INTEGRATION ARCLENGTHS & ALASINALIS COM S I. Y. G.B. MARIASINALIS COM I. Y. G.B. MARIASIN

ARCLENG. ARCLENG. Halloshallscon I.V.C.B. Halloshallscon I.V.C. IV.C.B. Halloshallscon I.V.C.B. Halloshallscon I.V.C. IV.C.B. Halloshallscon I.V.C.B. Halloshallscon I.V.C. IV.C.B. Halloshallscon I.V.C.B. Halloshallscon I.V.C. CLASINGUIS COM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM

Question 1 (**)

The figure above shows the graph of the curve with equation

 $y = \cosh x$, for $-1 \le x \le 1$.

Find the length of the curve, in terms of e.

F.G.B.

i.C.p.

Ĉ.p

m202

nn,

madasm

- $\int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2 \right)^{\frac{1}{2}} dx \qquad \qquad \int_{x_1}^{x_2} \left(1 + \left(\frac{du}{dx} \right)^2$
- Here $\left(1 + SMR_{SC}\right)^{\frac{1}{2}} dx$
- $\beta = \int_{1}^{1} \cosh dx \quad (807 \cosh a \ is \ fm))$
- \$= 2 some]
- $\beta = a(\sinh(-s)k0)$ $\xi = ax \pm (e - e')$
- $s' = e \frac{1}{e}$

Question 2 (**)

Smalls Com I. K. C. J.

I.C.p

The figure above shows the graph of the curve with equation

 $y = 4\sqrt{x^3} , \ x \ge 0 .$

Find the length of the arc of the curve for $0 \le x \le 10$.

127

hs.com

Ins.com

The Com

Created by T. Madas

011

Question 3 (**+)

R)

I.C.B.

The figure above shows the graph of the curve with equation

Cn.

 $y = \ln\left(\sec x\right), \ -\frac{\pi}{2} < x < \frac{\pi}{2}.$

0

Show that the length of the curve for $\frac{\pi}{6} \le x \le \frac{\pi}{3}$ is

 $\ln\left(1+\frac{2}{3}\sqrt{3}\right).$

proof

21/201

14

Question 4 (***)

A curve is given parametrically by

 $x = -t + \cosh t$, $y = t + \cosh t$, $0 \le t \le \frac{1}{2} \ln 2$.

Show that the length the curve is $\frac{1}{2}$.

THE ST IN	
$ \begin{array}{l} \left\{ \begin{array}{c} 2 = -\frac{1}{4} + \log k \\ \frac{1}{4k} = -1 + \log k \\ \frac{1}{4k$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$= \sqrt{2} \left[\frac{1}{2} \sqrt{2} - \frac{1}{2} \frac{1}{\sqrt{2}} \right] = 1 - \frac{1}{2} = \frac{1}{2}$	

Question 5 (***+)

A curve C has equation

 $y = x^{\frac{1}{2}} - \frac{1}{3}x^{\frac{3}{2}}, \ x \ge 0$

Show that the length of the arc of C from A(0,0) to B(9,-6) is 12 units.

proof

proof

$\begin{cases} y = x^{\frac{1}{2}} - \frac{1}{2}x^{\frac{1}{2}} \\ \frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{2}x^{\frac{1}{2}} \end{cases}$	$\implies \Rightarrow \Rightarrow = \int_{\lambda_1}^{\lambda_2} \sqrt{1 + \left(\frac{\lambda_1}{\alpha \lambda_2}\right)^2} dx$
$\left\langle \begin{pmatrix} d_{41} \\ d_{33} \end{pmatrix}^2 + \frac{1}{4} \frac{1}{x} - \frac{1}{2} + \frac{1}{4} x \right\rangle$	$\Rightarrow \beta = \int_{0}^{q} \sqrt{\left(\frac{1}{2}\alpha^{2} + \frac{1}{2}\alpha^{\frac{1}{2}}\right)^{2}} d\lambda$
$\begin{cases} \left(\frac{dy}{dx}\right)^2 + 1 = \frac{1}{4}\alpha^2 + \frac{1}{2} + \frac{1}{4}\alpha \end{cases}$	$\Rightarrow \beta = \int_{0}^{q} \frac{1}{2} \overline{x}^{\frac{1}{2}} + \frac{1}{2} x^{\frac{1}{2}} dx$
$\left\{ \begin{array}{c} \left(\frac{\partial g}{\partial x}\right)^2 + 1 = \left(\frac{1}{2}x^{\frac{1}{2}} + \frac{1}{2}x^{\frac{1}{2}}\right)^2 \right\}$	$\Rightarrow \not\leq = \left[\chi_{\overline{z}} + \frac{1}{2}\chi_{\overline{z}} \right]_{0}^{6}$
	$\implies \beta = (3+9)-(0)$
	=) S = 12 43 REQUESO

Question 6 (***+)

F.G.B.

I.G.B.

A curve is given parametrically by

 $x = 2\sinh t , \ y = \cosh^2 t , \ 0 \le t \le \ln 3 .$

 $\frac{20}{9}$

Show that the length the curve is exactly

C.B.

か

F.G.B.

madasn,

nn,

proof

S.

6

Question 7 (***+)

I.C.P.

COM

I.C.B.

A curve C has equation by $y^2 = x^3$ and its graph is shown in the figure above.

Show that the length of the arc of C from $A(5, -5\sqrt{5})$ to $B(5, 5\sqrt{5})$ is exactly $\frac{670}{27}$

20

nn

proof

20

. F.G.B.

COM

Madasn

nn

Madasm.

$\left\{ y^2 = x^3 \right\}$	$\beta = 2 \int_{1+\frac{1}{2}\alpha}^{5} d\alpha$	BY SYMUFTRY SINXE THERE ARE
$\left\{ 2y \frac{dy}{dx} = \frac{3\alpha^2}{2} \right\}$	د. د کر د	(Two water)
{ fig (du) = 92 t	$\geq 2 \int_{0} \left(1 + \frac{q}{4} \lambda\right)^{2} d\lambda$	(y=- NR)
$\left\{ 4 \lambda^3 \frac{d \mathbf{h} ^2}{d\lambda} = 9 \lambda^4 \right\}$	$\label{eq:states} \begin{split} \varsigma &= \left[2 \chi^{\underline{\theta}}_{27} \big(+ \frac{q}{4} \chi \big)^{\underline{3}} \right]^{5}_{0} \end{split}$	
$\left\{ \begin{array}{c} \frac{d}{dx} \right\}^{2} = \frac{q}{4x} \\ \end{array} \right\}$	$ \label{eq:states} \begin{split} & \not = \ \frac{16}{27} \left[\left(1 + \frac{q}{4} t \right)^{\frac{1}{2}} \right]_{0}^{-5} \end{split}$	
$\left\{\begin{array}{c} 1+\frac{ \mathbf{k}\mathbf{u} }{ \mathbf{p}\mathbf{x} ^2}=-1+\frac{\mathbf{a}}{4}\mathbf{x}\\ 0\end{array}\right\}$	$\neq = \frac{16}{27} \left[\frac{342}{8} - 1 \right] =$	<u>570</u>

Question 8 (****)

F.G.B.

í C.B.

A curve C has equation

 $y = \frac{1}{2} \ln \left(\tanh x \right), \quad x \in \mathbb{R}, \ x > 0.$

Show that the length of C from the point where $x = \ln 2$ to the point where $x = \ln 4$ is exactly

 $\ln\left(\frac{\sqrt{17}}{4}\right)$

proof

F.G.B.

mana

1/2 In (tanha)

dy _ l dy _ sinhzy

 $\frac{du}{dl} = \frac{1}{2} \times \frac{1}{\tan hx} \times \frac{1}{2 \tan hx} = \frac{1}{2 \tan hx} = \frac{1}{2 \tan hx} = \frac{1}{2 \tan hx} = \frac{1}{2 \tan hx}$

 $\begin{aligned} \bullet & \Rightarrow = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{d_1}{d_2N}\right)^2} \, dx = \int_{\frac{1}{N/2}}^{\frac{1}{N/2}} \sqrt{1 + \frac{1}{soly(x_2)}} \, dx = \int_{\frac{1}{N/2}}^{\frac{1}{N/2}} \frac{\frac{soly(x_1+1)}{soly(x_2)}}{soly(x_2)} \, dx \\ & = \int_{\frac{1}{N/2}}^{\frac{1}{N/2}} \frac{\frac{soly(x_2)}{soly(x_2)}}{soly(x_2)} \, dx = \int_{\frac{1}{N/2}}^{\frac{1}{N/2}} \frac{\frac{soly(x_1+1)}{soly(x_2)}}{soly(x_2)} \, dx \end{aligned}$

$$\begin{split} & = \left\{ \begin{array}{l} & \left(u_{0} h_{0} \right) h_{0} h_{0}$$

Created	by T.	Madas
---------	-------	-------

Y.C.P.

