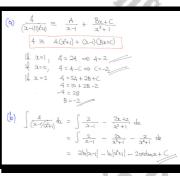
uas III at IIs. Com Created by T. Madas


# asmaths.com ASINALIS COM I.K. INTEGRATION STRUCTURED Smaths.com EXAIVI QUESTIONS II I.Y.C.B. Madasmalls.com I.Y.C.B. Madasu T. Malasmaths Com I.Y. C.B. Managara

Question 1 (\*\*)

$$\frac{4}{(x-1)(x^2+1)} \equiv \frac{A}{x-1} + \frac{Bx+C}{x^2+1}$$

- a) Find the values of A, B and C in the above identity.
- **b**) Hence find

 $\frac{4}{(x-1)(x^2+1)}\,dx\,.$ 

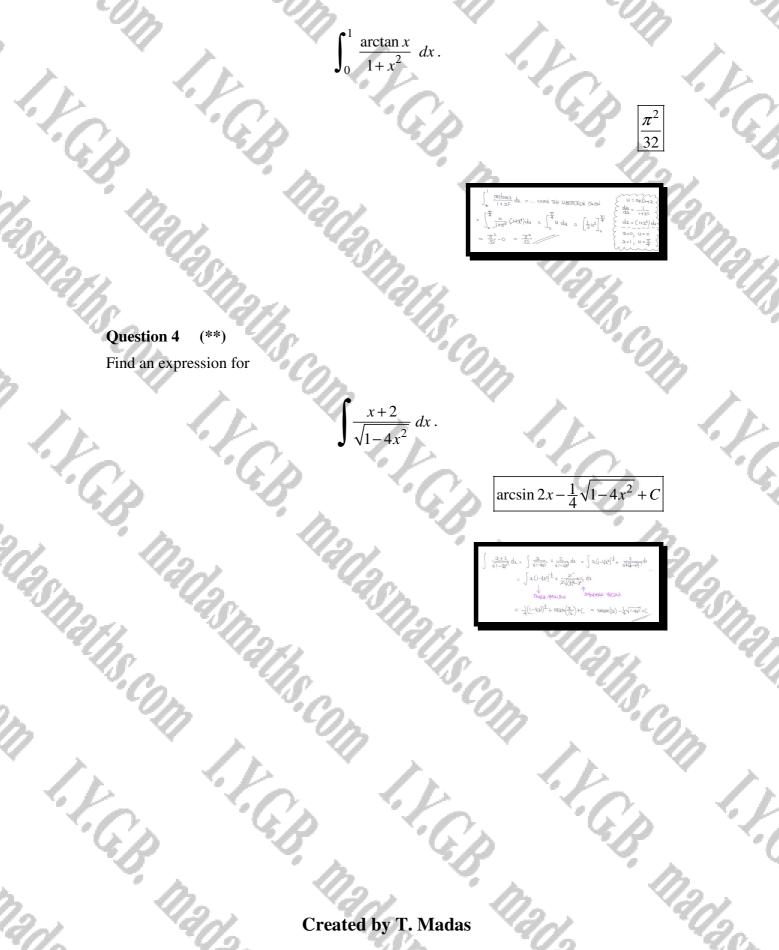


COM

12.50

**Question 2** (\*\*) Find an exact value for

I.C.p


$$\int_0^{\sqrt{3}} \frac{3}{\sqrt{4-x^2}} \, dx \, .$$

 $\sqrt{b^2} \frac{3}{\sqrt{4-\lambda^2}} \frac{d\lambda}{d\lambda} = \int_0^{\sqrt{b^2}} \frac{3}{\sqrt{2^2-\lambda^2}} \frac{d\lambda}{d\lambda} = \left[ \frac{3}{3} \arg_M \frac{3}{2\lambda} \int_0^{\sqrt{b^2}} \frac{1}{\sqrt{2^2-\lambda^2}} \frac{3}{\sqrt{2^2-\lambda^2}} \frac{1}{\sqrt{2^2-\lambda^2}} \frac{1}{\sqrt{2^$ 

π

#### Question 3 (\*\*)

By using the substitution  $u = \arctan x$ , or otherwise, find an exact value for



Question 5 (\*\*)

alasmaths.com

$$\frac{x^2 + x + 5}{(x+1)(x^2 + 4)} \equiv \frac{A}{x+1} + \frac{Bx + C}{x^2 + 4}.$$

- a) Find the values of A, B and C in the above identity.
- **b**) Hence find the exact value of

I.G.B.

I.V.C.B.

nadasma,

Smaths.com

I.V.G.B

A=1, B=0, C=1

dx.

 $\int_{0}^{2} \frac{x^{2} + x + 5}{(x+1)(x^{2}+4)}$ 

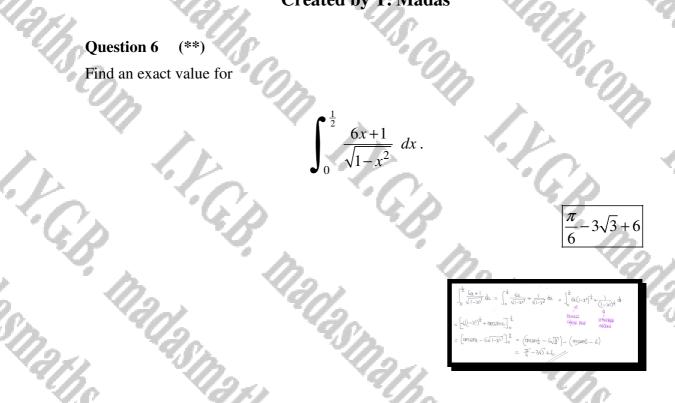
| · · · · · · · · · · · · · · · · · · · | $(\mathfrak{g})  \frac{\widehat{(x_{+})}(\overline{x_{+}}^{s} + \overline{z})}{\sum_{i=1}^{s} - \frac{1}{2}} = -\frac{x_{+i}}{A_{+}} + \frac{x_{+}}{A_{-}} - \frac{x_{+i}\psi}{A_{-}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n. 4                                  | $ \begin{array}{c} (\alpha) \\ \hline (2+1)(2^2+q) \\ \hline (2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3-1)(2^3$ |
|                                       | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                               |
| Un                                    | $\begin{array}{ccc}  f_{x=-1} \implies S = SA \implies A = I \\  f_{x=0} \implies S = 4A + C \implies S = 4 + C \implies C = I \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       | $ ( \begin{array}{c} \downarrow \\ \chi = 1 \end{array} \implies \begin{array}{c} 7 = 5 \begin{array}{c} 5 \begin{array}{c} + 1 + 2 \left( 8 + c \right) \end{array} \\ 7 = \begin{array}{c} 5 + 2 \left( 8 + c \right) \end{array} \\ 2 = 2 \left( 8 + 1 \right) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | $\begin{array}{c} 2 \approx 2(8+1) \\ (= 8+1) \\ B \approx 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | $ (b) \int_{0}^{2} \frac{\alpha^{2} + \alpha + 5}{(2^{2} + 6)(2^{2} + 6)} d\alpha = \int_{0}^{2} \frac{1}{x + 1} + \frac{1}{x^{2} + 4} d\alpha = \left[ b_{1} \left[ x_{1} \right] + \frac{1}{2} \log b_{1} \frac{\alpha}{2} \right]_{0}^{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | = (h3 + fortan) - (ht + fertano)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | $= \sqrt{h^2 + \frac{3}{12}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A 10                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Not and                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 42.                                   | Not at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18 A.                                 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10                                    | Sel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| · · · · · · · · · · · · · · · · · · · | 71 KA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 971                                   | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| i cn.                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0                                     | $\rho_{-} = \rho_{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Co.                                   | Con Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Uh                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -00                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

adasmaths.com

The Com

1.6.0

6

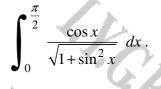

Madasman

17.212ST

 $\frac{\pi}{8} + \ln 3$ 

F.G.B.

Created by T. Madas




#### Question 7 (\*\*)

F.G.B.

I.C.P.

Use the substitution  $u = \sin x$  to find an exact value in terms of natural logarithms for



| June THE SUBTION ON WING THE SUBTION ON ON                                                        | U= SHA                                                          |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| $\int_0^1 \frac{\cos x}{\sqrt{1+u^{2}}} \frac{du}{\cos x} = \int_0^1 \frac{1}{\sqrt{1+u^{2}}} du$ | $\frac{du}{dx} = \frac{du}{dx}$ $\frac{du}{dx} = \frac{du}{dx}$ |
| [arsinh u]_ = arsinh1-arsinh0                                                                     | a=0, u=0                                                        |
| $= \ln(1+\sqrt{2})$                                                                               | act uci                                                         |

 $\ln(1+\sqrt{2})$ 

i G.B.

nana,

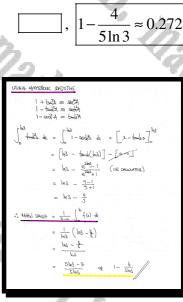
1+

#### Question 8 (\*\*)

V.C.B. Mad

I.C.B.

20


The function f is defined as

 $f(x) \equiv \tanh^2 x, \ x \in \mathbb{R}, \ 0 \le x \le \ln 3.$ 

Madası,

112112

Determine the mean value of f, in its entire domain.



Com

2

2028m

112/231

ne,

I.C.B.

Created by T. Madas

F.G.B.

27

Question 9 (\*\*+)

I.C.

Find an exact value for

·GB

 $\int_{0}^{4} \frac{6}{\sqrt{3-4x^2}}$ dx.

 $\int_{0}^{\frac{1}{2}} \frac{\zeta}{\sqrt{3-\epsilon_{1}\alpha^{2}}} \frac{d}{dx} = \int_{0}^{\frac{1}{2}} \frac{\zeta}{\sqrt{\epsilon_{1}^{2}(\frac{1}{2}-1)^{2}}} \frac{d}{dx} = \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{\epsilon_{1}^{2}(\frac{1}{2}-1)^{2}}} \frac{1}{\sqrt{\epsilon_{1}^{2}(\frac{1}{2}-1)^{2}}} \frac{d}{dx} = \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{\epsilon_{1}^{2}(\frac{1}{2}-1)^{2}}} \frac{1}{\sqrt{\epsilon_{1}^{2}(\frac{1}{$ 

 $\pi$ 

 $\frac{\pi}{2}$ 

1+

### **Question 10** (\*\*+)

F.G.B.

I.C.B.

By using a suitable substitution, find in terms of  $\pi$ , the value of



| $\int_0^1 \frac{1}{\sqrt{x^2(2+1)}} d\alpha = \dots \text{ by substration} \dots$      | $\begin{cases} u = \sqrt{\lambda} \\ u' = \chi \\ 2u \frac{du}{dx} = 1 \end{cases}$ |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $\int_{0}^{1} \frac{1}{\omega(u^{2}+1)} (2u  du) = \int_{0}^{1} \frac{2}{u^{2}+1}  du$ | $\begin{cases} 2u \frac{du}{dt} = 1 \\ 2u \frac{du}{dt} = a \end{cases}$            |
| = [2012tay 4] = 2012tay   - 2012tay                                                    |                                                                                     |
| = 2×14 = 14                                                                            | harrister                                                                           |

F.C.B.

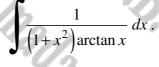
6

Question 11 (\*\*+)

Show clearly that

E.

$$\int \frac{4x+1}{\sqrt{4x^2-9}} \, dx = f(x) + \frac{1}{2} \ln \left[ 2x + f(x) \right] + C \,,$$


where f(x) is a function to be found.

 $f(x) = \sqrt{4x^2}$ -9



- REMARK OF MIN ROLF
- $\left(4x^{2}-9\right)^{\frac{1}{2}}+\frac{1}{2}\operatorname{onah}\left(\frac{x}{32}\right)+C$
- $\sqrt{4t^2q^2} + \frac{1}{2} \operatorname{anash} \left(\frac{2x}{3}\right) + C$
- $\sqrt{4\lambda^2 q^1} + \frac{1}{2} \ln \left( \frac{2\lambda}{3} + \sqrt{4\lambda^2 1} \right) + C$ N 42=9 + ± h (2x + N42=91)+C
- N4x2-9"+ = [h(2+ + 42-9")+(

Question 12 (\*\*+) By using a suitable substitution, or otherwise, find



 $\ln |\arctan x| + C$ 

(1+22) anting de = by Ircogniting or substitution  $\int \frac{1}{(1+2k)} du = \int \frac{1}{4k} du = \ln|u| + c$ 1+ Lr.

(\*\*+) Question 13

$$f(x) \equiv \frac{x^2 + 3x + 36}{(x+9)(x^2+9)}.$$

a) Express f(x) into partial fractions.

I.F.G.B.

I.V.G.B.

Madas,

**b**) Hence find

alasmans.com

I.C.B. Madasm

Smaths.com

I.V.G.B

Madasmaths.com  $\int f(x) dx.$ 

1

*x*+9

madasmaths.com

3 +9

Smarns.col

4.60

6

<sup>1</sup>20281121

The Com

+ (x+q)(Bx+c)

nadasmaths.com

I.F.C.B. Madasn

Created by T. Madas

COM

**Question 14** (\*\*\*)

Use the substitution t = x - 8 to find the exact value of

$$\int_{8}^{8.75} \frac{1}{\sqrt{x^2 - 16x + 65}} \, dx \, ,$$

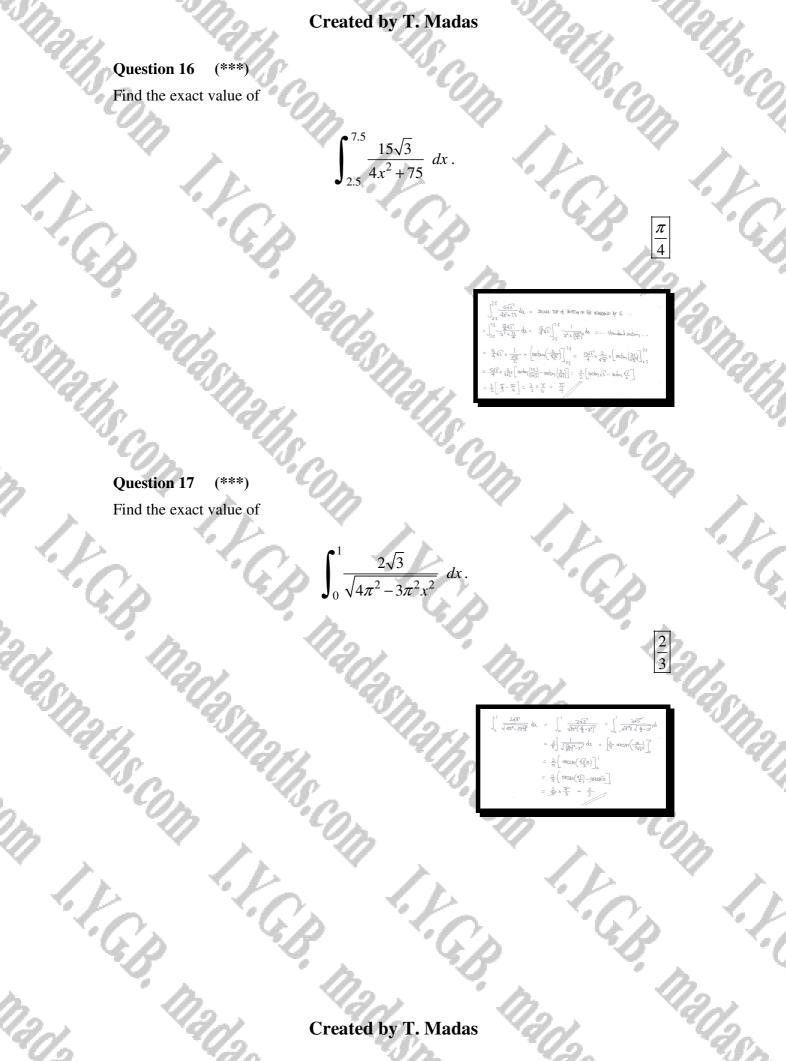
giving the answer as a single natural logarithm.



ln 2

Question 15 (\*\*\*)

 $f(x) = \sinh x \cos x + \sin x \cosh x, \ x \in \mathbb{R}.$ 


a) Find a simplified expression for f'(x).

