IMPROATE INTEGRAL AGASTRATISCOM I.Y.C.B. MARGASTRATISCOM I.Y.C.B. MARGASTRATISCOM I.Y.C.B. MARGASTRATISCOM I.Y.C.B. MARGASTRATISCOM

Question 1 (***)

Indicating clearly the limiting processes used, show that

·G.

$$\int_{0}^{e} x^{2} \ln x \, dx = \frac{2}{9} e^{3}$$

2012

Placed As follows.

$$\int_{-\infty}^{\infty} x^{2} \ln x \, dx = \lim_{k \to \infty} \int_{-\infty}^{\infty} \frac{1}{4} x^{2} \ln x \, dx$$

$$\frac{\int_{-\infty}^{\infty} x^{2} \ln x \, dx = \lim_{k \to \infty} \int_{-\infty}^{\infty} \frac{1}{4} x^{2} \ln x \, dx$$

$$\frac{\ln x}{\ln 2} = \lim_{k \to \infty} \int_{0}^{\infty} \frac{1}{2} \frac{1}{4} x^{2} dx$$

$$= \lim_{k \to \infty} \int_{0}^{\infty} \frac{1}{2} \frac{1}{4} x^{2} \int_{0}^{\infty} \frac{1}{4} \frac{1}{4}$$

Con

proof

Question 2 (***)

·C.B.

Indicating clearly the limiting processes used, show that

$$\int_{1}^{\infty} \frac{10}{(3x+2)(4x+1)} \, dx = \ln \frac{16}{9}$$

proof

$$\begin{array}{c} \frac{d_1}{d_2 t_1} - \frac{3}{3 t_1 2} = \frac{\frac{d_1^2}{2 t_1 2} - \frac{3}{2 (2 t_1)}}{(3 t_1^2) (3 t_1^2)} = \frac{\zeta}{(4 t_1^2) (3 t_1^2)} \\ \int_{\frac{d_2}{d_2 t_1} (\frac{\delta}{3 t_1 t_1})}^{\infty} \frac{d_2}{d_2} = \int_{\frac{\delta}{\delta}}^{\frac{\delta}{\delta}} \frac{d_1}{d_2} - \frac{\zeta}{3 t_1 2} \frac{d_2}{d_2} \\ \int_{\frac{\delta}{\delta}}^{\frac{\delta}{\delta}} \frac{d_2}{(2 t_1^2) (3 t_1^2)} \int_{0}^{\infty} = 2 \left[\frac{\delta}{\delta} \frac{|\frac{\delta}{\delta} t_1|}{|\frac{\delta}{\delta} t_1|} \right]_{1}^{\infty} \\ 2 \int_{\frac{\delta}{\delta}} \frac{\delta}{\delta} \frac{|\frac{\delta}{\delta} t_1|}{|\frac{\delta}{\delta} t_1|} \int_{0}^{\frac{\delta}{\delta}} = 2 \int_{0}^{\frac{\delta}{\delta}} \frac{|\frac{\delta}{\delta} t_1|}{|\frac{\delta}{\delta} t_1|} - \frac{|\frac{\delta}{\delta} t_1|}{|\frac{\delta}{\delta} t_1|} \\ 2 \chi \ln \frac{d}{d} = \ln \frac{k}{\delta} \end{array}$$

Question 3 (***)

 $I = \int 16x \,\mathrm{e}^{-4x} \,dx \,.$

a) Show that

 $I = -e^{-4x} (4x+1) + \text{constant} .$

b) Hence find

LV.C.B. May

I.F.G.B.

COM

 $\int_{-1}^{\infty} 16x e^{-4x} dx,$

showing clearly the limiting process used.

.Y.G.B.

I.C.B.

COM

112/281

5e⁻⁴

I.G.B.

(***) **Question 4**

Find the exact value of the following integral.

Question 5 (***+)

Evaluate the integral

2

I.C.S.

i.G.B.

$$\int_0^\infty \frac{2}{1+2x} - \frac{x}{1+x^2} \, dx$$

showing clearly the limiting processes used.

Give the answer in the form $\ln N$, where N is a positive integer.

m

I.C.P.

29

10

12

COM

 $\ln 2$

Ż

Question 6 (***+) The function *f* is defined by.

$$f(x) \equiv \frac{ax+b}{e^x}, \ x \in \mathbb{R},$$

where a and b are non zero constants.