=> cosht=1

2+14-1

y

0

Question 10 (****)

The figure above shows the graph of the curve with equation

$$y = \ln(1-x^2), \ \frac{1}{2} \le x \le \frac{1}{2}.$$

a) Show that the length s of the curve is given by

$$s = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1+x^2}{1-x^2} \, dx \, .$$

b) Hence find the exact length of the curve.

声= Jay / 1+留P dz	{ y= h(1-23) }
$ \leq \int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{1 + \left(\frac{-2x}{1-x^{2}}\right)^{2}} dx$	$\begin{cases} \frac{du}{dt} = \frac{1}{1-y^2} \times (-2\lambda) \end{cases}$
$\beta = \int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{1 + \frac{\eta_{1}^{2}}{(-\eta_{1}^{2})^{2}}} d\lambda$	
$\beta^{i} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{\frac{1-2\chi^{2}+\chi^{2}+4\chi^{2}}{1-2\chi^{2}+\chi^{2}}} dr$	
$\beta = \int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{\frac{2^{4}+22^{2}+1^{2}}{2^{4}-2x^{2}+1}} dx$	
$ \xi = \int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{\frac{\left(\chi^{2}+i\right)^{2}}{\left(\chi^{2}-i\right)^{2}}} d\lambda $	
$\beta^{1} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \left \frac{\lambda^{2}+1}{\lambda^{2}-1} \right d\lambda$	
$\beta = \int_{-\frac{1}{2}}^{\pm} \frac{1+3^2}{1-3^2} dx$	AS EXQUIENO
INTHERATE THE GARAGEDION , NOTE THAT	THE MONSOMME IS TOWN AND THE

$\beta = 2 \int_{1}^{\frac{1}{2}} \frac{2 - (1 - 2^2)}{(1 - 2^2)} dx$	$= 2 \int_{1-\chi^2}^{\frac{1}{2}} - 1 \mathrm{d} \lambda.$
$\beta = \int_{0}^{\frac{1}{2}} \frac{4}{(1-\lambda)(1+\lambda)} - 2 d\lambda$	
ettine Reactions is inspection)	
$\frac{1}{p} = \int_{0}^{\frac{1}{2}} \frac{2}{1-x} + \frac{2}{1+x} - 2 dx$	
\$ = [-2b 1-2 +2b 1+2 -22	ż.
$\beta_{1}^{2} = \left(-2h_{1}\frac{1}{2} + 2h_{1}\frac{3}{2} - 1\right) - \left(-2h_{1}\frac{1}{2}\right)$	r(+2h1-0)
$= 2 \ln \frac{3}{2} - \ln \frac{1}{2} - 1$	
\$ = 2[bz - hz]-1	
$\beta = 2 \ln \frac{3}{2} + \ln 2 - 1$	
\$ = 2M3-1	

 $-1 + 2 \ln 3$

 $y = \ln\left(1 - x^2\right)$

Question 11 (****)

Y.C.

$$I(a,x) \equiv \int \sqrt{x^2 + a^2} \, dx, \quad x \in \mathbb{R}, \quad a \in \mathbb{R}, \quad x > 0.$$

a) Use a suitable hyperbolic substitution to show that

$$I(a,x) = \frac{1}{2}a^2 \left[\operatorname{arsinh}\left(\frac{x}{a}\right) + \frac{x\sqrt{x^2 + a^2}}{a^2} \right] + \operatorname{constant} .$$

 $y = \frac{1}{4}x^2,$

b) Hence find in exact form the length of the curve with equation

from the origin O to the point with coordinates $(1, \frac{1}{4})$.

 $s = \int_{0}^{1} \frac{1}{2} \sqrt{4 + x^2} dx$ QNm20=x • • da= acosh0 USING PART (a) WITH a=2 $\Theta = \alpha result = \Theta \bullet$ $s = \frac{1}{4} \times 2^2 \left[a_{SSWh} \frac{x}{2} + \frac{2\sqrt{3^2 + 4^2}}{2^2} \right]_0^2$ TRANSFORMANG WE OBTATIN $I = \int \sqrt{a^2 + a^2} \, dx = \int \sqrt{a^2 x u h^2 \theta + a^2} \left(\cosh \theta \, d\theta \right)$ $\beta = \left[\operatorname{arpsh} \frac{3}{2} + \frac{1}{4} 2 \sqrt{2^2 + 4^2} \right]_0^1$ Vata (allo) (a wall) to - J v at at all (lead a) $\beta = \left[\left[\operatorname{arcub}_{\frac{1}{2}} + \frac{1}{4} \times / \sqrt{S} \right] - \left[\circ \right] \right]$ S = acouty 12 + 415 $= a^{2} \left[\frac{1}{2} \theta + \frac{1}{4} \operatorname{sub20} + C \right] = a^{2} \left[\frac{1}{2} \theta + \frac{1}{2} \operatorname{sub0} \operatorname{cable} \right] + C$ $\beta^{1} = - \ln \left(\frac{1}{2} + \sqrt{\frac{1}{2} + 1} \right) + \frac{1}{4} \sqrt{2}^{2}$ $d^{2}\left[\frac{1}{2}\operatorname{arsub}\left(\frac{x}{\alpha}\right) + \frac{1}{2}\left(\frac{x}{\alpha}\right)\sqrt{1 + \left(\frac{x}{\alpha}\right)^{2}}\right] + C$ $\beta = \ln\left(\frac{1+\sqrt{2}}{2}\right) + \frac{1}{4}\sqrt{5}$ $= \frac{1}{2}q_{\pi}^{2} \left[\cos \eta \left(\frac{x}{\alpha} \right) + \frac{x}{\alpha} \sqrt{\frac{q_{\pi}+3z_{\pi}}{q_{\pi}}} \right] + C$ $\frac{1}{2}a_{2}\left[\alpha_{12}mp\left(\frac{a}{2}\right) + \frac{a_{1}}{2\sqrt{a^{2}+3^{2}}}\right] + C$ OP AN ARCLEWENT INSTAGRAL & - J_{2_1}^{2_2} \sqrt{1+(\frac{1}{22})^2} d\lambda $\dot{\beta} = \int_{-1}^{1} \sqrt{1 + \frac{1}{4} \chi^2} d\lambda$

 $s = \frac{1}{4}\sqrt{5} + \ln\left[\frac{1}{2}\left(1 + \sqrt{5}\right)\right]$

Question 12 (****)

A curve has equation

 $y = \ln(1 + \cos x), \quad x \in \left[-\frac{1}{2}\pi, \frac{1}{2}\pi\right]$

Show that the length this curve is $\ln(17+12\sqrt{2})$ units.

I.G.B.

I.V.C.J

I.V.G.B. Ing

I.F.G.P.