**b**) Use the answer to part (a) to find

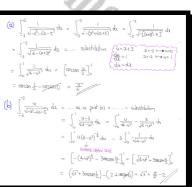
 $\int \frac{2}{\tanh x + \tan x} \, dx \, .$ 

 $f'(x) = 2\cosh x \cos x, \quad \ln|\sinh x \cos x + \sin x \cosh x| + C$ 

- <u>f(a) = sunhacara + sonacasha</u> f(a) = cushacara + songafara) + cora cusha + soyannha f(a) = 2015 (una
- $\int \frac{2}{4ub_{1}+b_{1}} dt = \int \frac{2}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w_{2}}{5wb_{2}+\frac{2w$
- MULTIPLY TOP & BOTTON OF THE FRACTION BY COERLOAD
- = ] \_\_\_\_\_\_\_ allow and the cost of the cost
- which is of the point of the dr



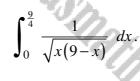
#### **Question 18** (\*\*\*)


Find the exact value of each of the following integrals.

a) 
$$\int_{-3}^{-2} \frac{1}{\sqrt{-x^2 - 6x - 5}} dx$$

$$\int_{-3}^{-2} \frac{x}{\sqrt{-x^2 - 6x - 5}} \, dx.$$

$$\left[\frac{\pi}{6}\right], \sqrt{3} + \frac{\pi}{2} - 2$$


2.817



#### **Question 19** (\*\*\*)

I.C.P.

By using the substitution  $x = 9\sin^2 \theta$ , or otherwise, find the exact value of



| $\begin{array}{rcl} & \frac{1}{\sqrt{2}} & \frac{1}{$ | $\begin{array}{c} \mathfrak{A} = 9.54 \tilde{f} \theta \\ \frac{d\mathfrak{a}}{d\theta} = 1.85 m \tilde{f} t \mathfrak{a} \\ \frac{d\mathfrak{a}}{d\theta} = 0.85 m \tilde{f} t \mathfrak{a} \\ \frac{d\mathfrak{a}}{d\theta} = 0,  \theta = 0 \\ \mathfrak{A} = 0,  \theta = 0 \\ \mathfrak{A} = \frac{3}{4},  \frac{3}{4} = \frac{9}{4} \end{array}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\int_{0}^{\infty} \sqrt{B(s_{0})^{2}\Theta(s_{0}^{2}\Theta)^{2}} = \int_{0}^{\infty} - \int_{0}^{\infty} \sqrt{S_{0}}B(s_{0}^{2}\Theta)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0=F                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |

 $\frac{\pi}{3}$ 



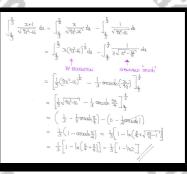
I.C.p

SMaths.com

Į.G.B.

20

Find the exact value of


$$\int_{\frac{4}{3}}^{\frac{5}{3}} \frac{x+1}{\sqrt{9x^2-16}} \, dx$$

madası,

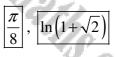
$$\frac{1}{3}(1-\ln 2)$$

14

212.Sm



Question 21 (\*\*\*)


Find the exact value of each of the following integrals.

2

<u>G</u>p

a) 
$$\int_{5}^{7} \frac{1}{x^2 - 10x + 29} dx$$
.

**b**) 
$$\int_{5}^{7} \frac{x}{\sqrt{x^2 - 10x + 29}} dx$$
.



| (a) $\int_{5}^{7} \frac{1}{2^{2} - 10x + 29} dx$                      | $= \int_{5}^{7} \frac{1}{(2-5)^{2}-25+29} dx = \int_{5}^{7} \frac{1}{(2-5)^{2}+\frac{1}{2}} dx$                                               |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{cases} x=2, n=0\\ qn=qr\\ (n=x-2) \end{cases}$                | $\equiv \int_0^2 \frac{1}{u^2 + u}  du = \int_0^2 \frac{1}{u^2 + 2^2}  du = \left( \frac{1}{2} \operatorname{critbu} \frac{u}{2} \right)_0^2$ |
| (2.7, u=2)                                                            | $= \frac{1}{2} \arctan \left( -\frac{1}{2} \arctan \right) = \frac{1}{2} \times \frac{\pi}{4} = \frac{\pi}{8}$                                |
| $\left(b\right) \int_{a}^{2} \frac{1}{\sqrt{a^{2} - bx + 2q^{2}}} dx$ | = as in part (a) including the substitution                                                                                                   |

 $= \int_{0}^{0} \frac{\sqrt{|u|^2 + 2u}}{\sqrt{|u|^2 + 2u}} du = \left( \cos \theta_{0} \frac{u}{\sqrt{|u|^2 + 2u}} \right)$  $= \int_{0}^{0} \frac{\sqrt{|u|^2 + 2u}}{\sqrt{|u|^2 + 2u}} du = \left( \cos \theta_{0} \frac{u}{\sqrt{|u|^2 + 2u}} \right)$ 

#### Question 22 (\*\*\*)

I.F.G.B.

I.C.B.

I.C.B.

Use the substitution  $u = e^x$  to find

I.C.p



 $\operatorname{arsinh}(\mathrm{e}^{x}) + C$ 

6

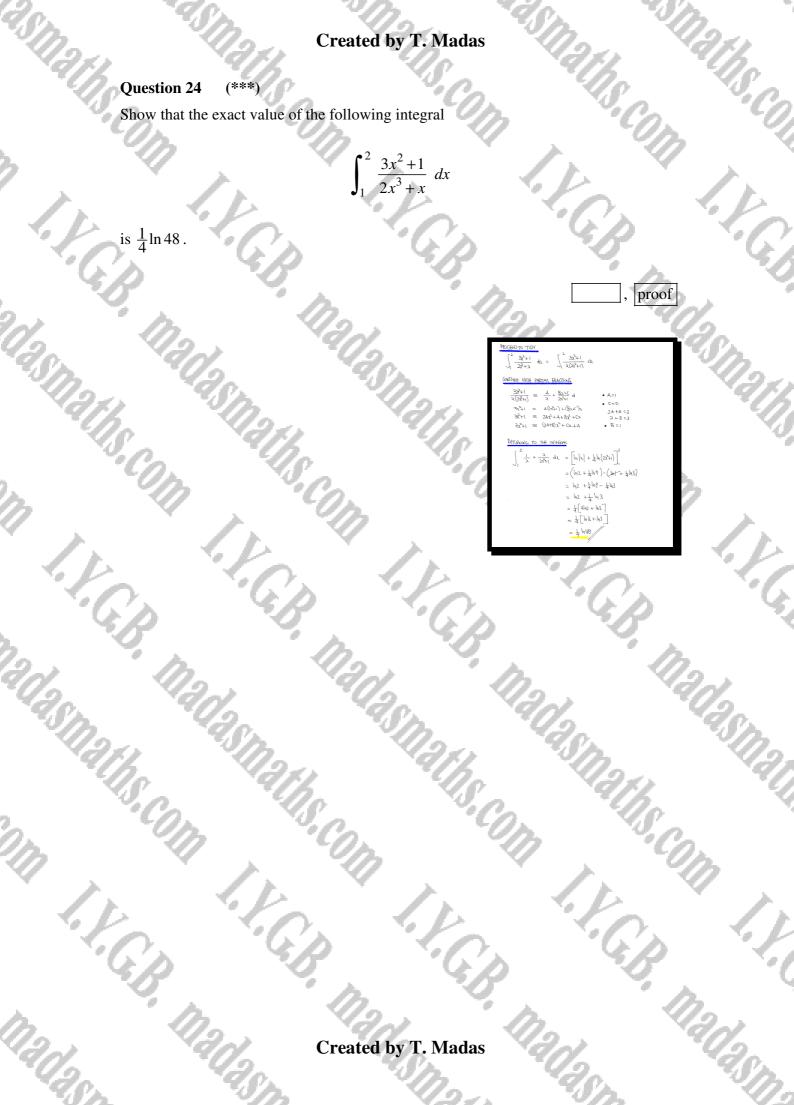
| $\int \frac{\sqrt{e^{2\varepsilon}}}{\sqrt{e^{2\varepsilon}+e^{2\varepsilon}}}  d\lambda = \dots \text{ by substitution} \dots = \int \frac{\sqrt{u^{-1}}}{\sqrt{u+u^{-1}}}  \frac{du}{u}$                        | ins                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $= \int \frac{\sqrt{u}}{\sqrt{u + \frac{1}{u^{1}}}} \frac{du}{u} = \int \frac{\sqrt{u}}{\sqrt{\frac{u^{2} + 1}{u^{1}}}} \frac{du}{u} = \int \frac{\sqrt{u^{2} + 1}}{\sqrt{\frac{u^{2} + 1}{u^{1}}}} \frac{du}{u}$ | $du = e^{\lambda}$                                                                      |
| $= \int \frac{du}{\sqrt{u^2 + 1}} \frac{du}{du^2} = \operatorname{arsel}_{\mu} + C = \operatorname{arsel}_{\mu} \left( \frac{e^{x}}{u^2} \right) + C_{-}$                                                         | $\begin{cases} \frac{du}{du} = \frac{du}{u} \\ \frac{du}{u} = \frac{du}{u} \end{cases}$ |
| Vizer, the market a grampile )+C                                                                                                                                                                                  | 100000                                                                                  |

#### Question 23 (\*\*\*)

Find in exact simplified form in terms of natural logarithms

I.C.

 $\frac{1}{2x+6}\sqrt{\frac{x+3}{x-2}}$ dx.




V.G.B. 11121/2

2+6 1 2+3 d2 =  $\frac{1}{2}\int \frac{1}{\chi_{+3}} \frac{(\chi_{+3})^2}{(\chi_{-3})^2}$  $+\sqrt{2^{2}+1}$  =  $\frac{1}{2}\ln(2+\sqrt{3})$ 

#### (\*\*\*) Question 24

Show that the exact value of the following integral



(\*\*\*) **Question 25** 

> $\int_0^1 \frac{x \arcsin x}{\sqrt{1-x^2}}$ dx.

Show that value of the above definite integral is 1.

|                                                                        | proof                                                                                                                                                 |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\operatorname{cursurs}_{1-\chi^{21}}}{ -\chi^{21} }dz = \cdots$ | $\left\{\begin{array}{c} SY  \text{PACU} \\ arcsinx  \frac{1}{\sqrt{1-\chi^2}} \\ -\sqrt{1-\chi^{11}}  \frac{2}{\sqrt{1-\chi^2}} \end{array}\right\}$ |

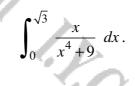
(\*\*\*+) **Question 26** 

 $(x) \equiv x \arctan x, x \in \mathbb{R}$ 

**a**) Find an expression for f'(x).

**b**) Use the answer to part (a) to find the exact value of

4 arctan x dx.


You may not use standard integration by parts to obtain the answer to part (b).

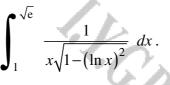
 $f'(x) = \frac{x}{1+x}$  $\frac{1}{2}$  + arctan x ,  $\pi - \ln 4$ 

- $\frac{d}{d\alpha}(\alpha antiay_2) = \frac{\alpha}{1+x^2} + antay_2$  $\int_{0}^{\infty} (xantarp) dx = \int_{0}^{1} \frac{x}{1+x^{2}} dx + \int_{0}^{1} antarpa dx$ [ xantayz] = [ [ [ [ [ [ ] ]] ] + ] + ] ontwyz dz (II-o) = (Ing -o) + J' antanz dz  $\alpha d\alpha = \pi - 2h_1 2$  or  $\pi - h_1 4$

#### Question 27 (\*\*\*+)

By using the substitution  $x^2 = 3 \tan \theta$ , or otherwise, find the exact value of




| $\int_{0}^{\sqrt{3}} \frac{\infty}{2^{\alpha} + 9} dx = by \text{ substation or nonstring of } $ $= \int_{0}^{\frac{\pi}{2}} \frac{\infty}{2^{\beta} + 9} \frac{3\alpha \theta}{2\alpha} d\theta = \int_{0}^{\frac{\pi}{2}} \frac{3\alpha \theta}{2^{\beta} + 9} d\theta $ $= \int_{0}^{\frac{\pi}{2}} \frac{3\alpha \theta}{2^{\beta} + 9} d\theta = \int_{0}^{\frac{\pi}{2}} \frac{1}{2^{\beta} + 9} d\theta $ | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = = = -0 = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

 $\frac{\pi}{24}$ 

#### **Question 28** (\*\*\*+)

P.C.P.

Use an appropriate substitution to find an exact value for the following integral.



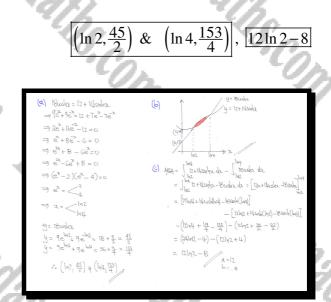
You may assume that the integral converges.

Ki,

| 190                                       | $[ ], ] \frac{1}{6}\pi$                                                                                                             |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| ~ ~ 6                                     | 0.                                                                                                                                  |
| LOMOTRADE & JUNED                         |                                                                                                                                     |
| u = Ina<br>du = ±<br>dr. 2 du             | a=1 → u=Jut=0<br>a z=2 → u=he= 1                                                                                                    |
| TRANSFORMING THE INTEGR                   |                                                                                                                                     |
| $\int_{1} \frac{1}{2\sqrt{1-(lws)^{2l}}}$ | $dx = \int_{0}^{\frac{1}{2}} \frac{1}{2\sqrt{1-u^{2}}} \left(2 u^{u}\right)$ $= \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-u^{2}}} du$ |
|                                           | = [arcsmu] <sup>1</sup>                                                                                                             |
|                                           | $= \operatorname{ansm}_{\Sigma} - \operatorname{ansm}_{0}$ $= \frac{1}{4}$                                                          |
|                                           | ~//                                                                                                                                 |

#### Question 29 (\*\*\*+)

1


The curves  $C_1$  and  $C_2$  have respective equations

 $y = 18\cosh x, x \in \mathbb{R}$  and  $y = 12 + 14\sinh x, x \in \mathbb{R}$ .