The mean value of f in the interval $(\ln 2, \ln 4)$ is $\frac{1}{4 \ln 2}$

Given further that

Y.C.

. C.B.

 $\int_1^\infty f(x) \ dx = \frac{3}{\mathrm{e}},$

determine the value of a and the value of b.

|a=2|,

b = -1

F.C.B.

21/20

Question 7 (***+)

Y.C.

$$f(y) \equiv \frac{4y}{y^4 - 1}, y \in \mathbb{R}, |y| \neq 1.$$

- a) Express f(y) into three partial fractions.
- **b**) Hence evaluate the improper integral

 $\int_{2}^{\infty} f(y) \, dy,$

showing clearly the limiting processes used.

c) Find, in exact form, the mean value of f, in the interval $\{y \in \mathbb{R} : 2 \le y \le 4\}$.

1 1 $\frac{1}{2}\ln\left(\frac{25}{17}\right) = \ln\left(\frac{5}{\sqrt{17}}\right)$ $\left|\ln\left(\frac{5}{3}\right)\right|,$ '(y) = $v^{2} + 1$ y+1 y-1

F.C.P.

 $\frac{1}{2} \left[\ln \left(\frac{\alpha^2 - l}{\alpha^2 + l} \right) - \ln \left(\frac{3}{\beta_1} \right) \right]$

mis - mis

15 + h 5]

e h(s

(***+) **Question 8**

adasmaths,

I.F.G.B.

1. V. C.

aths com

I.C.B.

ISMATHS.COM

By showing formally all the limiting processes evaluate the following integral

Give the answer in the form $k \ln 3$, where k is a positive constant to be found.

nadasm

COM

·C.A

madasmaths,

COM

$\frac{1}{2l^2-1} = \frac{1}{(2-i)(2+l)} = \cdots \text{ by used to } \cdots = \frac{\frac{1}{2}}{2-i} - \frac{\frac{1}{2}}{2+i}$	
READING D THE NOTEON	
$\int_{2}^{1} \frac{1}{3^{2}-1} dx = \int_{2}^{\infty} \frac{1}{3-1} - \frac{1}{3+1} dx + \lim_{k \to \infty} \int_{2}^{\infty} \frac{1}{3-1} dx$	- x1 qx
WHERTING ADD NATURAL LOSAENTHUS & CAUGINARY AFTER	
$= \bigcup_{k \neq 0 \\ k \neq 0$	
$= \lim_{k \to \infty} \left[\frac{1}{2} b_{k} \frac{ k-1 }{ k+1 } - \frac{1}{2} b_{k} \left(\frac{1}{3} \right) \right]$	
THEASE GUILS ARE HOR I HAVE I	
$= \frac{1}{2}\ln\left(-\frac{1}{2}\ln\left(\frac{1}{3}\right)\right) = \frac{1}{2}\ln 3$	

lasmaths,

I.F.C.p

COM

R

12.01

mada

(****) Question 9

$$\int \frac{\ln x^2}{x^3} dx \, , \ x \neq 0 \, .$$

a) Show that the substitution $y = \frac{1}{x}$ transforms the above integral into

 $\int 2y\ln y\,dy.$

 $\int_{1}^{\infty} \frac{\ln x^2}{x^3} dx,$

b) Hence evaluate

[.¥.G.]

I.V.G.p

showing clearly the limiting process used.

1	Wale THE SUBSTITUTION GAIN	
	$g = \pm \longrightarrow \frac{dg}{da} = -\frac{1}{2}$	
	$\Rightarrow da_{2} = -a^{2}dy$	
	=> da = -1, da	
	3	
⇒	$\int \frac{\ln q^2}{q^3} dx = \int \frac{2\ln x}{q^3} dx = \int (2\ln a) (\frac{1}{\sqrt{3}}) dx$	k.
	$= \left(2 \ln \left(\frac{1}{4}\right) \times y^3 \times \left(-\frac{1}{4^2} dy\right) \right)$	
	$(-2ub(\pm)du - (-2ub)a$	du
	= 1 2m(3)-3 - 2 3m3	-9
	= J. Salng dy	
	- S EXPUIRAD	
Plax	XCED BY INTHERATION BY PARTS	
C	α /m².	
J,	23 dz = SUBSTRUTTON ADUL PART (a) = 24 mg	dy
	X = 00 + 420 # 8	Y PAPT
	Elau	t?
	1	3
	[21 7°. (°	- in the second
	= [g my] - J g dy	
	F e	
	$= (y^{-1})y - (y^{-2})$	
	$= \left[y^{-1}hy - \frac{1}{2}y^{2} \right]_{1}$	