20

112012,

Inada.

proof ARIES FIRST 19= In (1+ cosa) => dy = -sinz $\frac{\chi_{1}^{2}(z+\zeta_{1}^{2}(z+1))}{\zeta(z+1)} = \frac{\chi_{1}^{2}(z+1)}{\zeta(z+1)} + 1 = \frac{\zeta_{1}(z+1)}{\zeta(z+1)} + 1 = \frac{\zeta_{1}(z+1)}{\zeta(z+1)} + 1$ $= \frac{1+2\omega_{21}+\omega_{21}^2+\omega_{11}^2}{(1+\omega_{21})^2} = \frac{2+2\omega_{22}}{(1+\omega_{21})^2} = \frac{2\zeta(1+\omega_{22})}{(1+\omega_{22})^2}$ $1 + \left(\frac{\partial a}{\partial t}\right)^2 = \frac{2}{1 + \cos 2} \left(\cos 2 \frac{1}{t} - 1\right)$ AND -ADOLLENDER INSTEERET $\dot{g} = \int_{\lambda_1}^{\infty} \sqrt{1 + \left(\frac{du}{d\lambda}\right)^2} \, d\lambda = \int_{-\frac{D}{d\lambda}}^{\frac{D}{d\lambda}} \sqrt{\frac{1 + \omega_0}{1 + \omega_0}} \, d\lambda = 2 \int_{0}^{\frac{D}{d\lambda}} \sqrt{\frac{1 + \omega_0}{1 + \omega_0}} \, d\lambda$ $\dot{\beta} = 2 \int_{0}^{\frac{T}{2}} \sqrt{\frac{2}{1 + (2\omega_{1}^{2} + 1)}} d\lambda = 2 \int_{0}^{\frac{T}{2}} \sqrt{\frac{2}{-2\omega_{1}^{2} \gamma_{2}}} d\lambda$ $s_{p}^{L} = 2 \int_{0}^{\infty} \frac{1}{\cos \frac{\pi}{2}} d\lambda = 2 \int_{0}^{\frac{\pi}{2}} \sec \frac{\pi}{2} dk = 2 \left[2 l_{H} \left| \sec \frac{\pi}{2} + \tan \frac{\pi}{2} \right| \right]^{\frac{H}{2}}$ $s = 4 \left[h(sec_{1} + t_{m}_{1}) - h(sec_{1} + b_{m}_{0}) \right] = 4 \left[h(s_{1}) - h(1+o) \right]$ $\beta = 4 \ln (12+1) = 2 \ln (\sqrt{2}+1)^2 = 2 \ln (2+2\sqrt{2}+1) = 2 \ln (3+2\sqrt{2})$ ENPEATING ONCE MORE $= \ln(3+2n\bar{2})^2 = \ln(9+12n\bar{2}+8) = \ln(17+12n\bar{2})^2$.C.p

20

I.Y.G.B.

27

hs.com

4.60

(****+) Question 13

Find an exact value for the length of the curve with equation

Question 14 (****+)

A curve has equation

 $y = \frac{1}{4} \left[(2x+1)\sqrt{4x^2+4x} - \operatorname{arcosh}(2x+1) \right], \quad 0 \le x \le 4.$

Show that the length of the curve is 20 units.

I.G.B.

E.G.A

I.C.B.

I.C.B.

I.F.C.B.

ma

proof

Question 15 (*****)

A parabola has equation

 $y^2 = 4x , \quad 0 \le x \le 5$

Show that the length this parabola is exactly $\ln(\sqrt{a} + \sqrt{b}) + \sqrt{ab}$ where a and b are positive integers.

REPARE AN ARC-LENDTH INT	H62AL	N
4(@)(∰)= 16 HJ(∰)= 16 J= @2	$ \begin{array}{l} \left(\frac{d_{ij}}{d \lambda} \right)^2 = \frac{1}{\chi} \\ 1 + \left(\frac{d_{ij}}{d \lambda} \right)^2 = 1 + \frac{1}{\chi} \\ \sqrt{1 + \left(\frac{d_{ij}}{d \lambda} \right)^2} = \sqrt{1 + \frac{1}{\chi}} \end{array} $	
GITTING THE INSTRUMENT		
$g = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dx}{dx}\right)^2} d\lambda$	$= \int_{0}^{2} \sqrt{1 + \frac{1}{\lambda}} d\lambda = \int_{0}^{2} \sqrt{\frac{2(1+1)}{\lambda}} d\lambda$	
Places by + itmaeauc su	ജനാസം	
8 = acmhúi Vir = sunha Ir= sunha dur 2 cmhadha da	I=0 → B=0 X=S → aconfS	
TRANSFORMING THE INSTREMEL		
Jane Jan	$ah\theta d\theta = \int_{-\infty}^{0} \frac{\partial a \omega \sqrt{\omega^2}}{\partial \omega \partial \theta} (2syly \theta \partial \omega h \theta) d\theta$	
$= \int_{0}^{\frac{1}{2}} \frac{\partial (x) d\theta}{\partial t} d\theta = \int_{0}^{\frac{1}{2}} \frac{1}{t}$	H_{R}^{R} + cosh20 d0 = $\left[0 + \frac{1}{2} \text{Sorh20}\right]_{\text{R}}^{\text{R}}$	
» [в + smhвroshe] «Стиби	= nruh & +Bach (arsupter) - 0	
	$\alpha_{uuc} = \alpha_{uu} + w = h(w + \sqrt{w^2 + i})$	

= ln((5+JE) +(Sech(accinhis)

NOW MANIPULATE FUTTHER	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
ARTHONATULY SUBTRUTION BE THE INHEAR IN 2 STRES	
$ \begin{cases} \int_{0}^{0} \sqrt{1 + \frac{1}{\lambda}} d_{\lambda} = \int_{0}^{1} \frac{i \frac{2\lambda + 1}{\lambda + \lambda}}{\lambda + \lambda} d_{\lambda} \\ = \int_{0}^{0} \frac{i \frac{2\lambda + 1}{\lambda}}{\lambda + \lambda} d_{\lambda} \\ = \int_{0}^{0} \frac{i \frac{2\lambda + 1}{\lambda + \lambda}}{\lambda + \lambda} d_{\lambda} \\ = \int_{0}^{0} \frac{i \frac{2\lambda + 1}{\lambda + \lambda}}{\lambda + \lambda} d_{\lambda} \\ = \int_{0}^{0} \frac{i \frac{2\lambda + 1}{\lambda + \lambda}}{\lambda + \lambda} d_{\lambda} \\ = \int_{0}^{0} \frac{i \frac{2\lambda + 1}{\lambda + \lambda}}{\lambda + \lambda} d_{\lambda} \\ = \int_{0}^{0} \frac{i \frac{2\lambda + 1}{\lambda + \lambda}}{\lambda + \lambda + \lambda} d_{\lambda} \\ = \int_{0}^{0} \frac{i \frac{2\lambda + 1}{\lambda + \lambda}}{\lambda + \lambda + \lambda} d_{\lambda} \\ = \int_{0}^{0} \frac{i \frac{2\lambda + 1}{\lambda + \lambda}}{\lambda + \lambda + \lambda} d_{\lambda} \\ = \int_{0}^{0} \frac{i \frac{2\lambda + 1}{\lambda + \lambda}}{\lambda + \lambda + \lambda + \lambda + \lambda} d_{\lambda} \\ = \int_{0}^{0} \frac{i \frac{2\lambda + 1}{\lambda + \lambda}}{\lambda + \lambda + \lambda + \lambda + \lambda + \lambda} d_{\lambda} \\ = \int_{0}^{0} \frac{i \frac{2\lambda + 1}{\lambda + \lambda}}{\lambda + \lambda +$	marrie and
$= \int_{\Omega} \frac{\partial \omega \partial G}{\partial \omega \partial r} d\theta $	
adjust where ship the period of the man	~

29

(a,b) = (6,5) = (5,6)

SURE. OF REVOLUTIO.

Question 1 (***) The part of the curve with equation

 $y = x^3, \ 0 \le x \le 1$

is rotated through 2π radians about the x axis.