- **a**) Find the exact coordinates of the points of intersection between  $C_1$  and  $C_2$ .
- **b**) Sketch in the same diagram the graph of  $C_1$  and the graph of  $C_2$ .
- c) Show that the finite region bounded by the graphs of  $C_1$  and  $C_2$  has an area of

#### $a\ln 2+b$ ,

where a and b are integers to be found.



Question 30 (\*\*\*+)

 $f(x) \equiv \frac{4x}{1 - x^4}.$ 

a) Express f(x) into partial fractions.

I.G.B.

I.C.

I.G.B.

I.F.G.B.

200

b) Hence find, as a single natural logarithm, the value of

 $\int_0^{\frac{1}{2}} f(x) \ dx.$ 



 $\frac{1}{1+x} + \frac{2x}{1+x^2}$ 

 $\ln \frac{5}{3}$ 

20

Inadası

I.F.C.P.

 $f(x) = \frac{1}{1-x}$ 

2017

ths.com

è

.Y.G.B.

| $\int_{0}^{\frac{1}{2}} f(t)  dt = \int_{0}^{\frac{1}{2}} \frac{1}{1-x} \sim \frac{1}{1+x} + \frac{2x}{1+x^{2}}  dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $= \left[ -  n   -x  -  n   +x  +  n   +x^2 \right]_{0}^{\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| $= (-b_1 \frac{1}{2} - b_1 \frac{3}{2} + b_1 \frac{5}{2}) - (-b_1 - b_1 + b_1$ |  |
| $= h_{1} \frac{s}{4} - h_{1} \frac{1}{2} - h_{2} \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $= \ln\left(\frac{\frac{1}{2}}{\frac{1}{2}\times\frac{1}{2}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $= \frac{12}{5}$ d =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

(\*\*\*+) Question 31

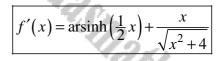
$$f(x) = x \operatorname{arsinh}\left(\frac{1}{2}x\right), x \in \mathbb{R}.$$

**a**) Find a simplified expression for f'(x).

**b**) Use the answer to part (**a**) to show that

.F.G.B.

I.V.C.J


1202

V.G.B. Mada

COM

I.F.G.B.

I.C.B.  $\int_{0}^{\sqrt{12}} \operatorname{arsinh}\left(\frac{1}{2}x\right) \, dx = 2\sqrt{3}\ln\left(2+\sqrt{3}\right) - 2 \, .$ 



2017

1

1+

| 0        | $f(x) = x arzin \int (\frac{1}{2}x)$                                                                                                                                                                                   |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | $f'(\Omega) = \alpha \alpha n h(\frac{1}{2}\alpha) + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $f'(0) = \alpha \alpha n h(\frac{1}{2}\alpha) + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$                                 |
|          | $f(\chi) = \operatorname{cuzn}_{\mathbb{P}}\left(\frac{z}{z}\right) + \frac{y_{2}z_{e}^{+}z_{1}}{z}$                                                                                                                   |
| (b)      |                                                                                                                                                                                                                        |
| ~1       | Now $\frac{d}{dt} \left[ xansulv (bs) \right] = ansulv \frac{1}{2}x + \frac{\sqrt{2^{1+4}}}{x}$                                                                                                                        |
|          | $\int_{0}^{1/2} \frac{dx}{dx} \left[ x \cos y \left( \frac{1}{2} x \right) \right] = \int_{0}^{1/2} \cos y \left( \frac{1}{2} x \right) dx + \int_{0}^{1/2} \frac{x}{dx} \left( \frac{1}{2} x \right) \frac{1}{dx} dx$ |
|          | $\left[ xarsinh(\frac{1}{2}x) \right]_{0}^{\sqrt{2}} = \int_{0}^{\sqrt{2}} arsinh(\frac{1}{2}x) dx + \left( 1 (x^{t}+y)^{\frac{1}{2}} \right)^{\sqrt{2}}$                                                              |
|          | $\sqrt{n} a \sigma_{ab} \left( \frac{1}{2} \sqrt{n} \right) = \int_{-\infty}^{\infty} \left( \frac{1}{2} \sqrt{n} \sqrt{n} \sqrt{n} \sqrt{n} \sqrt{n} \sqrt{n} \sqrt{n} n$                                             |
|          | $245^{\circ} \operatorname{arsinh}(45^{\circ}) = \int_{0}^{4} \operatorname{arsinh}(\frac{1}{2}x) dx + 2$                                                                                                              |
| matheast | $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \left  h\left( \sqrt{k} + 2 \right) \right  = \int_{0}^{\sqrt{k^2}} \alpha \cosh\left( \frac{1}{2} x \right) dx + 2$                                                          |
| Ĩ        | $\int_{0}^{\sqrt{2}} dr sub(\frac{1}{2}x) dx = 2\sqrt{3} \int_{0}^{1} (\sqrt{3} + 2) - 2.$                                                                                                                             |
|          | ts expuels                                                                                                                                                                                                             |

21/15.1

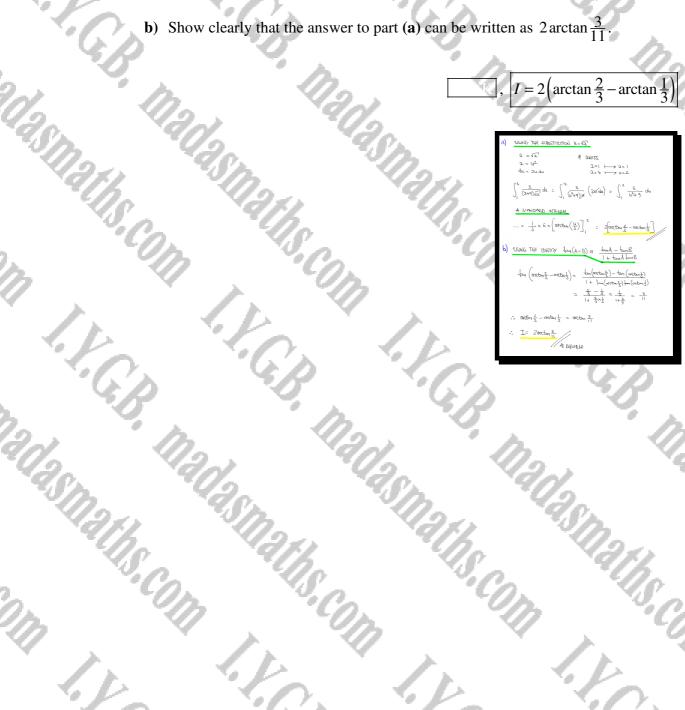
I.Y.G.B.

112/2

# Created by T. Madas

Smaths,

2011


(\*\*\*+) Question 32

Smarns Com I. K. C. B.

I.F.G.B.

$$I = \int_{1}^{4} \frac{3}{(x+9)\sqrt{x}} \, dx \, .$$

- a) By using a suitable substitution find an exact value for I.
- **b**) Show clearly that the answer to part (**a**) can be written as  $2 \arctan \frac{3}{11}$ .



Madasmaths.com

I.V.C.B. Madasa

ths.com

I.F.C.

6

nadasm.

Created by T. Madas

l.V.C.B.

Question 33 (\*\*\*+)

$$I = \int_0^{\frac{\pi}{3}} \frac{1}{1 + 8\cos^2 x} \, dx \, .$$

a) By using the substitution  $t = \tan x$ , or otherwise, show clearly that

$$I = \int_0^{\sqrt{3}} \frac{1}{9+t^2} dt \, .$$

**b**) Hence find the exact value of I.

| (a) | $\int_{0}^{\frac{\pi}{3}} \frac{1}{\partial \omega^{2} x^{+} 1} dx = \dots \log \text{ substituting} \qquad \left\{ \begin{array}{c} t = t_{\text{substituting}} \\ t = s \omega_{2} \end{array} \right\}$ |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -   | $\int_{0}^{t_{1}} \frac{1}{8tadx+1} \times \frac{dt}{sdx} = \int_{0}^{s_{2}} \frac{1}{8+sdx} dt  \begin{cases} dx = \frac{dt}{sdx} \\ sdx \end{cases}$                                                     |
|     | $\int_{0}^{\sqrt{2}} \frac{1}{8 + (1 + bac_{A}x)} dt = \int_{0}^{\sqrt{2}} \frac{1}{9 + bac_{A}x} dt  \begin{cases} x = 0 \ z = \frac{\pi}{3}, t = \sqrt{3} \end{cases}$                                   |
| 15  | Jos q++z de p REquero                                                                                                                                                                                      |
| (b) | $= \frac{1}{3} \left[ a_1 a_2 a_3 + \frac{1}{3} \right]_{0}^{0} = \frac{1}{3} \left[ a_1 a_2 a_3 + \frac{1}{3} - a_1 a_2 a_3 \right] = \frac{1}{3} \times \frac{\pi}{6} = \frac{\pi}{16}$                  |
|     |                                                                                                                                                                                                            |

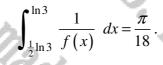
 $\frac{\pi}{18}$ 

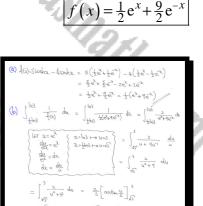
<u>5</u> 2

#### Question 34 (\*\*\*+)

By using the substitution  $u = \cosh x - 1$ , or otherwise, find the value of

 $\int_{\ln 2}^{\ln 3} \frac{\cosh x + 1}{\sinh x (\cosh x - 1)} \, dx \, .$ 

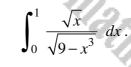

| h/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\int_{a_{1}}^{b_{1}} \frac{d_{2}d_{2}+1}{d_{2}d_{2}-1} d_{2} \dots d_{q} substitution \dots \int_{a_{1}}^{b_{1}} \frac{d_{1}d_{2}}{d_{2}} \frac{d_{1}d_{2}}{d_{1}d_{2}} \frac{d_{1}d_{1}}{d_{1}d_{2}} \frac{d_{1}d_{2}}{d_{1}d_{2}} d_$ |
| $\int_{\frac{1}{4}}^{\frac{2}{3}} \frac{\frac{du}{saha + 1}}{\frac{saha}{x + u}} \frac{du}{saha} = \int_{\frac{1}{4}}^{\frac{2}{3}} \frac{\frac{daha + 1}{saha^{2}u}}{(u + sah^{2})u} du \qquad \begin{cases} \frac{du}{saha} = du \\ \frac{saha}{saha} = du \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{(\alpha s   \alpha + 1)}{(\alpha s   \alpha - 1)} du = \int_{\frac{1}{4}}^{\frac{2}{3}} \frac{(\alpha s   \alpha + 1)}{(\alpha s   \alpha - 1)} du \begin{cases} a =   a   2   - a   a = \frac{1}{4} \\ a =   b   3   - a   a = \frac{2}{3} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\int_{\frac{1}{4}}^{\frac{2}{3}} \frac{1}{\ln\left(\cosh\alpha - 1\right)} d\mu = \int_{\frac{1}{4}}^{\frac{2}{3}} \frac{1}{\ln^2} d\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{bmatrix} -\frac{1}{\alpha} \end{bmatrix}_{\frac{1}{2}}^{\frac{1}{2}} = \begin{bmatrix} \frac{1}{\alpha} \end{bmatrix}_{\frac{1}{2}}^{\frac{1}{2}} = 4 - \frac{3}{2} = \frac{5}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |


Question 35 (\*\*\*+)

 $f(x) = 5\cosh x - 4\sinh x, \ x \in \mathbb{R}.$ 

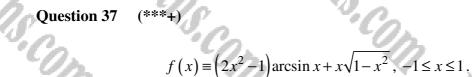
**a**) Find a simplified expression for f(x) in terms of  $e^x$ .

**b**) Hence by using the substitution  $u = e^x$ , or otherwise, show that






# Question 36 (\*\*\*+)


5

By using the substitution  $x^3 = 9\sin^2 \theta$ , or otherwise, find the exact value of



 $\frac{2}{3} \arcsin\left(\frac{1}{3}\right)$ 

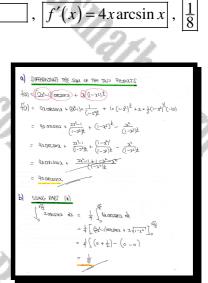
| $\frac{\sqrt{\lambda'}}{\sqrt{q}-2^{\lambda'}} d\xi = \int_{0}^{\infty} \frac{1}{\sqrt{q}-q} \frac{1}{\sqrt{\lambda'}} \times \frac{g_{M}g_{M}}{\sqrt{q}} \times \frac{1}{\sqrt{q}} = \frac{1}{\sqrt{q}} \frac{1}{\sqrt{q}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\operatorname{arcsar}_{2}^{1}}{\operatorname{3}(\operatorname{ab}^{2}\times \underbrace{\operatorname{6sn}_{2}\operatorname{cs}}_{\operatorname{2}^{2}}d_{\mathrm{C}}} = \int_{-\frac{2\operatorname{sn}_{2}}{\operatorname{2}^{2}}}^{\operatorname{aran}_{2}} d_{\mathrm{C}} = \frac{\operatorname{3}\operatorname{3}\operatorname{aran}_{2}}{\operatorname{3}\operatorname{cs}} d_{\mathrm{C}} = \frac{\operatorname{6}\operatorname{cn}_{2}\operatorname{an}_{2}}{\operatorname{3}\operatorname{cs}} d_{\mathrm{C}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\frac{1}{2} \frac{1}{2} \frac{1}$ |
| $\frac{2}{3} \operatorname{arean} \frac{1}{3} - \operatorname{aream} 0 = \frac{2}{3} \operatorname{arean} \frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



**a**) Find a simplified expression for f'(x).

I.G.B.

K.C.


12

**b**) Hence find

I.C.B. Ma

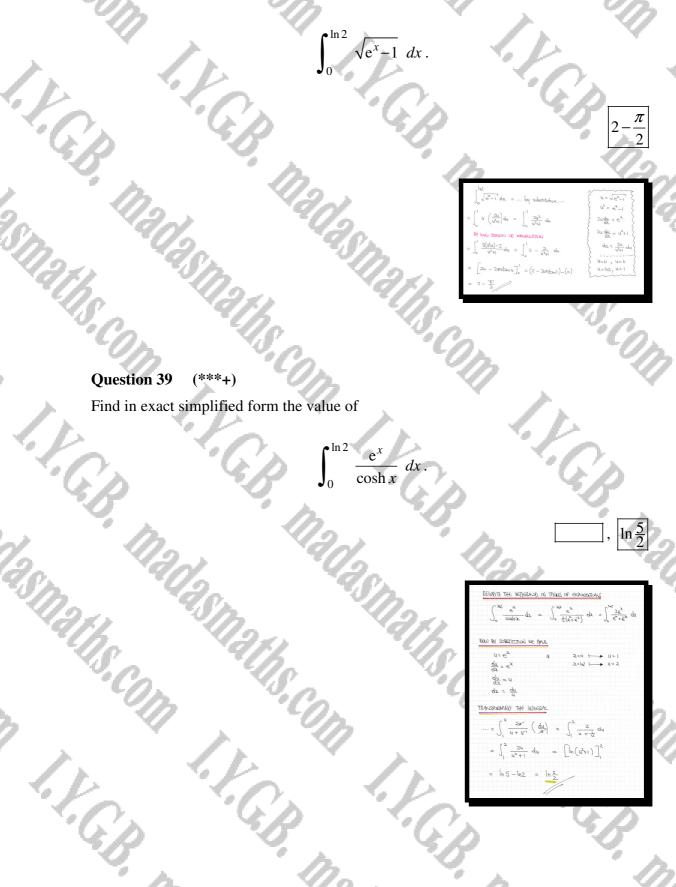
I.C.P.