they	u.Muជ
-	$= \left[\lim_{h \to \infty} \left[\frac{1}{2} y^2 - y^2 \right]_h^h$
	$ \frac{l_{\text{lin}}}{l_{\text{h} \rightarrow 0}} \left[\left(\frac{l}{2} - l_{\text{H}} \right)^{2} - \left(\frac{l}{2} l_{\text{h}}^{2} - l_{\text{h}}^{2} \left(l_{\text{h}} l_{\text{h}} \right)^{2} \right) \right] $
w	12 TINDS TO ZAVO FAITHE THAN IN IN THUSS TO - 00

nadasma

COM

20/2.51

 $\frac{1}{2}$

C.ts.

2

Question 10 (****)

KR,

F.C.B.

By showing formally all the limiting processes evaluate the following integral

$$\int_{0}^{\frac{1}{4}\pi} \frac{1}{x} - \frac{\sin 2x}{1 - \cos 2x} \, dx$$

Give the answer in the form $\ln\left[\frac{\pi\sqrt{2}}{n}\right]$, where *n* is a positive integer to be found.

n = 4

Question 11 (*****)

K.C.

P.C.B.

By showing formally all the limiting processes, find an exact simplified value for the following improper integral.

 $\int_0^\infty \sqrt{x} \,\mathrm{e}^{-x} \,dx\,.$

You may assume without proof that

 $\int_0^\infty e^{-x^2} dx = \frac{1}{2}\sqrt{\pi} .$

u ² = α	$\int \eta_{x} e_{-f} q_{f} = \int \sigma e_{\eta} \left(\operatorname{Sr} q_{f} \right)$
≈d dif ≈ 01	$=\int 2u^2 e^{-u^2} du$
	$=\int u\left(2ue^{-u^2}\right)du$
) thanke subs	- CARRY THANK THAN OF A LANT THE AND A LANT THE
	$\left\{ - = -ue^{-u^2} \left(-e^{-u^2} du \right) \right\}$
12 2012	$= -u \bar{e}^{u^2} + \int \bar{e}^{u^2} du$
e" 24e"	
e ^u l'ue	

 $\frac{1}{2}\sqrt{\pi}$

WANTS CANNES -45	kan			Source 45 + IT
= Johrend	= Lim	[[-uē ⁶²]	k] + ±√व	
	= Luu 6->00	[[uē ^{q2}]	2]+ 5NF	
	= Цим к-эа	[0 - Ke	`] + ±¶	
		Expositionel 3	ecay "LULS" ALGE	LEAN: GROUSTA
	- 1.5-	1 /		

(*****) Question 12

2

The function f is defined as

$$f(x) = \arctan\left(\frac{1}{2x^2}\right), \quad x \in (-\infty, \infty).$$

- **a**) Find a simplified expression for f'(x)
- **b)** Show that $\lim_{x \to \pm \infty} \left[x f(x) \right] = 0$.

c) Determine the value of
$$\lim_{x \to \pm \infty} \left[\ln \left[\frac{2x^2 - 2x + 1}{2x^2 + 2x + 1} \right] \right].$$

f'(x) =

I.C.B.

 $\frac{4x}{4x^4+1}$

d) Hence find the value of $\int_{-\infty}^{\infty} f(x) dx$.

 $\frac{d}{d\lambda} \left[\operatorname{alt}_{2\lambda} \left(\frac{1}{2\lambda^2} \right)^2 \right] = \frac{1}{1 + \left(\frac{1}{2\lambda^2} \right)^2} \times \frac{d}{d\lambda} \left(\frac{1}{2\lambda^2} \right)^2 = \frac{1}{1 + \frac{1}{4\lambda^2}} \times \frac{-1}{\lambda^3}$ $\frac{4\chi^4}{4\chi^2+1} \times \frac{-1}{\chi^3} = -\frac{4\chi}{4\chi^2+1}$ arctau (2) $\frac{-\frac{\mu x}{4x^{n+1}}}{-\frac{1}{\sqrt{x}}} \end{bmatrix}_{q \to p/qr(q)} = \lim_{\substack{\lambda \to km}} \left[\frac{4x^{3}}{4x^{n+1}} \right]$ $= \lim_{\lambda \to i \infty} \left[\frac{4}{4 + \frac{1}{2\lambda}} \right] = \frac{0}{4} = 0$