Show that the area surface generated is

 $\frac{\pi}{27} \Big[10\sqrt{10} - 1 \Big].$

A design of the second s
WIND THE STANDARD SORFACE FORWAR BR 3= 23
$S_{n} = \int_{-\infty}^{\infty} \frac{1}{2\pi^{2}} \int_{-\infty}^{\infty} \frac{1}{(+(\frac{\partial Q}{\partial x})^{n})} dx$
$ = 2\pi \int_{-\infty}^{1} \frac{1}{2^3} \sqrt{-1 + (3\alpha^2)^{2^2}} dz $
$\beta = \operatorname{set} \int_{0}^{1} \tau_{\lambda}^{2} \left(1 + q_{\lambda} \epsilon \right)^{\frac{1}{2}} d\lambda.$
NOW BY SUBSTRUTION OR RECOGNITION
$ \left[\underbrace{\left[- \operatorname{shol} \right]}_{1-} \underbrace{\mathbb{T}}_{2} = \underbrace{\left[1 - \underbrace{\mathbb{T}}_{2} - \underbrace{\mathbb{T}}_{2} \right]}_{2} \underbrace{\mathbb{T}}_{2} = \underbrace{\left[\underbrace{\mathbb{T}}_{2} \left\{ \operatorname{tr}_{1-1} \right\} \underbrace{\mathbb{T}}_{2} \right]}_{1-} \underbrace{\mathbb{T}}_{2} \mathbb{T$
+F Etenteo

proof

Question 2 (***)

By considering the top half of the circle with equation

 $x^2 + y^2 = a^2, \quad y \ge 0$

show that the surface generated when the circle's top half is rotated through 2π radians about the x axis has an area of $4\pi a^2$ square units.

m	100
$\begin{array}{c c} & & & & \\ & &$	$\begin{array}{c} y_{1}^{2} = \alpha^{2} \\ \varphi_{2}^{2} = \alpha^{2} \\ \varphi_{3}^{2} \\ \varphi_{3}^{2} = \alpha^{2} \\ \varphi_{3}^{2} \\ \varphi_{3}^{$
$\frac{1}{2} \int_{a}^{a} 9 \sqrt{\frac{a^{2}}{a^{2}-x^{2}}} dx =$ $\therefore = 4\pi a \int_{a}^{a} 1 dx = d\pi a \int_{a}^{a} 1 dx$	$4\Pi \int_{b}^{a} \sqrt{a^{2}x^{2}} \frac{a}{\sqrt{a^{2}x^{2}}} dx$ $3x \int_{a}^{a} = 4\pi a^{2} \frac{4\pi}{\sqrt{a^{2}}}$ $\frac{1}{\sqrt{a^{2}}}$

proof

Question 3 (***)

A parabola has equation

 $y^2 = 12x$, $x \ge 0$.

The arc of the parabola from the point A(0,0) to the point B(3,6) is rotated through 2π radians about the x axis, to form a solid of revolution.

 $24\pi(2\sqrt{2}-1)$.

Show clearly that the area of the curved surface of the solid produced is exactly

 $\begin{array}{c} \int_{a}^{a} = 1/2a \\ g_{1} \int_{a}^{a} g_{2} \int_{a}^{a} g_{1} \int_{a}^{a} f_{1} \left(\frac{g_{1}}{g_{2}} \right)^{a} d_{2} \\ g_{2} \int_{a}^{a} g_{1} \int_{a}^{a} f_{1} \left(\frac{g_{2}}{g_{2}} \right)^{a} d_{2} \\ g_{3} \int_{a}^{b} g_{$

proof

Question 4 (***+)

Ĉ.Ŗ

C.P.

A curve C has equation given by

 $y = x^{\frac{1}{2}} - \frac{1}{3}x^{\frac{3}{2}}, x \ge 0.$

Show that the area of the surface generated when the arc of C for which $0 \le x \le 3$ is rotated through 2π radians about the x axis is 3π square units.

Y.C.P

20/281

proof

C.4.

Question 5 (****)

The figure above shows the curve C, given parametrically by the equations

$$x = \frac{1}{2} \cosh 2t$$
, $y = 2 \sinh t$, $t \in \mathbb{R}$.

a) Show that

$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = 2\cosh^2 t$$

The arc of C from the point $A(\frac{1}{2}, 0)$ to the point $B(\frac{17}{16}, \frac{3}{2})$ is rotated through 2π radians about the x axis.

b) Show that the area of the surface generated is $\frac{61}{24}\pi$ square units.

proof

(3) $\sqrt{\left(\frac{dt}{dt}\right)^2 + \left(\frac{du}{dt}\right)^2} = \sqrt{\left(\frac{3wh}{2}\chi\right)^2 + \left(2\omega ht\right)^2} = \sqrt{\frac{3wh}{2}\chi + 4\omega ht}$
= $\sqrt{(2mhtrasht)^2 + 4ush^2t^2} = \sqrt{4ush^2t + 4ush^2t}$
= $\sqrt{4\omega h^2 (swh^2 + 1)} = \sqrt{4\omega h^2 (swh^2 + 1)}$
- Realizer + Realizer
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{split} & = \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \mathcal{H} = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \mathcal{H} = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \mathcal{H} = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \mathcal{H} = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \mathcal{H} = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2}} d_{t} \\ & = \frac{1}{2} \int_{2\pi/2}^{\pi/2} (g_{t}) \sqrt{(g_{t})^{2} + (g_{t})^{2} + (g_{t})^{$
$\begin{split} & \stackrel{\mathrm{d}}{\Rightarrow} = 2\pi \int_{0}^{T} 2 \operatorname{andet} \left(2(\operatorname{ad})^{2} t \right) \mathrm{d} t \\ & \stackrel{\mathrm{d}}{\Rightarrow} = 2\pi \int_{0}^{T} 2 \operatorname{andet} \left(2(\operatorname{ad})^{2} t \right) \mathrm{d} t \\ & \stackrel{\mathrm{d}}{\Rightarrow} = \frac{2\pi}{24} \times \frac{C_{1}}{24} \end{split}$
0 0

Question 6 (****)

The curve C has parametric equations

 $x = \cos \theta$, $y = \ln (\sec \theta + \tan \theta) - \sin \theta$, $0 \le \theta \le \frac{\pi}{3}$

a) Show that

 $\frac{dy}{d\theta} = f(\theta)g(\theta),$

where $f(\theta)$ and $g(\theta)$ are simple trigonometric functions.

b) Hence show that the length of C is $\ln 2$.

 $\begin{array}{rcl} \partial \omega - \left[\partial \delta \omega + b \omega \right] & \partial \omega - \left[\partial \delta \omega + b \omega \right] & \partial \omega - \left[\partial \delta \omega + b \omega \right] & \partial \omega - \omega & \partial \omega & \partial \omega \\ \partial \omega - \partial \omega & \partial \omega - \partial \omega & \partial \omega - \partial \omega & \partial \omega & \partial \omega \\ \partial \omega - \partial \omega & \partial \omega \\ \partial \omega - \partial \omega & \partial \omega \\ \partial \omega & \partial \omega &$

Question 7 (****)

A curve has parametric equations

 $x = t - \tanh t$, $y = \operatorname{sech} t$, $0 \le t < \ln 2$.

Determine, in exact simplified form, the area of the surface of a complete revolution of the curve, about the x axis.

 $\frac{2}{5}\pi$ V ANNA THE STADDARD PORULA $S' = \int_{1}^{t_{2}} 2\pi g(t) dz = 2\pi \int_{1}^{t_{2}} 2\pi g(t) \sqrt{(\frac{t_{2}}{t_{1}})^{2} + (\frac{t_{2}}{t_{2}})^{2}} dt$ 5= 211 secht N (1-secht)2 + (-secht fault)21 dt cher workt 1. socher hander Seclet 1 1- 2000/2+ seeler + seeler (1- sed2+) df secht VI-20edit +388/E+288/E-secht dt Stat NI-sadet dt secht Jtanhet' dt 5 = 27 [secht funkt dt $= -4\pi \left[\frac{1}{e^{i\theta_{+}^{2}} + e^{i\theta_{-}^{2}}} - \frac{1}{1+1} \right] = -4\pi \left[\frac{1}{2+\frac{1}{2}} - \frac{1}{2} \right]$ $=-4\pi\left[\frac{2}{5}-\frac{1}{2}\right]=\frac{2}{5}\pi$

Question 8 (****+)

The curve C has equation given by

$$x^{2} = x^{2} + 32, x \in \mathbb{R}, 0 \le x \le 4$$

a) Show that

F.G.B.

ic.p.

$$\overline{1 + \left(\frac{dy}{dx}\right)^2} = \frac{\sqrt{2x^2 + 32}}{y}$$

b) Hence show further that the area of the surface generated when C is rotated by 2π radians in the x axis is given by

