frac{1}{2}} \frac{dw}{dt_2}^2 - 1 = 0 \right)$
$\Rightarrow \frac{1}{V} \frac{d^3 V}{dt^3} = 1$
$\Rightarrow \frac{d^{2}V}{dt^{2}} = V$

2011

ths.com

proof

ths.com

I.V.C.B. Madasa

4.6.5

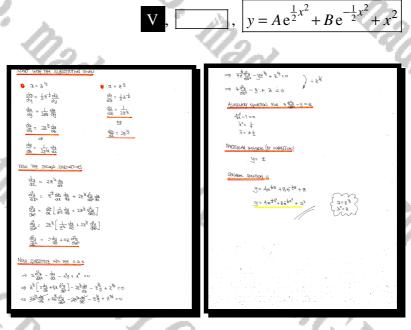
1.5

Created by T. Madas

COM

1.1.

Question 19 (****+)


asmarns,

I.C.B. Mad

I.C.p

 $x\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} - x^{3}y + x^{5} = 0.$

Use the substitution $x = z^{\frac{1}{2}}$, where y = f(x), to find a general solution of the above differential equation.

nn

The COM

nadasm.

aths com

Created by T. Madas

K.C.A

Question 20 (*****)

R

I.C.B.

Find the solution of following differential equation

$$\left(\frac{dy}{dx}\right)\left(\frac{d^2y}{dx^2}\right) = \frac{d^3y}{dx^3},$$

subject to the boundary conditions.

$$y(-\frac{1}{2}\pi) = y'(-\frac{1}{2}\pi) = 0, \qquad y''(-\frac{1}{2}\pi) = \frac{1}{2}.$$

Given the answer in the form y = f(x).

BY SUBSTITUTION - LET P = dy a SECARATE UNUABLES	1.000
$\Rightarrow \frac{dv}{dx} \times \frac{d^2u}{dx^2} = \frac{d^2u}{dx^2}$	
$-\infty$ $p \frac{dp}{dx} = \frac{d^2p}{dx^2}$	
$\implies \int p dp = \int \frac{dp}{d\lambda^2} d\lambda$	
$\Rightarrow \frac{1}{2}p^{n} = \frac{1}{2}p^{n} + A$	
$\implies p^2 = 2\frac{dp}{dx} + A$	
APPLY CONDITION エー・チ、柴=p=0、柴=柴=g	
$\implies 0 = 2x \frac{1}{2} + A$ $\implies + -1$	
$\implies p^{\lambda} = 2 \frac{dp}{dx} - 1$	
REARDANCE & STRAPATE UNRABULE -ACTION	
$rac{b_x}{dt} = 2 \frac{dz}{dt}$	
$\Rightarrow 1 dx = \frac{y^{2}+1}{z} dp$	
$= \int \frac{2}{p^2 + 1} dp = \int 1 dx$	
→ 2archun p = x + B	
\implies arctay $P = \frac{1}{2}x + B$	
\Rightarrow D = tou($\pm x \pm B$)	

$h_{\pi} = -\frac{\pi}{2} = \frac{d_{11}}{d_{12}} = 0$
$\begin{array}{l} 0 = barr\left(-\frac{\pi}{4} + B\right) \\ \Rightarrow B = \frac{\pi}{4} \underline{saly} + R \text{ THL IN} \\ \text{FRCT CAM- FROM} \\ \text{All TWN} \end{array}$
$\Rightarrow \frac{dT}{dT} = \frac{1}{2} \frac{1}{2$
NHERHTICH
E_ y=0
$ \Rightarrow 0 = 2h sec(\mp + \mp) + C \Rightarrow 0 = 2h (seco) + C \Rightarrow 0 = 2hr (seco) + C \Rightarrow 0 = 2hr + C \Rightarrow 0 = 2hr + C \Rightarrow 0 = 2hr + C = 2h sec(h, \pi, h) = 0 = 2h sec(h, \pi, h) = 0 \\ = 2h sec(h, \pi, h) = 0 \\ = 2h sec(h, \pi,$

F.G.B.

6

è

 $y = 2\ln\left|\sec\left(\frac{1}{2}x + \frac{1}{4}\pi\right)\right|$

Question 21 (*****)

F.C.B.

I.C.B.

Use a suitable substitution to solve the differential equation

$$x^{2}\frac{d^{2}y}{dx^{2}} - 6y = 2 - 2\ln x - 6(\ln x)^{2}$$

subject to the boundary conditions y(1) = 1, $\frac{dy}{dx}(1) = 3$

Give a simplified answer in the form y = f(x).