 $w_{1} \left[l_{H} \left[\frac{2l^{2}-2k+1}{2k^{2}+2k+1} \right] \right] =$ b[h[<u>2-关+</u>立]]

I.C.B.

$$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \right)^{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \right)^{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \right)^{2} \right)^{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \right)^{2} \right)^{2} \right)^{2} \left(\frac{1}{2} \right)^{2} \right)^{2} \right)^{2} \right)^{2} \right)^{2} \left(\frac{1}{2} \left(\frac{1}$$

 $\lim_{x \to \pm \infty}$

 $2x^2 - 2x + 1$

 $2x^2 + 2x + 1$

= 0

$$\begin{array}{rcl} & \frac{d_{1}}{d_{1}} & \frac{d_{2}}{d_{1}} & \frac{d_{2}}{d_{2}} & \frac$$

:0D

1. V. G.B. 111202311

 $f(x) \ dx = \pi$

$$\begin{split} & \text{MANIPLATE IDDE LOSE & A ARTIFALL & GUIDALT} \\ &= \frac{1}{4} \int_{-\infty}^{\infty} \frac{(k_1 - k_1) - 2}{2k_1 - k_1 + 1} \, dt - \frac{1}{4} \int_{-\infty}^{\infty} \frac{(k_1 + k_1) - 2}{2k_1 - k_1 + 1} \, dt \\ &= \frac{1}{4} \int_{-\infty}^{\infty} \frac{1 - k_2}{2k_2 - k_1 + 1} \, dt - \frac{1}{4} \int_{-\infty}^{\infty} \frac{4k_1 + 2}{2k_1 - k_1 + 1} \, dt \\ &= \frac{1}{4} \int_{-\infty}^{\infty} \frac{1 - k_2}{2k_2 - k_1 + 1} \, dt - \frac{1}{4} \int_{-\infty}^{\infty} \frac{4k_1 - k_2}{2k_2 - k_1 + 1} \, dt \\ &= \left[\frac{1}{4} \ln \left[(2k_1 - k_1) - \frac{1}{4} \ln (2k_2 - k_1) \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{4k_1 - k_2 + 2} \, dt \\ &+ \int_{-\infty}^{\infty} \frac{1}{4k_1 - k_2 + 2} \, dt \\ &+ \int_{-\infty}^{\infty} \frac{1}{4k_1 - k_2 + 2} \, dt \\ &= \left[\frac{1}{4} \ln \left[\frac{2k_1 - k_1 + 1}{2k_1 - k_1 + 2} \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{(2k_1 - k_1)^2} \, dt \\ &+ \int_{-\infty}^{\infty} \frac{1}{(2k_1 - k_1)^2} \, dt \\ &= \left[\frac{1}{4} \ln \left[\frac{2k_1 - k_1 + 1}{2k_1 - k_1 + 2} \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{(2k_1 - k_1)^2} \, dt \\ &+ \int_{-\infty}^{\infty} \frac{1}{(2k_1 - k_1)^2} \, dt \\ &= \left[\frac{1}{4} \ln \left[\frac{2k_1 - k_1 + 1}{2k_1 - k_1 + 2} \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{(2k_1 - k_1)^2} \, dt \\ &= \int_{-\infty}^{\infty} \frac{1}{(2k_1 - k_1)^2} \, dt \\$$

$$\begin{split} & \frac{1}{1+1} \sum_{n=\infty}^{\infty} \left[\frac{1}{(n+2)} e^{\frac{1}{n} n} e$$

TSHAIISCON I.Y.C.B. MADASHAIISCON I.Y.C.B. MADASHA

T.Y.C.B. HIRIASINALISCOM T.Y.C.B. MARIASINALISCOM T.Y.C.B. MARIASINALISCOM T.Y.C.B. MARIASINALISCOM T.Y.C. AGASTRAILS COM I.Y. C.B. MAGASTRAILS COM I.Y