 $16\pi \Big[2+\sqrt{2}\ln\Big(1+\sqrt{2}\Big)\Big].$

(a)	y= 22+32	(dy)2 - 1	32-	
	⇒ 29 day = 22	(+ (dy)2 -	7 ² +32 7 ² +32 +32	
	$\Rightarrow \frac{du}{dt} = \frac{\pi}{4}$	(du)2	32+32	
	$\Rightarrow \left(\frac{d_{q}}{d_{2}}\right)^{2} = \frac{2^{2}}{\omega^{2}}$	(du)2	22+32	
	(a) 3-	$\sqrt{1 + \left(\frac{\partial \lambda}{\partial \lambda}\right)} =$	N - 42	
		$i = \sqrt{\frac{1}{1 + \left(\frac{dh_{ij}}{d\Omega}\right)^2}} =$	$\frac{1}{5}\sqrt{2x^2+32}$	45 Elwineno
(b)	$ \overset{{}_{\mathrm{c}}}{\not \gamma} = \ \Im \pi \int_{\mathcal{Q}_1}^{\mathcal{R}_2} \sqrt{1 + \left(\overset{{}_{\mathrm{c}}}{\not \omega} \right)^2} \mathrm{d} \alpha $	= aπ] ⁴ y × <u>ι</u> ,	212+321 da	
	$= 2\pi \int_0^4 \sqrt{2x^2 + 32^2} dx$	= 2/2 a J_6 / 2*+1	e dr	Bfore 4 single and a start and a start and a start a s
	$= 2\sqrt{\pi}^{\eta} \pi \int_{0}^{\alpha trushl} \sqrt{(6sm)^{\alpha} \theta + m^{1}}$	$(\theta b \theta d_{ao} t t)$		$\begin{cases} x=0 0=0 \\ (x=0 \mu = 0) \end{cases}$
	$= 2\sqrt{2}\pi \int_{0}^{\cos(k)} 4\sqrt{\sin(\theta+t)} dt$	(tusho) do		O=arsti(=)
	$= 32\sqrt{2}\pi \int_{0}^{1} dam H da$	$= 32\sqrt{2}\pi \int_{0}^{0} \frac{dr_{s}}{2}$	h1 +£csh28 d8	
	= 3212 tr (= 0 + 1 sinh2	6 chemil		
	= 32/27 [±0 + ±sull	acento orient	(and	Solite = CZ
	$= 3267 \left[\frac{1}{2}\theta + \frac{1}{2} \operatorname{subb}, \right]$	[1+Sulfs@]0	Cosho =	Office2+1 +
	= $32\sqrt{2} \frac{1}{12} \left[\left(\frac{1}{2} \cos \theta \right) + \frac{1}{2} \right]$	$\left[\left(x\sqrt{1+t^{2}}\right)-\left(0\right)\right]$	- 0	
	= $32\overline{L_2}$ if $\left[\frac{1}{2}$ analy $\frac{1}{2}$	2]		
	$= G\sqrt{2}\pi \int \alpha_{ISM} + \sqrt{2}$	2]		
	$= 16\sqrt{2} \pi \left[b(1+\sqrt{2}) + \right]$	12]		
	$= 16\pi \left(2 + \sqrt{2} \ln(1+\sqrt{2}) \right)$	2))		
		CC 215 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

.C.B.

proof

2

K.C.

Question 9 (****+)

A curve is defined parametrically by the following equations.

 $x = 2 \ln t$, $y = t + \frac{1}{t}$, $t \in \mathbb{R}$, $1 \le t \le 4$.

The curve is fully revolved about the y axis forming a surface of revolution.

Show that the area of this surface is

 $k\pi[-3+10\ln 2],$

k = 3

411 { 浮岫 + (2 - 埕)}

S' = T [15h4 + 8 - 17]

T [30b12 - 9]

= $3\pi \left[-3 + 10 \ln 2 \right]$

where k is a positive integer to be found.

I= 2lnt y= t+1 ≤ t ≤4 RET BY DEDINING + $\delta = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{du}{dt}\right)^2} = \sqrt{\left(\frac{x}{t}\right)^2 + \left(1 - \frac{1}{t^2}\right)^2}$ $= \sqrt{\frac{4}{t^2} + (-\frac{2}{t^2} + \frac{1}{t^4})} = \sqrt{(+\frac{2}{t^2} + \frac{1}{t^4})} = \sqrt{(1 + \frac{1}{t^2})^2}$ UP -A SUBFACE OF REVOLUTION INTERAL ABOUT THE OF AXIS $\mathcal{S} = \int_{0}^{3\pi} 2\pi \alpha d\beta = \int_{0}^{2\pi} 2\pi a(t) \left[1 + \frac{1}{t^{2}} \right] dt$ $\binom{4}{2\pi} (2h_t)(1+\frac{1}{4\pi}) dt = 4\pi \int_{0}^{0} (1+\frac{1}{4\pi}) h_t dt$ ≥ = 4#{[(t-f)ht]" - ["+(t-f)dt} Int t-는 나눠 $\Rightarrow \beta = 4T \left\{ \left(\frac{15}{4} \ln 4 \right) - (0) - \int_{1}^{4} 1 - \frac{1}{42} dt \right\}$ S= 如{ \$\mathcal{L} = 47 { 41 { \$ + [t++] }

Question 10 (****+)

A curve has parametric equations

 $x = \cosh t + t$, $y = \cosh t - t$, $t \in \mathbb{R}$.

The part of the curve, for which $0 \le t \le \ln 2$, is rotated through 2π radians about the x axis.

Show that the exact area of the surface generated is

 $\frac{\pi\sqrt{2}}{16}(23-8\ln 2).$

£	
a= mane + c g= mane -	تشتنا
START BY REALING A SUPPLIFIED EXP ELEMENT IN PARAMETRIC	<u>etestion) for the the clawor</u> d
$\frac{dx}{dt} = \sinh t + 1$ $\frac{dy}{dt} =$	smlt—1
$\left(\frac{dx}{dt}\right)^2 = \sin h^2 t + 2 \sin h t + 1 \left(\frac{dy}{dt}\right)^2 =$	subit - 2511ht 41
$\rightarrow de = \sqrt{\left(\frac{du}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2} = \sqrt{2unht}$	$+2 = \sqrt{2(1+smh^2)}$
- dz = V 2 coshit = V2 coshit	
NOW THE SURPLICE OF PHOWITION	
$\implies \beta = \int_{t_1}^{t_2} 2\pi g(\theta) ds = 2\pi$	∫t g(t) dt dt
⇒ \$ = 21 ∫ (cadit - t) √2 cadit dt	
\implies $s = 12 \pi \int 200 h^2 - 200 h t d$	e
1005 2t= 2 wat-1	BY PACTS
$losh_{2t} \equiv 2losh_{t-1}$	swint cosht

$\Rightarrow S' = \sqrt{2}\pi \left[\int_{1+}^{1+\infty} \cosh 2t dt - \left[2t \sinh t \right]_{1+}^{1+\infty} + \int_{2}^{1+\infty} 2s \sinh t dt \right]$	
\Rightarrow $\beta = \sqrt{2}\pi \left[t + \frac{1}{2} smh2t - 2tsmht + 2asht \right]_{0}^{haz}$	
\implies $s' = \sqrt{2}\pi \left[t + \frac{1}{2} similar codit} - 2t similar + 2 codit \right]^{1/2}$	
\Rightarrow $s = \sqrt{2\pi} \left[t + subtasht - 2t subt + 2 cosht \right]^{M2}$	
NOW USE HAVE	
• $\operatorname{Sigh}(\ln 2) = \frac{1}{2}(e^{\ln 2} - e^{\ln 2}) = \frac{1}{2}(2 - \frac{1}{2}) = \frac{3}{4}$	
• ush $(h_2) = \frac{1}{2} \left(e^{h_2} + e^{-h_2} \right) = \frac{1}{2} \left(2 + \frac{1}{2} \right) = \frac{5}{7}$	
FINING WE OBTION	
$\implies = \sqrt{2\pi} \left[\left(M_2 + \frac{3}{4} x_{\pm}^{\frac{5}{4}} - 2 x_{\pm}^{\frac{3}{4}} M_2 + 2 x_{\pm}^{\frac{5}{4}} \right) - (2) \right]$	
$\implies 5 = \sqrt{2}\pi \left[\ln 2 + \frac{15}{16} - \frac{3}{2}\ln 2 + \frac{15}{2} - 2 \right]$	
$\Rightarrow = \sqrt{2\pi} \left[\frac{23}{16} - \frac{1}{2} \ln 2 \right]$	
· Vall (22 alua)	

, proof

C

1

0

Question 11 (****+)

The figure above shows the cardioid C with parametric equations

 $x = 2\cos\theta - \cos 2\theta$, $y = 2\sin\theta - \sin 2\theta$, $0 \le \theta < 2\pi$.