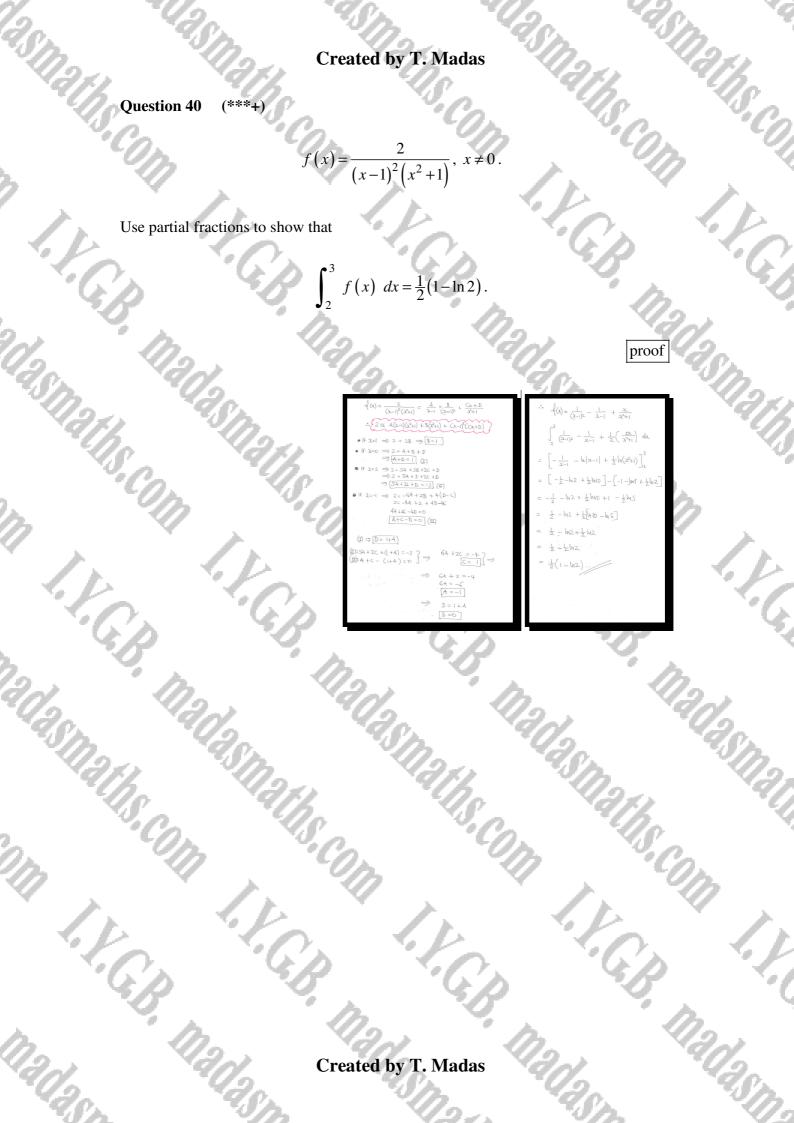




I.F.C.P.

Mada

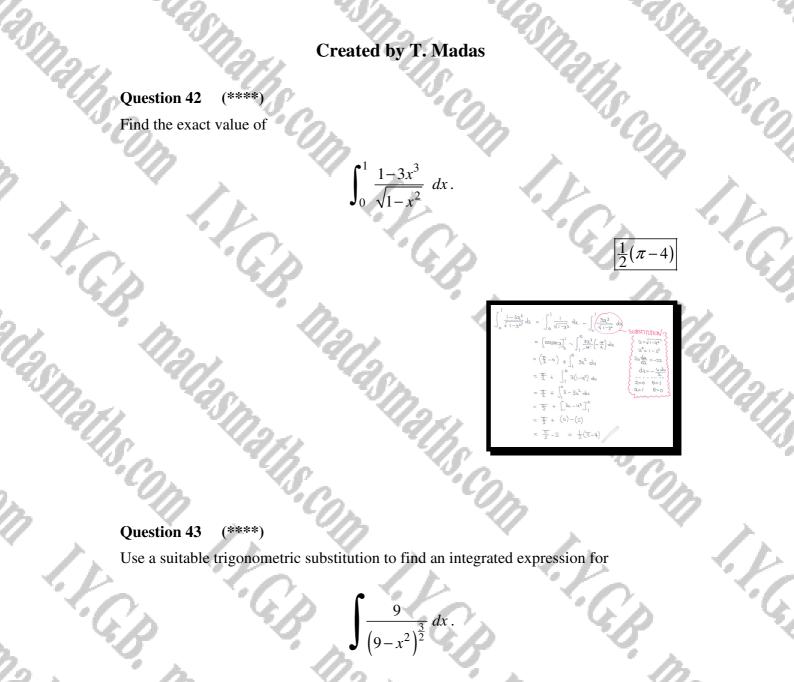

m


è

6

#### Question 38 (\*\*\*+)


By using the substitution  $u = \sqrt{e^x - 1}$ , or otherwise, find the exact value of






#### Question 41 (\*\*\*+)

Use an appropriate substitution to find an exact value for the following integral.





|     | <i>x</i>         |
|-----|------------------|
|     | $\sqrt{9-x^2}$ + |
| in. |                  |
|     |                  |

|     | $\frac{q}{(q-\chi^2)^{\frac{4}{2}}}d\varrho$ | =     | by subs | stitution |     | ξ | a  |
|-----|----------------------------------------------|-------|---------|-----------|-----|---|----|
| 0   | (1= x /2                                     |       |         | 0         |     | 3 | 8  |
| = \ | 9                                            | (2.0) | 6       | Cans      | le. | ( | 1. |

- $= \int \frac{q}{\left[\frac{q}{(q-q_{SW})^2}\right]^{\frac{1}{2}}} \left(3\omega \theta \, d\theta\right) = \int \frac{2\pi\omega \theta}{(q-q_{SW})^{\frac{1}{2}}} \, d\theta$
- $\frac{\partial \omega_{\beta} (\overline{g}_{\omega}) \overline{y}}{g(g_{\omega} y_{\beta})} \int = \frac{\partial \omega_{\beta}}{g_{\alpha}} \frac{g(g_{\beta} \omega_{\beta}) \overline{y}}{g(g_{\beta} \omega_{\beta}) \overline{y}} \int = \frac{\partial \omega_{\beta}}{g_{\alpha}} \frac{g(g_{\beta} \omega_{\beta}) \overline{y}}{g_{\alpha}} \int \frac{\partial \omega_{\beta}}{g_{\alpha}} \frac{g(g_{\beta} \omega_{\beta}) \overline{y}}{g_{\alpha}} \frac{g(g_{\beta} \omega_{\beta}) \overline{y}}{g$
- $= \tan \theta + C = \frac{1}{\sqrt{1 x^2}} + C$

F.C.B.

#### (\*\*\*\*) Question 44

1. V. G.B. 111.2023

Maga

I.F.G.B.

alasmaths.com

Use the substitution  $t = tan\left(\frac{x}{2}\right)$  to find the value of

I.Y.G.B.

 $\frac{2\pi}{3} \frac{1}{5+4\cos x} dx$ .

|                                       | 0           | WING THE SUBSTITUTION GIVIN                                                                              |                                                                               |
|---------------------------------------|-------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 2.                                    | da          | $t = \tan(\underline{a}) \implies \frac{dt}{da}$                                                         | $=\frac{1}{2}\operatorname{Ste}^{2}(\frac{x}{2})$                             |
|                                       | 10          | $\frac{dt}{dt} =$                                                                                        | $\frac{1}{2}\left[1+\tan^2\left(\frac{1}{2}\right)\right]$                    |
| ×12.                                  | de.         |                                                                                                          | $=\frac{1}{2}(1+\frac{1}{2})$                                                 |
| 1110                                  | -00         | 2 dt =                                                                                                   | = 1++2                                                                        |
| Th.                                   |             | da =                                                                                                     | 2 dt                                                                          |
|                                       | 9           | ALSO CAING THE COSINE DOUBL                                                                              | E ANGLE LONJITY                                                               |
|                                       |             | $\frac{(\Sigma)}{(S)}  _{M} = \mathcal{L}(S) = \mathcal{L}(S) \iff (S)$                                  |                                                                               |
| · · · · · · · · · · · · · · · · · · · | 7           | $\longrightarrow \log_2 - \left(\frac{1}{\sqrt{1+r^2}}\right)^2 - \left(\frac{1}{\sqrt{1+r^2}}\right)^2$ |                                                                               |
|                                       |             | $ \Rightarrow Los 2 = \frac{1}{1+t^2} - \frac{t^2}{1+t^2} $ $ \Rightarrow Los 2 = \frac{1-t^2}{1+t^2} $  | t (***)                                                                       |
|                                       | <b>V</b>    | $\implies 5 + 4 \cos = 5 + \frac{4(1-14)}{1+14}$                                                         | <u>β</u> ΣΔ-                                                                  |
|                                       |             | $ \Rightarrow 5 + 4 \log 2 = 5 + \frac{4(1-4)}{1+42} $ $ = \frac{5 + 29 + 4 - 44}{1+42} $                | $a_{M} \frac{X}{Z} = \frac{1}{L}$<br>(Prijkerens viewer $(Prijkerens viewer)$ |
|                                       |             | $=\frac{9+(3)}{1+(2)}$                                                                                   | $(\Omega_{1} \frac{X}{2} = \frac{1}{\sqrt{1+t^{2}}}$                          |
| J. K.                                 |             |                                                                                                          | $\leq i\eta \frac{2}{2} = \frac{t}{\sqrt{i+t^2}}$                             |
|                                       | 1. S. A.    |                                                                                                          | 10.00                                                                         |
|                                       | - ° C       | x                                                                                                        |                                                                               |
| - (x')                                | 1           |                                                                                                          | - 10 M.                                                                       |
|                                       |             | <b>Y</b>                                                                                                 |                                                                               |
|                                       |             | i n                                                                                                      |                                                                               |
| F 5                                   | <i>h</i> .  | 10                                                                                                       |                                                                               |
| $\mathcal{O}_{\mathcal{O}}$           |             | 90                                                                                                       |                                                                               |
| (2.                                   | del -       | · · · · · · · · · · · · · · · · · · ·                                                                    | 2.                                                                            |
| S. 1.                                 | .00         |                                                                                                          | Ph                                                                            |
| 10.                                   | 20.         | 1                                                                                                        | n.                                                                            |
| 1215                                  |             |                                                                                                          | 12                                                                            |
| ~ <i>Ch</i>                           |             | 2                                                                                                        |                                                                               |
| 10                                    | 14          |                                                                                                          |                                                                               |
|                                       | 0_          | 40                                                                                                       |                                                                               |
|                                       | 0 x         | 10.0                                                                                                     |                                                                               |
| h.                                    | Ch .        | Cn.                                                                                                      |                                                                               |
| 75                                    |             |                                                                                                          |                                                                               |
|                                       |             |                                                                                                          |                                                                               |
|                                       |             | P                                                                                                        | - <b>&gt;</b>                                                                 |
| - J Y.                                | · · · · · · |                                                                                                          | 1                                                                             |
| · · / _                               |             | D.                                                                                                       | ~ L                                                                           |
|                                       |             | (x' A                                                                                                    |                                                                               |

| 1                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| FINALLY THE WAITS                              | IF t= tay (=)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 3=0 →                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| TRANSFORMING THE IN                            | DHGAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| $\Rightarrow \int_{0}^{37} \frac{1}{5 + 4iaz}$ | $bx = \int_{0}^{\sqrt{2}} \frac{\frac{1}{q+t^{2}}}{\frac{1}{1+t^{2}}} x \frac{2}{1+t^{2}} dt$ $= \int_{0}^{\sqrt{2}} \frac{1}{q+t^{2}} dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                                | $\begin{array}{l} \mbox{Th}(x) \mbox{A} \mbox{STALAD} \mbox{Matrix} \mbox{TH}(x) \mbox{A} \mbox{STALAD} \mbox{Matrix} \mbox{TH}(x) \mbox{A} \mbox{TH}(x) \mbox{A} \mbox{TH}(x) \mbox{TH}($ |    |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |

I.C.B.

aths.co

. K.G.D.

6

Ths.com

 $\frac{\pi}{9}$ 

Madasmans.com I.Y.C.B. Madasm

#### Question 45 (\*\*\*\*)

Show that the exact value of the following integral

I.G.p.

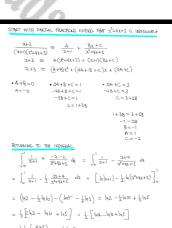
I.Y.C.B.

$$\int_{0}^{1} \frac{x+3}{(x+1)(x^2+4x+5)} \, dx$$

1120251

is  $\frac{1}{2}\ln 2$ .

nn,


1. C.B. 111.21/25

COM

I.V.G.p

anasmarns,

2



ths.com

proof

60

1.4

202.sm

aths com

 $\frac{1}{2} \ln \left( \frac{4 \times 5}{10} \right) = \frac{1}{2} \ln 2$ 

12.87

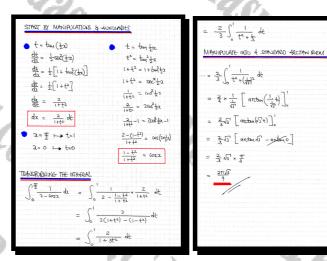
2017

Created by T. Madas

madasma,

2017

#### Question 46 (\*\*\*\*)


I.C.B. II

I.F.G.B.

Use the substitution  $t = tan(\frac{1}{2}x)$  to find an exact simplified value for

 $\int_0^{\frac{\pi}{2}} \frac{1}{2 - \cos x} \, dx.$ 

Any trigonometric identities to convert  $\cos x$  in terms of t must be derived.



27

in the second

1

 $\frac{2\pi\sqrt{3}}{9}$ 

Created by T. Madas

1. ¥.C.J.

Question 47 (\*\*\*\*)

 $I = \int \frac{18}{3\cos^2 x + \sin^2 x} \, dx$ 

**a**) By using the substitution  $t = \tan x$ , or otherwise, show clearly that

 $I = 6\sqrt{3}\arctan\left(\frac{\sqrt{3}}{3}\tan x\right) + \text{constant}.$ 

**b)** Hence find the exact value of  $\int_0^{\frac{\pi}{4}} \frac{18}{3\cos^2 x + \sin^2 x} dx.$ 

I.G.p.