$\hat{\mathfrak{L}}_{\frac{d_{2}}{d_{2}^{2}}}^{\frac{d_{2}}{d_{2}}} - \tilde{\mathfrak{L}}_{\underline{y}} = 2 - 2h\alpha - 6(h\alpha x)^{2} + 2\pi i \cdot \frac{d_{1}}{d_{2}} + \frac{d_{2}}{d_{2}} = 3$
UBOLING AT THE R.H.S., WE TRY THE SUBSTITUTION $t\!-\!h_{12}$
talna a xaet br u.o.r 6
$\frac{b_{\text{tr}} \omega_{\text{tr}} - f}{dt} = \frac{dt}{dt} = \frac{dt}{d$
$\frac{dy}{dt} = 2 \cdot \frac{dy}{dt}$
$\frac{dy}{dt} = \frac{c}{c} \frac{dy}{dt}$
$\frac{d\hat{x}}{d\hat{y}} = -\hat{z}^{\dagger} \frac{d\hat{x}}{d\hat{x}} + \hat{z}^{\dagger} \frac{d\hat{y}}{d\hat{x}} \frac{d\hat{x}}{d\hat{x}}$
$\frac{dy}{dy} = -e^{\frac{1}{2}-\frac{1}{2}}\frac{dy}{dy} = -e^{\frac{1}{2}}\frac{dy}{dy} = e^{\frac{1}{2}}$
$\frac{ds}{dt} = \frac{ds}{dt} = \frac{ds}{dt}$ $\frac{ds}{dt} = \frac{ds}{dt}$ $\frac{ds}{dt} = \frac{ds}{dt}$ $\frac{ds}{dt} = \frac{ds}{dt}$
$\implies 3^2 \frac{d^2y}{dt^2} - 6t_y = 2 - 2ln_2 - 6(ln_2)^2$ $\implies e^{2t} \left[e^{2t} \frac{d^2y}{dt^2} - e^{2t} \frac{dy}{dt} \right] - 6t_y = 2 - 2t - 6t^2$
$\Rightarrow \frac{d_{12}}{dt_{2}} - \frac{d_{12}}{dt_{2}} - \frac{d_{12}}{dt_{2}} = 2 - 2t - 6t^{2} (\text{which only be say at some of})$

	10 M	
AXULAR EQUATION (14)	PHERIWLAR INTHRAL CA	(2.p.S
$ \Rightarrow \lambda^{2} - \lambda - 6 = 0 \Rightarrow (\lambda + 2)(\lambda - 3) = 0 \Rightarrow \lambda^{2} < \frac{-2}{3} $	$g = Pt^{2} + Qt + R$ $\frac{dq}{dt} = 2Pt + Q$ $\frac{d^{2}q}{dt^{2}} = 2P$	
COMPLICITY FUNCTION	⇒ 2P-(2Pt+Q)-6(Pt2	44t+2)
$y = 4e^{-2t} + Be^{3t}$	≅ 2 - 2t- 6t2	
	⇒ -6Pt2 + (-2P-6q)t 4	- (2P-Q-6P)
	≡ 2 - 2t -6t ²	
	$\Rightarrow \underbrace{P=1}_{-2} -2P - 6Q = -2 \\ -2 - 6Q = -2 \\ Q = 0$	2P - Q - 6Q = 2 2 - 0 - 6Q = 2 R = 0
" GALVERAL SOLUTION : y = .	4=2+8e3+++2	
PROUBITE IN 2 : g=1		
REFERENCIATES & they conditions 2-1, y-1 the-3		
		2lnx 2
$\therefore \underline{y} = \underline{x}^3 + (\ln \underline{x})^2$		

R

 $y = x^3 + \left(\ln x\right)^2$

20,

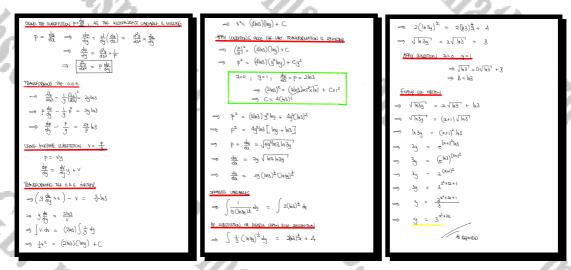
9

I.C.B.

1+

Question 22 (*****)

The function with equation y = f(x) satisfies the differential equation


 $\frac{d^2 y}{dx^2} - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 = 2y \ln 3, \quad y(0) = 1, \quad \frac{dy}{dx}(0) = 2\ln 3.$

Solve the above differential equation by using the substitution $p = \frac{dy}{dx}$, to show that

 $y = 3^{x^2 + 2x}$

proof

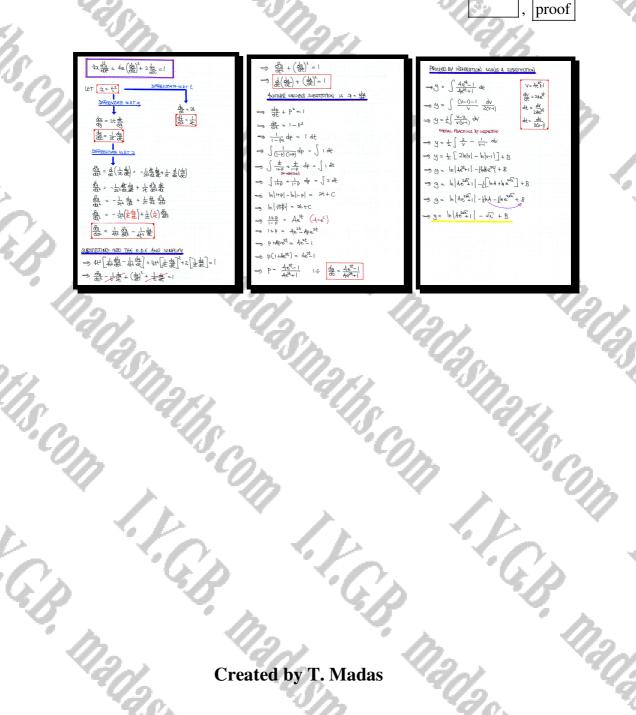
I.V.C.B. Mada

Created by T. Madas

I.V.C.

I.C.B.

0


Question 23 (*****)

$$4x\frac{d^2y}{dx^2} + 4x\left(\frac{dy}{dx}\right)^2 + 2\frac{dy}{dx} = 1$$

By using the substitution $t = \sqrt{x}$, or otherwise, show that the general solution of the above differential equation is

$$y = A - \sqrt{x} + \ln\left[1 + Be^{2\sqrt{x}}\right]$$

where A and B are arbitrary constants.