The curve is revolved by a full turn in the x axis, forming a surface of revolution.

Find in exact simplified form the area of this surface.

-3

STAR BY FORMUL A SUMPLIFIC EXPRESSION FRE THE MELLINITH ELEVAT de
$\Rightarrow ds' = \sqrt{\left(\frac{ds}{d\theta}\right)^2 + \left(\frac{ds}{d\theta}\right)^2} d\theta = \sqrt{\left(-2ise\theta + 2ise2\theta\right)^2 + (2as\theta - 2iae2\theta)^2} d\theta$
$db = \frac{ds}{ds} + \frac{ds_{max} - \theta_{max} - \theta_{max}}{ds} + \frac{ds}{ds} + \frac{ds}{ds}$
-> ds = 1 4 - 8(00,0000 + 500,0000) +4 do-18-8(00,00-0) do
$\Rightarrow dx = \sqrt{\vartheta(-c_{\alpha}\theta)}^{\dagger}d\theta$
BY INSPECTION THE PARAMETER LIMITS HER T AT -3 q O AT I - BENSIUMC
THE TOP HATE BY A FULL TUBN CAULS
$\Theta = \sum_{n=1}^{r} \int_{0}^{s} (\Theta n e - \Theta n e S) \sum_{n=1}^{r} \int_{0}^{s} \pi e = z b (\Theta) \sum_{n=1}^{s} \int_{0}^{s} \pi e = z (\Theta) \sum_{n=1}^{s} \sum_{n=1}^{s} \Phi E = z (\Theta) \sum_{n=1}^{s$
$\Rightarrow 5' = 3\pi \int_{0}^{\pi} (2cm\theta - 2cmbcod) \sqrt{\theta} \sqrt{(-\omega_{\star}\theta)} d\theta$
\Rightarrow $\sum_{n=1}^{\infty} 2n \int_{0}^{\frac{1}{n}} 2n\theta \left(1 - (n\theta) \times 2\sqrt{2} \times (1 - n\theta)^{\frac{1}{2}} d\theta \right)$
$\Rightarrow \beta = a_{\Pi} \int_{0}^{\pi} d\sqrt{2} \sin^{2} \theta \left(1 - \cos^{2} \theta\right)^{\frac{2}{2}} d\theta$
$\rightarrow \beta = 8\pi i \Sigma \int_{0}^{\pi} 2in\theta (1-iag0)^{\frac{1}{2}} d\theta$
BY NARCTICA OR ANOTATICAL
$\Rightarrow \lesssim - 6\pi\sqrt{2} \left[\frac{2}{2}(1 - \cos\theta)^{\frac{1}{2}} \right]_{0}^{T}$
$\overrightarrow{r} \leq \frac{1}{2} \left[\frac{1}{2} (g_{ab} - t) \right] = \frac{1}{2} \left[\frac{1}{2} (g_{ab} - t) \right]_{a}$

16712 [1-(-1)]2 - (1-1)2

 $\frac{128\pi}{5}$

Question 12 (*****)

A curve has parametric equations

 $x = t - \sin t, \quad y = 1 - \cos t, \quad 0 \le t < 2\pi$

Determine, in exact simplified form, the area of the surface of a complete revolution of the curve, about the x axis.

 64π V 3 the ±2002 me - Emile $signal = \int_{t}^{t_{2}} 2\pi y(t) d\xi = 2\pi \int_{t}^{t_{2}} y(t) \sqrt{\left(\frac{dy}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$ $\beta = 8\pi \left[-2\omega_{5}\frac{t}{2} + \frac{2}{3}\omega_{5}\frac{3t}{2} \right]_{0}^{2t}$ $= \frac{\pi}{2} \sum_{\alpha} \frac{1}{2} \frac{1}$ $\Rightarrow S = 2\pi \int_{-\infty}^{2\pi} (1 - \cos t) \sqrt{(1 - \cos t)^2 + \sin^2 t^2} dt$ $\Rightarrow \beta = 2\pi \int_{0}^{2\pi} (1-wst) \sqrt{1-2wst+co2t+suit} dt$ $\operatorname{Br}\left[\left(-\tfrac{2}{3}+2\right)-\left(\tfrac{2}{3}-2\right)\right]$ ⇒ ≶ = 8π (4 - 4/3) 217 Jo G-west) J2-2005t dt ⇒\$: $= s = 2\pi \sqrt{2} \int_{0}^{2\pi} (1 - \omega st) (1 - \omega st)^{\frac{1}{2}} dt$ <u>6417</u> 3 5 -21112 Jar Ci-wet) & dt -26 Now 1 The identity $\cos 2t = 1 - 2\pi n^2 t \Rightarrow \cos t = (-2\pi n^2 \frac{t}{2})$ ⇒S= 2π42 ∫2^π [1-(1-22m22)]2 dt $\frac{1}{2} \int_{0}^{2} \frac{1}{2} \frac{1}{2} \int_{0}^$ ⇒\$ = BY SUB! toution 4= Cost OR MANIPULATIONS $8\pi \int_{0}^{2\pi} SM \pm SM_{\pm}^{2} dt$ $8\pi \int_{0}^{2\pi} SM \pm (1 - \omega_{\pm}^{2})$ -\$ = Sn + (1- w2+) +

Question 13 (*****)

Gabriel's horn is the geometric figure which is formed by revolving the graph of

$$y = \frac{1}{r}, x \in [1,\infty),$$

by 2π radians about the x axis.

On.

Gabriel's horn gives rise to the "Painter's Paradox", that the "horn" could be filled with a finite quantity of paint and yet that paint would not be sufficient to coat its inner or outer surface.

Use calculus to verify the validity of the apparent paradox, however you need **not** resolve the flaw in the paradox.

You must show any limiting processes and further advised NOT to find $\frac{\sqrt{1+x^2}}{2}$

V= π [~[9(x)]~d) $\frac{1}{x} dx = \pi \left[-\frac{1}{x} \right]$ $L[V = \pi(1 - \frac{1}{2})]$ $d\beta = \Im \left[\int_{-\infty}^{\infty} d\eta \right] \frac{1}{\sqrt{d\eta}} d\eta = \Im \left[\int_{-\infty}^{\infty} \left(\frac{1}{2} \right)^{-1} + \left(-\frac{1}{2} \right)^{2} d\eta \right]$ $1 + \frac{1}{2^{k}} \frac{1}{dk} = 2\pi \int_{-\infty}^{k} \frac{1}{2^{k}} \sqrt{\frac{2^{k+1}}{2^{k}}} dk = 2\pi \int_{-\infty}^{k} \frac{\sqrt{2^{k}+1}}{2^{k}} dk$ [1F 2 > 1] $\frac{x^{2}+1}{x^{2}} dt > \int_{1}^{2} \frac{1}{x} dt$

 $\operatorname{sull} \int_{1}^{c} \frac{J_{2}}{\sqrt{1+\lambda_{2}}} dx > \operatorname{sull} \int_{1}^{c} \frac{J}{x} dx$ $A > 2\pi \left[\ln \alpha \right]_{i}^{k}$ A> on [link - lar

dx.

proof

WHAT AN THE RESULTS FOR NOWING & SURFACE AREA

A > amlnk $u\left(1-\frac{k}{k}\right)$

- As $k \to \infty$, $\frac{1}{k} \to \circ$, but link drivedeer
- . Vocume of the "Hear" is T . Alla is Graphthe Than 277 July, which Diversity

. FINTE VOLUME BOT INFINITE ARA

Question 14 (*****)

The part of the graph of the exponential curve

$$= \mathrm{e}^x \ , \ \ln\left(\frac{3}{4}\right) \le x \le \ln\left(\frac{4}{3}\right),$$

 $\pi \left[\frac{185}{144} + \ln\left(\frac{3}{2}\right) \right]$

is rotated by 2π radians in the x axis, forming a surface of revolution S.