1.1.64

I.C.B.

I.F.G.B.

 $\int \frac{18}{3\omega \delta x + \sin^2 \alpha} dx = \int \frac{\frac{18}{\omega \delta x}}{\frac{2\omega \delta x}{\omega \delta x} + \frac{3w}{\omega \delta x}} dx$  $\frac{dt}{da} = seca$  $da \approx \frac{dt}{seca}$ = 1 18563 da = ... by substitution  $\int \frac{10}{3+t^2} dt = \int \frac{10}{t^2 + \sqrt{3}} dt$ =  $\frac{18se^{2}r}{3+t^{2}}\frac{dt}{se^{2}r} =$ =  $\frac{18}{\sqrt{3}}$  and  $\frac{1}{\sqrt{3}}$  + C =  $\frac{18}{\sqrt{3}}$  and  $\frac{\sqrt{3}}{\sqrt{3}}$  but x) + C = 613 antry (13 tays  $(b) \int_{0}^{\frac{\pi}{4}} \frac{1}{18} \frac{1}{18} dz = \left[ 643 \operatorname{arsbur}(\frac{\pi}{3} \operatorname{taut}) \right]_{0}^{\frac{\pi}{4}}$  $6\sqrt{3}\left[anbuy \frac{\sqrt{3}}{3} - anbuy 0\right] = 6\sqrt{3} \times \frac{\pi}{6} = \pi\sqrt{3}$ 

23

5

2017

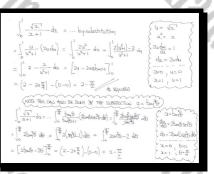
 $\pi\sqrt{3}$ 

I.V.G.B. Ma

F.G.S.

6

#### Question 48 (\*\*\*\*)


I.F.G.B.

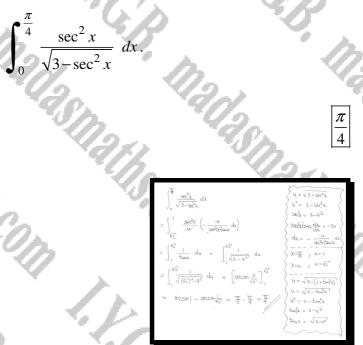
I.C.B.

By using the substitution  $u = \sqrt{x}$ , or otherwise, find an exact value for

Mada,






 $2-\frac{\pi}{2}$ 

1+

Question 49 (\*\*\*\*)

I.F.G.B.

By using the substitution  $u = \sqrt{3 - \sec^2 x}$ , or otherwise, find the exact value of



Created by T. Madas

10,

#### **Question 50** (\*\*\*\*)

By using a suitable trigonometric substitution, show clearly that

19

 $\int_0^{\frac{1}{2}} \sqrt{\frac{16x}{1-x}} \, dx = \pi - 2 \, .$ 



#### **Question 51** (\*\*\*\*)

.C.

I.C.P.

By using the substitution  $u = \tan x$ , or otherwise, show clearly that

 $\int_0^{\frac{\pi}{4}} \frac{1}{\cos^2 x + 25\sin^2 x} \, dx = \frac{1}{5}\arctan 5 \, .$ 

proof

1+


proof

| $\int_{0}^{\frac{1}{2}} \frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{$                                                                                                                                             |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| $\int_{0}^{1} \frac{1}{1+25} \frac{1}{25} du = \int_{0}^{1} \frac{1}{1+25u^{2}} du = \frac{1}{25} \int_{0}^{1} \frac{du}{\frac{1}{25}+u^{2}}$                                                                                        | 2=0, u=0 } |
| $\frac{1}{25}\int_{0}^{1} \frac{1}{\left(\frac{1}{5}\right)^{2} + u^{2}} du = \frac{1}{25}\left[\frac{1}{5} \operatorname{arcbut}\left(\frac{u}{v_{5}}\right)\right]_{0}^{1} = \frac{1}{25}x5\times\left[\frac{1}{5}\right]_{0}^{1}$ | archur Su] |
| = 1 arebus - areburo] = 1 arebur 5 As etsuroeo                                                                                                                                                                                       |            |

·C.B.

#### (\*\*\*\*) Question 52

By using the substitution  $x = \cosh^2 u$ , or otherwise, show that



Question 53 (\*\*\*\*)

 $\sin 2x \equiv \frac{2\tan x}{1+\tan^2 x} \,.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Express  $\frac{8}{(3t+1)(t+3)}$  into partial fractions.
- c) Hence use the substitution  $t = \tan x$  to show that

.F.G.B.

I.F.C.B.

I.C.B. ma

I.C.B.

 $\int_0^{\frac{\pi}{4}} \frac{8}{3+5\sin 2x} \, dx = \ln 3 \, .$ 

8 3 (3t+1)(t+3)3*t*+1 *t*+3 itaya 1+taya (b)  $\frac{B}{(3t+1)(t+3)} = \frac{A}{3t+1} + \frac{B}{t+3}$ B = A(t+3) + B(3t+1) $\frac{c}{(3t+1)(t+3)} = \frac{3}{3t+1} - \frac{1}{t+8}$ 3+5(20mx) 922 dt et 1+taja B 3(1+tuzz) + 10tur  $\frac{B}{3tar_{1}^{2}x + bt_{arp}x + 3}$  dt =  $\int_{D} \frac{B}{3t^{2} + bt_{arp}} dt$  $\int_{0}^{1} \frac{B}{(3t+1)(t+3)} dt = \int_{0}^{1} \frac{3}{3t+1} - \frac{1}{t+3} dt = \left[ \ln[3t+1] - \ln[t+3] \right]_{0}^{1}$ 

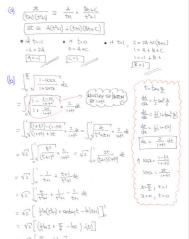
. M

Madasn,

= (ln4-ln4)-(ln7-ln3) = ln3 45 FFRN860

Question 54 (\*\*\*\*)

I.C.B.


I.C.p

$$\frac{2t}{(t+1)(t^2+1)} \equiv \frac{A}{t+1} + \frac{Bt+C}{t^2+1}$$

- a) Determine the values of A, B and C in the above identity.
- **b**) Hence find an value for

 $\int_0^{\frac{\pi}{2}} \sqrt{\frac{1-\cos x}{1+\sin x}} \, dx \, .$ 

 $\frac{\sqrt{2}}{2}(\pi-2\ln 2)$ A = -1, B = 1, C = 1,



K.G.B.

Madası

5

20

= N2 = + h12

Created by T. Madas

N.C.

### Question 55 (\*\*\*\*)

I.V.G.P.

Use the substitution  $t = tan\left(\frac{x}{2}\right)$  to find the value of

I.C.B.

 $\int_0^{\frac{\pi}{2}} \frac{1}{1+\sin x} \, dx.$ 

173035



1

**Question 56** (\*\*\*\*)

I.C.P.

Con

Use suitable substitution to find the exact value of

1.01

 $\int_0^{\frac{\pi}{2}} \frac{\sin 2x}{\sqrt{4-\sin^4 x}} \, dx.$ 

| $\int_{0}^{\frac{\pi}{2}} \frac{SM2x}{\sqrt{4-su^{4}z}} dz =substitution}$                                                                                                                 | M= SMP2<br>du = 2SM2COS2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| $= \int_{0}^{1} \frac{\underline{\operatorname{SM2n}}}{\sqrt{4-u^{2^{2}}}} \frac{\underline{d} u}{\underline{\operatorname{SM2n}}} = \int_{0}^{1} \frac{\underline{1}}{\sqrt{4-u^{2}}} du$ | du = sinza<br>du = du    |
| $= \left[ \alpha_{12} \alpha_{2} \frac{1}{2} \right]^{p} = \alpha_{12} \alpha_{2} \frac{1}{2} - \alpha_{12} \alpha_{2} \frac{1}{2}$                                                        | 2=0 4=0                  |
| = He                                                                                                                                                                                       | 2== = 4=1                |

 $\frac{\pi}{6}$ 

(\*\*\*\*) Question 57

$$I = \int \sqrt{\frac{x}{1-x}} \, dx$$

**a**) Use the substitution  $\sqrt{x} = \sin \theta$  to show that

aths.com

$$I=\int 2\sin^2\theta \ d\theta \,.$$

asmaths.com **b**) Hence show further that

I.Y.C.B. Madasman

11<sub>20281</sub>

I.V.G.B

I = 
$$\int 2 \sin^2 \theta \, d\theta$$
,  
I =  $\arcsin \sqrt{x} - \sqrt{x - x^2} + \text{constant}$ 

6

11202SI1121

naths.com

Smarns.co

|          | (a) $\int \sqrt{\frac{\alpha}{1-\alpha}} dx = \int \frac{\sqrt{\lambda^{-1}}}{\sqrt{1-\lambda^{-1}}} dx = \dots \log \frac{1}{2} + 1$ | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CB IV    | $= \theta - \frac{1}{2} \cos 2\theta + C = \theta - \frac{1}{2} (2 \cos \theta \cos \theta) + C$ $= \theta - \sin \theta \cos \theta + C = \sin \pi i x^{-} - \frac{1}{2} x^{-1} i x^{-1} + c$ $= \sin \pi i x^{-} - \sqrt{3 - 2^{2}} + c - \frac{1}{2} \theta \cos \theta - \frac{1}{2} (2 \cos \theta \cos \theta) + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | Madas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Alls Con |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.1. 1.  | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

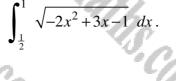
madasmaths com

### **Question 58** (\*\*\*\*)

The curve with the following equation is defined in the largest real domain.

$$y = (4x-3)\sqrt{-8(2x^2-3x+1)} + \arcsin(4x-3).$$

**a**) Show that


R

I.C.B.

$$\frac{dy}{dx} = k\sqrt{-2x^2 + 3x - 1},$$

where k is an exact constant to be found.

**b**) Hence find the exact value of the following integral.



$$\begin{array}{c} \mathbf{q} \\ \mathbf{q} \\ \begin{array}{c} \underbrace{\mathbf{q}}_{2} = \mathbf{q} \\ \underbrace{\mathbf{q}}_{2} = \mathbf{q} \\ \underbrace{\mathbf{q}}_{2} = \mathbf{q} \\ \underbrace{\mathbf{q}}_{2} \\ \mathbf{q} \\ \mathbf{q} \\ \begin{array}{c} \underbrace{\mathbf{q}}_{2} \\ \mathbf{q} \\$$

$$\Rightarrow \frac{du}{dt} = 4 \times \frac{1}{(6\pi)} \times 6 \times (-2t^{4} + 3t_{1-1})^{\frac{1}{4}}$$

$$\Rightarrow \frac{du}{dt} = \frac{6t^{6}}{6} (-2t^{2} + 3t_{1-1})^{\frac{1}{4}}$$

$$\Rightarrow \frac{du}{dt} = 16\sqrt{2} (-2t^{2} + 3t_{1-1})^{\frac{1}{4}}$$

$$\Rightarrow \frac{du}{dt} = 16\sqrt{2} (-2t^{2} + 3t_{1-1})^{\frac{1}{4}}$$

$$= \frac{1}{(5t^{2})} (-2t^{2} + 3t_{1-1})^{\frac{1}{4}}$$

$$= \frac{1}{(5t^{2})} (-2t^{2} + 3t_{1-1})^{\frac{1}{4}} = \frac{1}{(5t^{2})} (-1)^{\frac{1}{4}} (-1)^{\frac{1}{4}} (-1)^{\frac{1}{4}} dt$$

$$= \frac{1}{(5t^{2})} (-1)^{\frac{1}{4}} (-2t^{2} + 3t_{1-1})^{\frac{1}{4}} = \frac{1}{(5t^{2})} (-1)^{\frac{1}{4}} (-1)^{\frac{1}{4}} (-1)^{\frac{1}{4}} dt$$

$$= \frac{1}{(5t^{2})} (-1)^{\frac{1}{4}} (-1)^{\frac{1}{$$

G.B.

6

 $k = 16\sqrt{2}$ ,

21/201

è

 $\frac{\pi}{16\sqrt{2}}$ 

#### (\*\*\*\*) Question 59

Use the substitution  $t = tan\left(\frac{x}{2}\right)$  to find the exact value of





#### Question 61 (\*\*\*\*+)

6

Use the substitution  $t = tan\left(\frac{x}{2}\right)$  to find the value of

 $\int_{0}^{\frac{\pi}{2}} \frac{1}{5 + 3\sin x + 4\cos x}$ dx.

All relevant results used in this evaluation must be carefully derived.

| 60 O      |                     | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|-----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|           | nadasmarias<br>Co   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2        |
|           | 4201 ·              | 905. T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | asmath   |
| Sp. Qa    | ash.                | $\begin{array}{c} \underbrace{\underbrace{v_{\text{SNS}}}_{\text{F}} + \underbrace{f_{\text{C}}(x_{\text{F}})_{\text{C}}(x_{\text{F}})}_{\text{F}} & \underbrace{f_{\text{C}}(x_{\text{F}})_{\text{F}}}_{\text{C}} + \underbrace{f_{\text{C}}(x_{\text{F}})_{\text{F}}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F}})_{\text{F}}}_{\text{C}} + \underbrace{f_{\text{C}}(x_{\text{F}})_{\text{F}}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F}})_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F}})_{\text{F}}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F}})_{\text{F}}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F}})_{\text{F}}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F}})_{\text{F}}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F}})_{\text{F}}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F})}_{\text{F}}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F})}_{\text{F}}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F})}_{\text{F}}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F})}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F})}_{\text{F}}}_{\text{C}} & \underbrace{f_{\text{C}}(x_{\text{F})})_{\text{F}}} & \underbrace{f_{\text{C}}(x_{\text{F}})}_{\text{C}} & \underbrace{f_{\text{C}}} & f_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mar.     |
| 1911 SID  | 1211                | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 4      |
| als ath   | -98                 | $\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0        |
| COD VS    | n "9                | $\frac{1}{\int_{0}^{T}} \frac{1}{5 + 36m_{1} + 96m_{2}} dk = \int_{0}^{1} \frac{1}{5 + 3(\frac{1}{1+k}) + 6(\frac{1}{1+k})} dk$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2        |
|           | Op 1                | $= \left( \frac{1}{5} \frac{1}{\sqrt{5} \sqrt{6^{\frac{1}{4}}}}, \frac{4}{4} \sqrt{4^{\frac{1}{4}}} \frac{2}{\sqrt{1+4^{\frac{1}{4}}}} \right) dt = \left( \frac{1}{\sqrt{5} \sqrt{1+4^{\frac{1}{4}}}}, \frac{2}{\sqrt{1+4^{\frac{1}{4}}}} \right) dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>,</u> |
| 1. 4.1.   | × .                 | $= \int_{0}^{1} \frac{2}{1+\epsilon} + \frac{1}{1+\epsilon} + \frac{1}$ | 1.1.6    |
| No C      | · · J               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6        |
| 60 0      | 6.                  | · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|           | m. o                | · · //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,        |
| Va Var    | A06                 | no. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 201      |
| 48m 420   | Sin.                | 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 303SM31  |
| 1h. 12.   | . 191h              | no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121      |
|           |                     | n Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2        |
|           |                     | × , ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6        |
| 1.1. 5.1. | Str.                | · J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | × .      |
| 1.0. C    | o Ko                | · GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 48 4      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| b D       | 122                 | m. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.      |
| 1201 ×201 | Created by T. Madas | 1202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *Q20.    |
| 4382 ASD  | - CD2-              | "dsp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · 10.    |
|           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |

The Com

hs.col

4.40

#### Question 62 (\*\*\*\*+)

Y.C.B. Madasm

00

I.C.p

Use the substitution  $t = tan(\frac{1}{2}x)$  to find the exact value for the integral

 $\int_{0}^{\frac{1}{2}\pi} \frac{2}{1+\sin x + 2\cos x}$ dx

All relevant results used in this evaluation must be carefully derived.

|          |                                                                                                                                                                                                                                                                                                                                                                                        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total a      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|          | START BY DECLINER INFORMATION . BASED ON THE GUIN SUBSTITUTION                                                                                                                                                                                                                                                                                                                         | MOTORY AND ALTERA PRACTICALS (BY INTERPART OF CONTRACTION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 4 1        |
|          | • t= taw( $\frac{1}{2}$ ) • sing = $2sw_{\frac{3}{2}}cs_{\frac{3}{2}}^{\frac{3}{2}} = \frac{2sw_{\frac{3}{2}}}{cs_{\frac{3}{2}}^{\frac{3}{2}}} cs_{\frac{3}{2}}^{\frac{3}{2}}$                                                                                                                                                                                                         | $\int_{1}^{0} \frac{4}{t^{2}-2t-3} dt = \int_{1}^{0} \frac{4}{(t+t)(t-3)} dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| <u>.</u> | $\begin{array}{rcl} \frac{dt}{d\lambda} &= \frac{1}{2} \cos^2(\frac{1}{2}\lambda) & \qquad & 2 \tan \frac{3}{2} \cos^2\frac{1}{2} & - 2 \tan \frac{3}{2} \cos^2\frac{1}{2} \\ \frac{dt}{d\lambda} &= \frac{1}{2} \left( \left  1 + \tan^2(\frac{1}{2}\lambda) \right  \right) & \qquad & 2 \tan \frac{3}{2} \times \frac{1}{1 + \tan^2\frac{3}{2}} & = \frac{2t}{1 + t_2} \end{array}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>`</b>     |
| A        | 1 + ua 2 1+ + 2                                                                                                                                                                                                                                                                                                                                                                        | $= \int_{1}^{\infty} \frac{1}{t-3} = \frac{1}{t+1} dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
| 0.       | $\frac{d_1}{dt} = \frac{2}{1+t^2} = \frac{2}{1+t_m^2 3} - 1 = \frac{2}{1+t_m} - 1$                                                                                                                                                                                                                                                                                                     | $= \left[ p_i   f^{-2} / - p_i   f^{+1} \right]_i^{\bullet}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|          | $d_{Q,z} = \frac{2}{(s+z)} dz \qquad = \frac{2-C(s+z)}{1+z} = \frac{1-z}{1+z}$                                                                                                                                                                                                                                                                                                         | $= \left[ \lfloor l_{1} \lfloor -3 \rfloor - \lfloor l_{2} \rfloor - \left\lfloor l_{2} \rfloor - \lfloor l_{2} \rfloor - \lfloor l_{2} \rfloor \right\rfloor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| ~~/      | FUSALLY THE LILLITS                                                                                                                                                                                                                                                                                                                                                                    | $= l_{43} - l_{42} + l_{42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| - 4      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                   | = 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| 1        | -LEGHEN HT KINNER                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|          | $\int_{0}^{\frac{1}{2}} \frac{2}{1+\varsigma_{MN}} \frac{d\lambda}{+2\omega_{N}} d\lambda = \int_{0}^{1} \frac{2}{1+\frac{2k}{1+k}} \frac{2(1-k)}{1+q_{N}} \left(\frac{2}{1+q_{N}} \frac{dt}{dt}\right)$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|          | $= \int_{0}^{1} \frac{1}{(1+t^{2}+2t+2(1-t^{2}))} 4t$                                                                                                                                                                                                                                                                                                                                  | کی و این میں باشی ہوئی میں این میکری این مصحف ایک ایک میں ا<br>میں میں میں ایک                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| p        | $\int_{0}^{1} \frac{1}{1+\chi^{2}+2\xi+2-2\xi^{3}} d\xi$                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| - Jr     |                                                                                                                                                                                                                                                                                                                                                                                        | (a) an order of the second se<br>Second second sec |              |
|          | $= \int_{0}^{1} \frac{4}{-t^{2} t^{2} t^{2}} dt$                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - <b>*</b> ø |
|          | $= \int_{1}^{0} \frac{\psi}{t^2 - 2t - 3} dt$                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| 16       |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| - 46     |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| 1        |                                                                                                                                                                                                                                                                                                                                                                                        | 5 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|          | · > · >                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|          |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.           |
|          | and a start                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00.          |
| <i>b</i> | ~~~~                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | " del        |
| _        | - de                                                                                                                                                                                                                                                                                                                                                                                   | dal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~ U o        |
| 2        |                                                                                                                                                                                                                                                                                                                                                                                        | *Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| I'A      |                                                                                                                                                                                                                                                                                                                                                                                        | 90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0           |
|          |                                                                                                                                                                                                                                                                                                                                                                                        | -0/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| No.      |                                                                                                                                                                                                                                                                                                                                                                                        | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|          |                                                                                                                                                                                                                                                                                                                                                                                        | 971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|          |                                                                                                                                                                                                                                                                                                                                                                                        | $\alpha$ $(\alpha)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|          | 10 A                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|          | Cn.                                                                                                                                                                                                                                                                                                                                                                                    | Con Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co.          |
|          | C Ch                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · Da         |
|          | ~//                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10           |
| / }      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| 6 J      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|          |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |

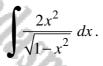
, <u>ln 3</u>

I.V.C.B. Mada

Created by T. Madas

1.1.61

Question 63 (\*\*\*\*+)

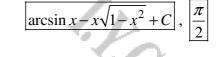

 $y = \arcsin x \,, \, -1 \le x \le 1 \,.$ 

a) Show clearly that

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \,.$$

**b**) Use the substitution  $x = \sin \theta$  to find

Ka,




c) Hence find an exact value for

I.C.B.

I.F.G.B.

 $4x \arcsin x \ dx$ 



F.C.B.

1.5

madas,



# $\begin{array}{l} \overset{\text{pl-NNREXEX}}{\underset{\circ}{\overset{\circ}{\rightarrow}}} \text{ full_{13}} \\ \overset{\text{l}}{\underset{\circ}{\rightarrow}} \overset{\text{l}}{42. \alpha_{\text{PLW2}}} \frac{1}{6} \text{ full_{13}} \\ = \left[ (2x^2 - 1) \alpha_{\text{WM2}} + 2x \sqrt{1 - x^2} \right]_{0}^{1} \\ = \left( \overline{x} + 6\right) - \left(6 + 6\right) \\ = \overline{10} \frac{1}{3} \frac{1}{3$

F.G.B.

Inada.

#### (\*\*\*\*+) Question 64

It is given that

CO17

1.C.

I.C.p

$$c = -2 + \sqrt{3} \cosh \theta, \ \theta \ge 0.$$

a) Show clearly that ...

$$\mathbf{i.} \quad \dots \, \sinh \theta = \frac{\sqrt{x^2 + 4x + 1}}{\sqrt{3}}$$

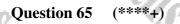
by clearly that ...  
**i.** ... 
$$\sinh \theta = \frac{\sqrt{x^2 + 4x + 1}}{\sqrt{3}}$$
.  
**ii.** ...  $\int \frac{x+2}{(x^2 + 4x + 1)^{\frac{3}{2}}} dx = \frac{\sqrt{3}}{3} \int \frac{\cosh \theta}{\sinh^2 \theta} d\theta$ .  
considering the derivative of  $\operatorname{cosech} \theta$  find  
 $\int \frac{x+2}{(x^2 + 4x + 1)^{\frac{3}{2}}} dx$ 

**b**) By considering the derivative of  $\operatorname{cosech} \theta$  find

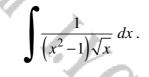
$$\int \frac{x+2}{\left(x^2+4x+1\right)^{\frac{3}{2}}} dx$$

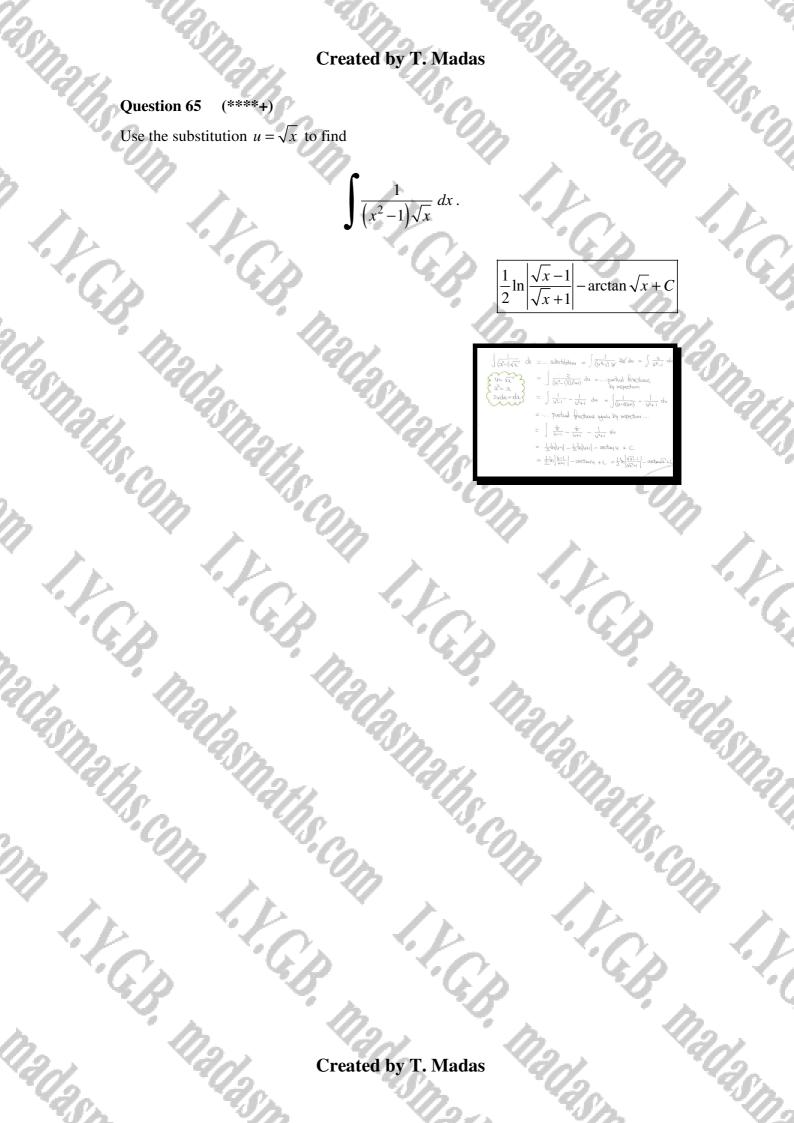
| $-(x^2 \cdot$ | $+4x+1)^{-1}$ | $\frac{1}{2} + C$ |
|---------------|---------------|-------------------|
|               | T             |                   |

ths.com


madasm.

1.5


Inasm.


I.C.B.

| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} & \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $= -\frac{1}{\sqrt{2x^2+4\mu^2}} + C$ $\frac{1}{\sqrt{2x^2+4\mu^2}} + C$ $\frac{1}{2x^2+4\mu^2$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



Use the substitution  $u = \sqrt{x}$  to find





asiliatilis.com



#### (\*\*\*\*+) Question 66

2

a) Find a simplified expression for

 $\frac{d}{dx} \left[ \arctan \frac{2}{x} \right]$ 

I.F.G.B. **b**) Hence show that

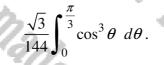


naths.com

Smarns.co.

1.4.6.6

| b)                                    | Hence show that      | , °Gp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - <sup>1</sup> .C) |
|---------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 201 ° 1                               |                      | $\int_{\frac{2}{3}\sqrt{3}}^{2} 9x \arctan\left(\frac{2}{x}\right) dx = \pi + 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-6√3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 202                |
| 35022                                 | adas n               | and as the second secon | $\frac{d}{dx}\left[\arctan\frac{2}{x}\right] = -\frac{2}{x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| Constant                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(b)  \frac{d}{dt} \left[ \cos 2\omega \left( \frac{z}{z} \right) \right]_{z} = \frac{1}{(1+\frac{z}{z})^{z}} \times -\frac{z}{z}_{z} = \frac{1}{(1+\frac{z}{z})^{z}} \left( \frac{z}{z} \right)_{z} = \frac{2z}{(1+\frac{z}{z})^{z}} \left( \frac{z}{z} \right)_{z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
|                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{d}{dt}\left[\operatorname{acts}_{\underline{x}}\left(\underline{x}\right) = \frac{d}{dt}\left[\frac{\pi}{2} - \operatorname{acts}_{\underline{x}}\left(\underline{x}\right)\right] = -\frac{1}{1+\frac{\pi}{2}}\times\frac{1}{2} = -\frac{4}{4+x^{2}}$ $= -\frac{2}{x^{2}+4} / 4x \operatorname{Succt}_{\underline{x}}\left(\underline{x}\right)$ $\left(\underline{b}\right) = -\frac{2}{3\operatorname{acts}_{\underline{x}}}\left(\underline{b}\right) = -\frac{2}{3\operatorname{acts}_{\underline{x}}}\left(\underline{b}\right) = -\frac{2}{3\operatorname{acts}_{\underline{x}}}\left(\underline{b}\right) = -\frac{2}{3\operatorname{acts}_{\underline{x}}}\left(\underline{b}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| · · · · · · · · · · · · · · · · · · · | G.                   | , ·. K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{aligned} & \left[\frac{d}{2}\Delta^{2}\operatorname{subm}\left\{\lambda_{i}^{2}\right\}\right]_{\frac{1}{2}\sqrt{2}}^{2} = \int_{-\frac{1}{2}}^{1} \frac{dx^{2}}{dx^{2}} dx \\ & = \left[\frac{d}{2}\Delta^{2}\operatorname{subm}\left\{\lambda_{i}^{2}\right\}\right]_{\frac{1}{2}\sqrt{2}}^{\frac{1}{2}} = \int_{-\frac{1}{2}\sqrt{2}}^{1} \frac{dx^{2}}{dx^{2}} dx \\ & = \operatorname{Idential}\left(-\operatorname{forthan}\left\{\zeta_{i}^{2}+\zeta\right\}\right) + \frac{1}{2}\left[\frac{1}{2}\sqrt{2}\right]_{\frac{1}{2}\sqrt{2}}^{\frac{1}{2}} \frac{dx^{2}}{dx^{2}} dx \\ & = \operatorname{Idential}\left(-\operatorname{forthan}\left\{\zeta_{i}^{2}\right\}\right) + \frac{1}{2}\left[\frac{1}{2}\left(1-\frac{1}{2}\right)_{\frac{1}{2}\sqrt{2}}^{\frac{1}{2}} dx \\ & = \frac{d}{2}(\tau-\alpha)T + \frac{1}{2}\left[\alpha_{i}-\frac{d}{2}\operatorname{subm}\left\{\alpha_{i}^{2}\right\}\right]_{\frac{1}{2}\sqrt{2}}^{\frac{1}{2}} \\ & = \frac{d}{2}(\tau-\alpha)T + \frac{1}{2}\left[\alpha_{i}-2-\operatorname{subm}\left\{\alpha_{i}^{2}\right\}\right]_{\frac{1}{2}}^{\frac{1}{2}} \\ & = \frac{d}{2}(\tau-\alpha)T + \frac{1}{2}\left[\alpha_{i}-2\operatorname{subm}\left\{\alpha_{i}^{2}\right\}\right]_{\frac{1}{2}}^{\frac{1}{2}} \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|                                       |                      | Mada C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= \frac{1}{2}u + \delta \left[ 5 - \frac{1}{2}v^2 + \frac{1}{2} + \frac{1}{2} \left[ 1 + \frac{1}{2}v^2 + \frac{1}{2}v$ | 200                |
| Than .                                | 23m2,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35172-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 200                                   |                      | S.Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Con the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Con the second     |
| 1.1                                   | l.y.                 | N. I.V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . I.F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| · C.J.                                |                      | B. S.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | p Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h.                 |
| Mada                                  | (1 <sub>2</sub> )20. | Created by T. Mada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s Mada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120/2SD            |
| TO A                                  | 202                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |


Question 67 (\*\*\*\*+)

C.B.