Show that area of S is

I.C.B.

I.C.B.

 $\frac{45m}{p} \text{ The solutions} \stackrel{1}{\longrightarrow} \text{Solutions} e + \text{Encountral} \text{Fermions}^{n}$ $\frac{p}{p} = x\pi \int_{a_{1}}^{x} g \, ds = x\pi \int_{a_{1}}^{x} g \left[1 + \left(\frac{ds}{2}\right)^{n}\right]^{\frac{1}{p}} \, dx$ $= \pi \int_{b_{1}}^{b_{1}} \left(e^{2}\right) \left[1 + \left(e^{2}\right)^{n}\right]^{\frac{1}{p}} \, dx = x\pi \int_{b_{2}}^{b_{2}} e^{2}(1+e^{2})^{\frac{1}{p}} \, dx$ $= \pi \int_{b_{2}}^{b_{2}} e^{2}(1+e^{2})^{\frac{1}{p}} \, dx = x\pi \int_{b_{2}}^{b_{2}} e^{2}(1+e^{2})^{\frac{1}{p}} \, dx$ $\frac{57}{2} \frac{53657776}{2} \frac{1}{6} \frac{1}{6}$

I.C.B.

M2(12)

proof

1+

Created by T. Madas

I.C.

Question 15 (*****) The part of the curve with equation

 $y = \sin 2x , \quad 0 \le x \le \frac{\pi}{2}$

is rotated by 360° about the x axis.

Ĉ,

F.C.B.

Show that the area of the surface generated is

 $\pi \left[\frac{1}{2} \ln \left(2 + \sqrt{5} \right) + \sqrt{5} \right].$

OBITSN AT THE AVXILLARIES FOR THE PROBLEM y= sm2z dy = 20022 $\sqrt{1 + (\frac{1}{42})^2} = \sqrt{1 + 46822}$ the expression for the surface 5= $2\pi y(x) dz = 2\pi \int_{x}^{x} y(x) dx dx$

 $s = 2\pi \int_{-\infty}^{\infty} (sm2a) \sqrt{1+4o^{2}2a} da$

Process Bit A HAPPaucus solitantima) 200521 - Shiho \rightarrow O = asahi (20022) -4.5m/2 dz = ashPado $dz = \frac{cashP}{-4sm/2x}$ $a = \frac{1}{2} \longmapsto 0 = atach(2z) = -atach 2$ $z = 0 \longmapsto 0 = atach 2$

	4200
TRANSF	SEMING THE INTERAL
	$\Im \pi \int_{\alpha_{1},\alpha_{2}}^{\alpha_{0}} \frac{\cos^{2}\theta}{\cos^{2}\alpha} \sqrt{1 + \sin^{2}\theta} \frac{\cosh^{2}\theta}{-4\sin^{2}\alpha} d\theta$
⇒ \$ =	271 J + 4 (ceshl) coshlo dl) aesnh(c)
	SIGN INTEGRATION IN A SYLWHETRICAL DOWNDN
⇒\$=,	$4\pi \int_{0}^{a_{m}mh_{2}} d\omega d\theta d\theta$
→\$ =	$\pi \int_{0}^{\frac{1}{2}} \frac{1}{2} + \frac{1}{2} \cosh 2\theta d\theta$
⇒\$ =	$\pi \left[\frac{1}{2} \Theta + \frac{1}{4} \sinh 2\Theta \right]_{0}^{\operatorname{orsamb2}}$
⇒\$' =	$\pi \left[\frac{1}{2} \theta + \frac{1}{2} \operatorname{Smh} \theta \cosh \theta \right]_{0}^{\operatorname{arsmh2}}$
→ \$' =	$\pi \left(\frac{1}{2} \theta + \frac{1}{2} \sinh \theta \sqrt{1 + \sinh^2 \theta} \right)_{0}^{-1}$
⇒ \$' =	$\pi \left[\left(\frac{1}{2} \operatorname{org} h 2 + \frac{1}{2} \times 2 \times \sqrt{1 + 2^{2}} \right) - \nabla \right]$
⇒\$ =	$\pi \left[\frac{1}{2} \mu \left(2 + \sqrt{1 + 2^{2}} \right) + \sqrt{2} \right]$
=> \$ =	π [± h(2+15) + N5]

F.C.B.

proof

1+

Question 16 (*****)

A curve has parametric equations

 $x = 2 + \tanh t$, $y = \operatorname{sech} t$, $t \in \mathbb{R}$

The part of the curve for which

$$0 \le t \le \ln\left[\frac{\sqrt{2} + \sqrt{6}}{2}\right]$$

is rotated through 2π radians in the x axis.

Show that the exact area of the surface generated is

 $d_{0} = \frac{d_{0}e_{0}}{d_{1}e_{0}} = \frac{d_{0}e_{0}}{d_{1}e_{0}} + \frac{1}{2} +$

NOW THE	uuit «
• e ^{2h(12}	$\frac{\zeta_{4}(\zeta_{2})}{4} = \frac{\zeta_{1}(\zeta_{2}+\zeta_{1})^{2}}{4} = \frac{2+2\sqrt{12}+6}{4} = \frac{8+4\sqrt{3}}{4}$
	= 2+13
• fault =	$\frac{e^{2L}-1}{e^{2L}+1} = \frac{(2+\sqrt{2})-1}{(2+\sqrt{2})+1} = \frac{1+\sqrt{2}}{3+\sqrt{2}}$
=	$\frac{(1+\sqrt{3})(3-\sqrt{3})}{(1+\sqrt{3})(3-\sqrt{3})} = \frac{\sqrt{1-\sqrt{3}}+3\sqrt{3}}{\sqrt{1-\sqrt{3}}+3\sqrt{3}} = \frac{2\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$
• taul =	tout
fart =	<u>15</u> 3 E
	د ح
	n Jo socio do
一场一	T [\$ 5600 bro@ + £in[sea0 + tune 1] =
⇒\$~π	- [[Sect kent + ln (sect+lant)] - [0+ln]]
<i>π</i> = <i>k</i> ∈ <i>π</i>	$\left[\frac{2}{\sqrt{3}}\times\frac{1}{\sqrt{2}}+\ln\left(\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}\right)\right]$
—, \$ = π	$\left[\frac{3}{3} + \ln \frac{3}{3}\right] = \pi \left[\frac{3}{3} + \ln \sqrt{3}\right]$
×	$\pi \left[\frac{2}{3} + \frac{1}{2} \ln 3 \right] = \frac{1}{6} \pi \left[4 + 3 \ln 3 \right]$

proof

2

Question 17 (*****)

A curve is defined parametrically by the following equations.

 $x = 2\ln t$, $y = t + \frac{1}{t}$, $t \in \mathbb{R}$, $t \ge 1$.

The curve is fully revolved about the y axis forming a surface of revolution.

The surface is modelling the casing of a rocket

The vertex of the surface is held just above a container full of paint, with its line of symmetry vertical.

Its line of symmetry is vertically lowered into the paint, at a rate of $\frac{1}{\pi \ln t}$, t > 1.

Show that the outer section of the surface is covered in paint at the rate $4 \coth\left(\frac{1}{2}x\right)$.