P.C.P.

$$\int_{0}^{1} \frac{16}{3(3x^{2}+16)^{\frac{5}{2}}} dx.$$

a) By using a suitable trigonometric substitution in terms of  $\theta$ , show that the above integral can be transformed to



**b**) Hence evaluate the original integral.

| (a) $\int_{a}^{4} \frac{iG}{3(3x^{2}+16)^{\frac{n}{2}}} dx = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{cases} 32 + 16 \\ \approx 16 \left(\frac{5}{16} \frac{2}{16} + 1\right) \end{cases}$                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| $= \int_{-\infty}^{\frac{1}{2}} \frac{\omega}{3(ie(t_{iu}_{ij}\theta_{ij}\theta_{ij})} \frac{\omega}{2} \frac{1}{(i+\theta_{ij}\theta_{ij})} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \frac{1}{(i+\theta_{ij})} \frac{1}{(i+\theta_{ij})}} \frac{1}{(i+\theta_{ij})} \frac{1}{(i+\theta_{ij})}} \frac{1}{(i+\theta_{ij})} $ | $\begin{cases} = IG\left(\frac{\sqrt{3}}{4}x_{1}^{2}+1\right) \\ \frac{4}{16x0}  i \in IG\left(\frac{1}{3}x_{0}^{2}+1\right) \end{cases}$ |
| $= \int_{0}^{\frac{\pi}{3}} \frac{ \zeta }{3 \times (004 \ (sab))^{\frac{1}{2}}} \times \frac{4}{43} 54\xi \theta \ d\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (IfT 43 a tang)                                                                                                                           |
| $= \int_{0}^{\frac{T}{2}} \frac{3t^{2}\theta}{48t^{2}_{0}5t^{2}_{0}\theta} d\theta = \int_{0}^{\frac{T}{2}} \int_{1}^{\frac{T}{2}} \cos^{2}\theta d\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{cases} d\alpha = \frac{4}{43} kc^2 d\theta \\ \lambda = 0,  \theta = 0 \\ \lambda = 4,  tm(\theta = NS^2) \end{cases}$            |
| $=\frac{4\Sigma}{10+}\int_{0}^{3} \cos^{2}\theta  d\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0= <u>F</u>                                                                                                                               |
| (b) $\dots = \frac{1}{\sqrt{2}} \int_{-\frac{\pi}{2}}^{0} \log(i - \Im \phi)  d\theta = \frac{1}{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |
| $= \frac{\sqrt{3}}{194} \left[ SN(\theta - \frac{1}{3}SN^2\theta) \right]_{0}^{\frac{3}{2}} = \frac{\sqrt{3}}{194}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{bmatrix} \frac{2}{\sqrt{3}} - \frac{2}{\sqrt{3}} & \frac{6}{\sqrt{3}} \end{bmatrix}$                                              |
| $= \frac{\sqrt{3}}{144} \left[ \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} \right] = \frac{\sqrt{3}}{144} \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{3\sqrt{3}}{8} = \frac{9}{1152} = \frac{1}{128}$                                                                                    |

C.p.

 $\frac{1}{128}$ 

Question 68 (\*\*\*\*+)

F.G.B.

I.F.G.B.

$$I = \int_0^{\frac{\pi}{8}} \frac{\sqrt{3}}{2 + \sin 4x} \, dx \, .$$

**a**) Show that the substitution  $u = \tan 2x$  transforms *I* into

$$J = \int_0^1 \frac{\sqrt{3}}{(2u+1)^2 + 3} \, du \, .$$

**b**) Hence find the exact value of I, giving the answer in terms of  $\pi$ .

 $\frac{\sqrt{3}}{2+\sin 4\lambda} d\lambda = \dots \int_{0}^{1} \frac{\sqrt{3}}{2+\sin 4\lambda} \frac{du}{2st^2 2x}$  $dx = \frac{du}{25c^2 2x}$ 2+254220052x × du 256222 え=蛋」(u=1 3=0、(u=0 456224 + ASUPALOPASEZZ du  $\int_{0}^{1} \frac{\sqrt{3}}{45t_{2k}^{2} + 4t_{2m/2k}} du = \int_{0}^{1} \frac{\sqrt{3}}{4(1 + t_{2m}^{2} + t_{2m/2k}) + 4t_{2m/2k}} du$  $= \int_{0}^{1} \frac{\sqrt{3}^{2}}{4 \ln^{2}_{2} 2_{1} + 4 \ln \sqrt{2}_{1} + 4} du = \int_{0}^{1} \frac{\sqrt{3}^{2}}{4 u^{2}_{1} + 4 u + 4} du$ Jo (24+1) +3 du 45 840000  $\frac{\sqrt{3^{1}}}{\sqrt{2}+3} \quad \frac{dv}{2} \quad = \quad \frac{\sqrt{3^{2}}}{2} \int_{1}^{2} \frac{1}{\sqrt{2}+\left(\sqrt{3^{2}}\right)^{2}} dv$  $\frac{N_{5}}{2} \times \frac{1}{N_{3}} \left[ \operatorname{onchan}\left(\frac{V}{\sqrt{5}}\right) \right]_{1}^{5}$  $\frac{1}{2}\left[antau_{\frac{3}{\sqrt{3}}}-antau_{\frac{1}{\sqrt{3}}}\right]$  $\frac{1}{2}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)$ 

F.G.B.

nadasn

 $\frac{\pi}{12}$ 

6

(\*\*\*\*+) **Question 69** 

I.C.B. Ma

I.F.G.B.

 $1 + \tan^2 \left(\frac{x}{2}\right)$  $\sec x \equiv$  $1-\tan^2$ 

ths.com

1+

nadasm

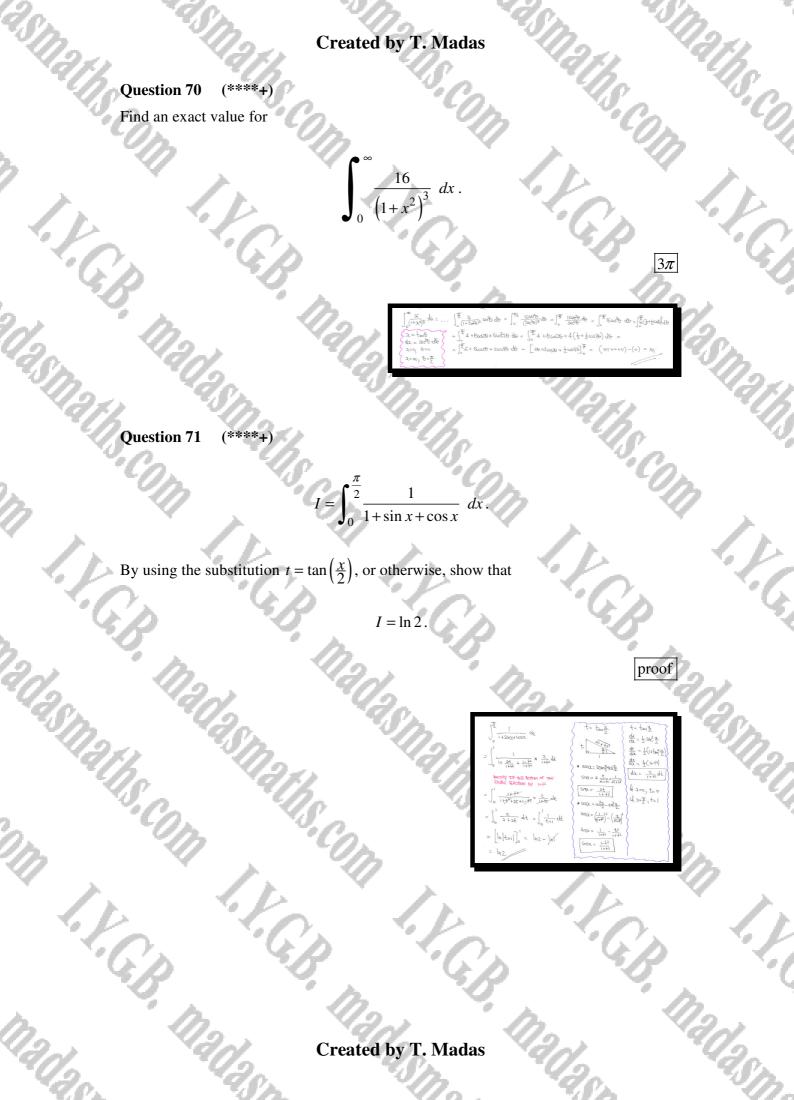
Ĝ.

 $\frac{2}{1-t^2} = \frac{1}{1+t}$ 

I.C.P.

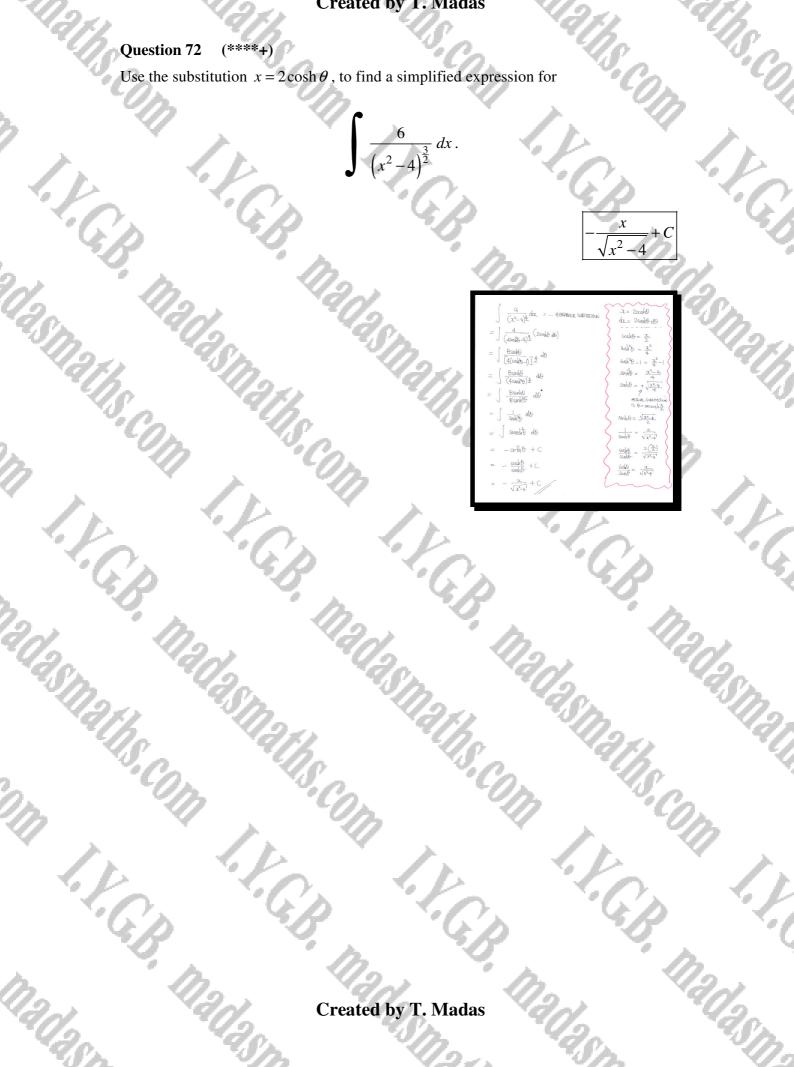
1120231

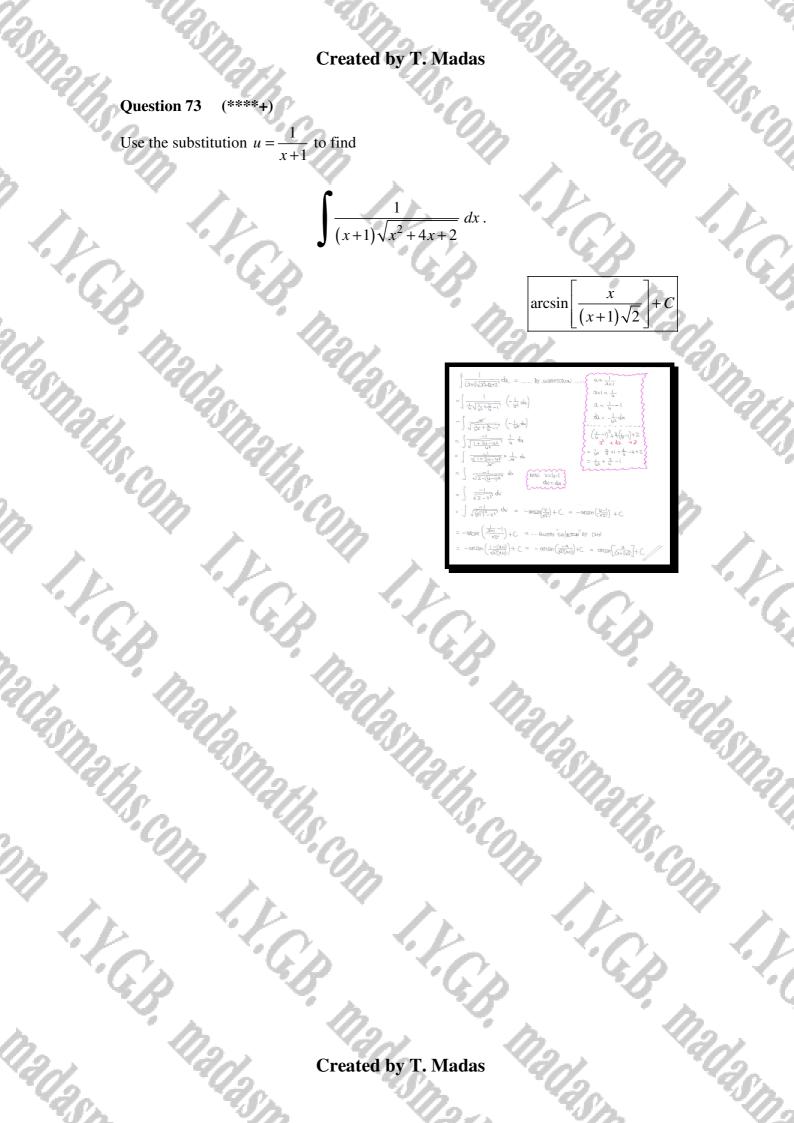
1-t


- a) Prove the validity of the above trigonometric identity.
- **b**) Express  $\frac{z}{1-t^2}$  into partial fractions.