, proof

FRATEY TO SKETCH THE WELLE TIPIS IS & COBAR CURLE
$\frac{3c}{2} = lnt \qquad y = t + \frac{1}{4} \qquad y = \frac{1}{2} \qquad y = 1$
WE ALL UNFOLIDINATELY "FORCED" TO WORK IN PARAMITEIC
$\begin{split} & dy_{i}^{k} = \sqrt{\left(\frac{dx_{i}^{k}}{dx_{i}^{k}}\right)^{k} \left(\frac{dx_{i}}{dx_{i}^{k}}\right)^{k}} = \sqrt{\left(\frac{1}{ t ^{k}}\right)^{k} \left(1 - \frac{1}{ t ^{k}}\right)^{k}} = \sqrt{\frac{1}{ t ^{k}} + \frac{1}{ t ^{k}}} \\ & = \sqrt{1 + \frac{2}{ t ^{k}} + \frac{1}{ t ^{k}}} = \sqrt{\left(1 + \frac{1}{ t ^{k}}\right)^{2}} = \left(1 + \frac{1}{ t ^{k}}\right) = 1 + \frac{1}{ t ^{k}} \end{split}$
Serting 4 Suppace of Revolution ABBUT THE & AXIS
$S_{\tau} = \int_{a_{\tau}}^{a_{\tau}} satx \ ds \ = \ \int_{a_{\tau}}^{a_{\tau}} satx \ ds \ = \ \int_{a_{\tau}}^{a_{\tau}} satx \ ds \ (t) \ ds \ (t) \ = \ \int_{a_{\tau}}^{a_{\tau}} satx \ (t) \ ds \ $
$= 4\pi \int_{1}^{T} (1 + \frac{1}{4\epsilon}) \ln t dt$
PROCEED BY INTHERATION BY AMOUS
$S = 4\pi \left\{ \left[\left(\pm - \pm \right) \right] w \pm - \pm - \pm \right]_{i}^{T}$
$\left\{ \left(1-1-\sigma\right) - \frac{1}{T} - T - T q \left(\left(\frac{1}{T} - T\right)\right) \right\} \overline{q} + 2 = 2 - \frac{1}{T}$

$\begin{cases} \frac{\partial \lambda}{\partial (n_{\text{eff}})} &= \frac{\partial \lambda}{\partial T} \times \frac{\partial L}{\partial (n_{\text{eff}})} &= \frac{\partial \lambda}{\partial T} \times \frac{\partial L}{\partial (n_{\text{eff}})} \\ \frac{\partial L}{\partial (n_{\text{eff}})} &= \frac{\partial \lambda}{\partial T} \times \frac{\partial L}{\partial (n_{\text{eff}})} \end{cases}$
$ \begin{array}{c} \bullet \frac{d \varsigma}{d \tau} = 4\pi \left[\left(1 + \frac{1}{\tau^2} \right) l_{H} \tau + \left(\tau - \frac{1}{\tau} \right) \frac{1}{\tau} - 1 + \frac{1}{\tau^2} \right] \end{array} $
$\frac{dd}{dT} = 4\pi \left[\left(\left(1 + \frac{1}{T^2} \right) h T + 1 - \frac{1}{T^2} - 1 + \frac{1}{T^2} \right] \right]$
$\frac{ds'}{d\tau} = 4\pi \left(\frac{\tau^2 + 1}{\tau^2}\right) \ln \tau$
• $\frac{dy}{dt} = \frac{1-\frac{1}{t^2}}{t^2} = \frac{t^2-1}{t^2}$
$\frac{ds}{dt}\Big _{t=T} = \frac{T^2 - 1}{T^2}$
$\frac{dy}{d\tau} = \frac{\tau^2}{\tau^2}$
$\frac{dU}{d\psi} = \frac{x T}{T^2 + 1}$
THUS WE FINALLY HAVE, TENDENIES "SUBSCIEDUAL MINUSES"
$\frac{d\xi}{dt_{tab}} = 4\pi \left(\frac{\tau^{2}+1}{\tau^{2}}\right) \ln \tau \times \frac{\tau^{2}}{\tau^{k-1}} \times \frac{1}{\pi \ln \tau}$

THE MEX. DUESTION. HEREINGISCHE SCHEREIGENEISCHEREIS MASIRALISCOM LYCCB. MRRIESENRALISCOM LYCCB. MRRIESEN

Question 1 (****

The parametric equations of an astroid are

 $x = a\cos^3\theta$, $y = a\sin^3\theta$, $0 \le \theta < 2\pi$

a) Show that the total length of the curve is 6a units.

The curve is rotated by 360° about the x axis forming a solid of revolution.

b) Show further that the surface area of the solid is $\frac{12}{5}\pi a^2$.

 $\left(\frac{\partial \underline{x}}{\partial \theta}\right)^2 + \left(\frac{\partial \underline{y}}{\partial \theta}\right)^2 - \left(-3a\cos^2\theta \sin^2\theta + (3a\sin^2\theta \cos^2\theta)\right)^2$ 92000 4 9 มีเรียง 9 มีเลยี่ 200 ค 99° con O Caso + 9200 O Mar O Ros - 90 「間"+(器)" = 4

proof

- 望与明白]王
- $4\left[\frac{34}{2}sm_{Z}^{4}-\frac{36}{2}sm_{Z}^{4}0\right]=$ -15 REPUNENC
- 4 V (to)2 + (to)2 96

2= aus30 y=as140

Question 2 (****)

- The curve with equation y = f(x) satisfies y > 0, for $x \in [a,b]$.
 - The area of the region bounded by the curve with equation y = f(x) and the x axis, for $a \le x \le b$, is denoted by A.
 - The length along the curve from the point P[a, f(a)] to the point Q[b, f(b)], is denoted by L.

If A is **numerically equal** to L, determine the equation of the curve.

 $y = \cosh(\pm x + c)$ YG) di $1 + \left(\frac{dy}{dx}\right)^2 dx$ $g(x) dx = \int_{a}^{b} \sqrt{1 \cdot \left(\frac{du}{dx}\right)^{2}} dx$ $y(\lambda) d\lambda = \frac{1}{2k} \int_{0}^{k} \sqrt{1 + \frac{1}{2k}} d\lambda$ 1+(dy) $+\left(\frac{dy}{dx}\right)$

 $y = \cosh(x+C)$

Question 3 (****+)

Ĉ.B.

P.C.P.

A cycloid has parametric equations

 $x = \theta + \sin \theta$, $y = 1 + \cos \theta$, $0 \le \theta \le \pi$

a) Show that the total length of the curve is 4 units.

The cycloid is rotated by 360° about the x axis, forming a solid of revolution.

b) Show further that the **total** surface area of the solid is $\frac{44\pi}{3}$.

 $\left(\frac{da}{d\theta}\right)^2 + \left(\frac{du}{d\theta}\right)^2$ $\left(\frac{2}{(0m^2-)} + \frac{2}{(02m^2+1)} \right) = 1$ = 1+21050 +0020 +9m20 $\sqrt{2+2(2\log_{\frac{2}{2}}^{2}-1)} = \sqrt{4\log_{\frac{2}{2}}^{2}}$ = 2605 $\label{eq:static_states} \dot{s} = \int_{B_1}^{B_2} \sqrt{\frac{d_2}{d_2}}^2 + \left(\frac{d_2}{d_2}\right)^2} \, d\theta = \int_0^{T} 2\cos \frac{2}{2} \, d\theta \quad = \left[U_{\rm SD} \eta \frac{\theta}{2} \right]_0^{T}$ 45m 12 - 45m0 = 4 Ar Pepuleo $= \int_{-2\pi}^{4\pi} g(\theta) \sqrt{\frac{d\pi^{2}}{d\theta}^{2} + \left(\frac{d\pi^{2}}{d\theta}^{2}\right)^{2}} d\theta$ $H^{\text{tet}} = \int_{-\infty}^{\pi^{-1}} 2\pi \left(1 + \log \theta \right) \left(2 \log \frac{\theta}{2}\right) d\theta = \int_{-\infty}^{\pi} 2\pi \left(1 + 2 \log \frac{\theta}{2} - 1 \right) \left(2 \log \frac{\theta}{2}\right) d\theta$ $\left[\cos^{2}\frac{\partial}{\partial 2}d\theta\right] = 8\pi \left[\pi\cos^{2}\frac{\partial}{\partial 2}(1-\sin^{2}\frac{\partial}{\partial 2})d\theta\right]$ - cosgenigedo 29세월 - 중5세월]

i C.B.

na