I.C.

c) Hence use the substitution  $t = tan\left(\frac{x}{2}\right)$  to show that


 $\int \sec x \, dx = \ln \left| \tan \left( \frac{x}{2} + \frac{\pi}{4} \right) \right| + C \, .$ 


|     | a) working its formers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | When phere a) & (b)                                                                                                                                                                        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $ \begin{array}{ccc} l & l \\ l & $ | $\int SFCX dX = \int \frac{1 + \tan^2 3}{1 - \tan^2 3} dx = \int \frac{1 + \tan^2 3}{1 - \tan^2 3} dx$                                                                                     |
| 2   | $=\frac{\frac{\omega_1^2}{\omega_1^2}+\frac{\omega_1^2}{\omega_1^2}}{\frac{\omega_1^2}{\omega_1^2}-\frac{\omega_2^2}{\omega_1^2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}{1-\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}=\frac{1+\frac{1}{\sqrt{2}}+\frac{\omega_1^2}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $= \int \frac{2}{1-t^2} dt = \int \frac{1}{1+t} dt dt$                                                                                                                                     |
| 1   | use weeks where we have the r.H.S to L.H.S.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $= \ln \left( 1 + \xi \right) - \ln \left( 1 - \xi \right) + C$                                                                                                                            |
| G   | b) BY INSPECTICAL/COURLUP OR ANY STIMEIBLE NETTIFIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $= \ln \left( \frac{1+t}{1-t} \right) + C$                                                                                                                                                 |
| - 4 | $\frac{2}{1-\frac{1}{2}} = \frac{2}{(1-\frac{1}{2})(1+\frac{1}{2})} = \frac{1}{1+\frac{1}{2}} + \frac{1}{1-\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOW NOTING THAT ANY = t of the F = 1                                                                                                                                                       |
|     | c) USUGE THE SUBSTITUTED GWED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\dots = \ln \left  \frac{t_{w_{k}} \overline{z} + t_{w_{k}} \overline{z}}{1 - t_{w_{k}} \overline{z} + t_{w_{k}}} \right  + C  \sum_{\substack{t_{w_{k}} (AB) = \frac{t_{w_{k}}}{1 - 1}}$ |
|     | • t= tm $\frac{1}{2} \implies \frac{dt}{dx} = \frac{1}{2} \sec^2 \frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= \ln \left  \tan \left( \frac{\pi}{4} + \frac{\pi}{2} \right) \right  + C$                                                                                                               |
|     | $\Rightarrow \frac{Q_T}{d\xi} = \frac{g}{\xi} \left( 1 + \left[ -\frac{g}{2} \right] \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AS BADVIELD                                                                                                                                                                                |
|     | $\rightarrow \frac{dt}{d\lambda} = \pm C_{1+t_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                            |
|     | $\rightarrow \frac{dx}{dt} = \frac{2}{t+t^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |
|     | $\Rightarrow$ d $\lambda = \frac{2}{1+t^{2}}$ dt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                            |



#### (\*\*\*\*+) Question 72

Use the substitution  $x = 2\cosh\theta$ , to find a simplified expression for





Question 74

(\*\*\*\*+)  $I = \int_{0}^{\frac{\pi}{2}} \frac{2\cos x}{1 + \cos x}$ dx.

I.F.G.B. By using the substitution  $t = tan(\frac{x}{2})$ , or otherwise, show that

CASINALISCON I.Y.C.B. INAUSSINALISCON I.Y.C.B. INAUSSIN

F.C.B.

Ths.com

1.4.6.0

(\*\*\*\*+) Question 75

Mada.e,

I.C.B.

2

I.V.G.B.

Find an exact value for

 $8x \arcsin\left(\frac{1}{3}x\right) dx.$ 



naths.com

asillatils.com

1.60

6

11.202811121

I.V.C.B. Madasa

Created by T. Madas

I.V.G.B.

Question 76 (\*\*\*\*+)

 $\int \frac{\operatorname{sech} x}{\cosh x - \sinh x} \, dx$ 

a) By multiplying the numerator and denominator of the integrand by  $\operatorname{sech} x$ , show that

 $I = -\ln(1 - \tanh x) + C,$ 

where C in an arbitrary constant.

**b)** By multiplying the numerator and denominator of the integrand by  $(\cosh x - \sinh x)$ , show that

# $I = x + \ln\left(\cosh x\right) + K ,$

where K in an arbitrary constant.

c) Show clearly that C = K.

proof

 $(3) \int \frac{sedn}{asta-sala} da = \int \frac{sednseda}{aalaseda-salaseda-salaseda} da = \int \frac{sedn}{1-turba} d$ 

= -ln(1-tunka) + C (1-tunka) + C (2 the Ben to Ether Dec

 $\begin{aligned} & (b) \quad \int \frac{\alpha_{c}dy_{L}}{\zeta_{c}dy_{L}-z_{c}dy_{L}}d\lambda = \int \frac{w_{c}dw_{L}(\omega_{c}d\lambda + \omega_{0}y_{L})}{(\omega_{c}d\lambda - \omega_{0}y_{L})(\omega_{c}d\lambda + \omega_{0}y_{L})}d\lambda = \int \frac{1 + b\omega_{c}d\lambda}{\omega_{c}d\lambda^{2} - \omega_{c}d\lambda}d\lambda \\ & = \int \frac{1 + b\omega_{c}dx}{\omega_{c}d\lambda}d\lambda = -\alpha + \ln(\omega_{c}d\lambda) + C \\ & = \int \frac{1 + b\omega_{c}dx}{\omega_{c}d\lambda}d\lambda = -\alpha + \ln\left(\frac{1}{\omega_{c}d\lambda} - \frac{1}{\omega_{c}d\lambda}\right) \\ & = \int \frac{1 + b\omega_{c}dx}{\omega_{c}d\lambda}d\lambda = -\frac{1}{\omega_{c}d\lambda}d\lambda \\ & = \int \frac{1}{1 - \frac{1}{\omega_{c}d\lambda}}d\lambda \\ & = \int \frac{1}{1 - \frac{1}{\omega_{c}d\lambda}}d\lambda \\ & = \int \frac{1}{\omega_{c}d\lambda}d\lambda = -\frac{1}{\omega_{c}d\lambda}d\lambda \\ & = \int \frac{1}{\omega_{c}d\lambda}d\lambda \\ & = \int \frac{1}{\omega_{c}d\lambda}$ 

 $= \mathcal{D} + \left[ h\left(e_{\mathcal{O}}\mathcal{H}\mathcal{U}\right) = bH \right]$   $= \left[ h\left[ e_{\mathcal{O}}\left(\overline{\gamma}e_{\mathcal{V}}^{+} + \overline{e}_{\mathcal{O}}^{+}\right)\right] = \left[ h\left(\overline{e}_{\mathcal{O}}\right) + \left[ h\left[\overline{\gamma}e_{\mathcal{O}}^{+} + \overline{e}_{\mathcal{O}}^{+}\right]\right] \right]$   $= \left[ h\left[ e_{\mathcal{O}}\left(\overline{\gamma}e_{\mathcal{O}}^{+} + \overline{e}_{\mathcal{O}}^{+}\right)\right] = \left[ h\left(\overline{\gamma}e_{\mathcal{O}}\right) + \left[ h\left[\overline{\gamma}e_{\mathcal{O}}^{+} + \overline{e}_{\mathcal{O}}^{+}\right]\right] \right]$   $= \left[ h\left[ e_{\mathcal{O}}\left(\overline{\gamma}e_{\mathcal{O}}^{+} + \overline{e}_{\mathcal{O}}^{+}\right)\right] = \left[ h\left(\overline{\gamma}e_{\mathcal{O}}\right) + \left[ h\left[\overline{\gamma}e_{\mathcal{O}}^{+} + \overline{e}_{\mathcal{O}}^{+}\right]\right] \right]$   $= \left[ h\left[ e_{\mathcal{O}}\left(\overline{\gamma}e_{\mathcal{O}}^{+} + \overline{e}_{\mathcal{O}}^{+}\right)\right] = \left[ h\left[\overline{\gamma}e_{\mathcal{O}}^{+} + \overline{e}_{\mathcal{O}}^{+}\right] \right]$ 

·· C=k ts elpriero

Question 77 (\*\*\*\*+)

$$\sec x \equiv \frac{\cos x}{1 - \sin^2 x}.$$

- a) Prove the validity of the above trigonometric identity.
- **b**) Use the substitution  $u = \sin x$  to show that

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec x \ dx = \frac{1}{2} \ln \left( \frac{7 + 4\sqrt{3}}{3} \right).$$

c) Show clearly that

R.

P.C.B.

$$\frac{1}{2}\ln\left(\frac{7+4\sqrt{3}}{3}\right) = \ln\left(1+\frac{2}{3}\sqrt{3}\right)$$



proof

20/201

è

$$= \frac{1}{2} \left[ b_1 \left( \frac{2+Q}{2-Q} \right) - b_1 3 \right] = \frac{1}{2} \left[ b_1 \left( 7+4b_3 \right) - b_1 3 \right]$$

 $=\left(\frac{1}{2}\ln\left|\frac{1+\alpha}{1-\alpha}\right|\right)^{\frac{1}{2}}$ 

$$(c) \quad \frac{1}{2} \ln \left( \frac{7+4\sqrt{2}}{3} \right) = \frac{1}{2} \ln \left( \frac{21+12\sqrt{3}}{9} \right) = \frac{1}{2} \ln \left[ \frac{q}{2} + 2\times \frac{3}{2} \times \frac{2\sqrt{3}}{9} + \frac{12}{2} \right]$$

- $= \frac{1}{2} \ln \left[ \frac{3^2 + 2 \times 3 \times 2(3^2 + (263^2)^2)}{9} \right]$
- $= \frac{1}{2} \ln \left[ \frac{(3+2\sqrt{3})^2}{2} \right] = \ln \left( \frac{3+2\sqrt{3}}{3} \right)$  $= \ln \left( 1 + \frac{2}{3}\sqrt{3} \right)$

C.4.

ng

to REQUIEND

(\*\*\*\*+) Question 78

K.G.B.

I.G.B.

$$\frac{9}{x^3+1} \equiv \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1} \,.$$

- a) Find the value of each of the constants A, B and C in the above identity.
- **b**) Hence find the exact value of
  - $\int_0^1 \frac{9}{x^3 1}$ dx

 $= \frac{4}{x+i} + \frac{8x+C}{x^2-x+i}$ 3 23+1  $\widetilde{(2+1)}(\overline{2-2+1})$  $\begin{array}{c} \boxed{9 \equiv A(G^2 - x + i) + (3x + i)(Bx + c)} \\ 9 \equiv Ax^2 - Ax + A + Bx^2 + (3x + Bx + c) \end{array}$  $Q \equiv (A+B)x^2 + (B+C-A)x + (A+C)$ of a=-1 0 A+B=0 • A+C=9 )  $(b) \int_{0}^{1} \frac{d}{\lambda^{2} + 1} d\lambda = \int_{0}^{1} \frac{3}{\lambda + 1} + \frac{-3x + 6}{2^{2} - x + 1} d\lambda = \int_{0}^{1} \frac{3}{\lambda + 1} - \frac{3}{2} \left( \frac{2x - 4}{3^{2} - x + 1} \right) dx$  $= \int_{0}^{1} \frac{3}{2k+1} - \frac{3}{2} \left( \frac{2k-1}{2^{k}-2^{k+1}} \right) dx = \int_{0}^{1} \frac{3}{2k+1} - \frac{3}{2} \left( \frac{2k-1}{2^{k}-2^{k+1}} \right) + \frac{4}{2} \left( \frac{1}{2^{k}-2^{k+1}} \right) dx$  $= \int_0^1 \frac{3}{2k+1} - \frac{3}{2} \left( \frac{2k-1}{2^k-2k+1} \right) + \frac{9}{2} \left( \frac{1}{(2k+\frac{1}{2})^2 + \frac{3}{4}} \right) \ d\lambda$  $= \int_{0}^{1} \frac{1}{2(x+1)} - \frac{1}{2} \left( \frac{2x-1}{2(x+1)} \right) dx + \frac{1}{2} \int_{0}^{1} \frac{1}{(x+1)^{2}+\frac{3}{4}} dx \begin{pmatrix} u = x - \frac{1}{2} \\ u = x - \frac{1}{2} \\ du = dx \end{pmatrix}$  $= \int_{0}^{1} \frac{3}{3r_{1}} - \frac{3}{2} \left( \frac{23-1}{3^{2} - 2r_{1}} \right) dt + \frac{q}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{u^{4} + \left( \frac{32}{2} \right)^{2}} du \qquad 3r_{1} u^{4}$  $= \left[ \frac{\beta h}{2} \left| x t \left( -\frac{3}{2} h \left| x^* - x + t \right| \right]_0^{-1} + \frac{4}{2} \times \frac{1}{\sqrt{2}} \left[ \frac{\alpha n b_1 \left( \frac{u}{\sqrt{2}} \right)}{\frac{1}{2}} \right]_{-\frac{1}{2}}^{\frac{1}{2}} \right]$  $\left( 3l_{92} - \frac{3}{2^2} h T \right) - \left( 3h T \left[ -\frac{3}{2} h t \right] + \frac{4}{4\Sigma^2} \left[ a \pi b_{97} \frac{2l_{1}}{43^2} \right] - \frac{1}{2}$  $3h_{12} + 3\sqrt{3} \left[ \frac{\alpha n b \omega_{1}(1)}{43} - \frac{\alpha n b \omega_{1}(-\frac{1}{\sqrt{3}})}{1} \right]$ 

3142 + 3131 [晋-(王] 3/12 + 3/13 × I 3/h2 + TN3

F.G.B.

Mada

A=3, B=-3, C=6,  $3\ln 2 + \pi\sqrt{3}$ 

21

(\*\*\*\*+) Question 79

J<sub>0</sub>

C.B. Madasn

Show that

adasmanan Mannan Marine Marine

I.F.G.B.

I.F.G.B.

naths.com  $\sec^2 x \operatorname{artanh}(\sin x) dx = -1 + \sqrt{3} \ln \left(2 + \sqrt{3}\right).$ 



naths.co

1.60

6

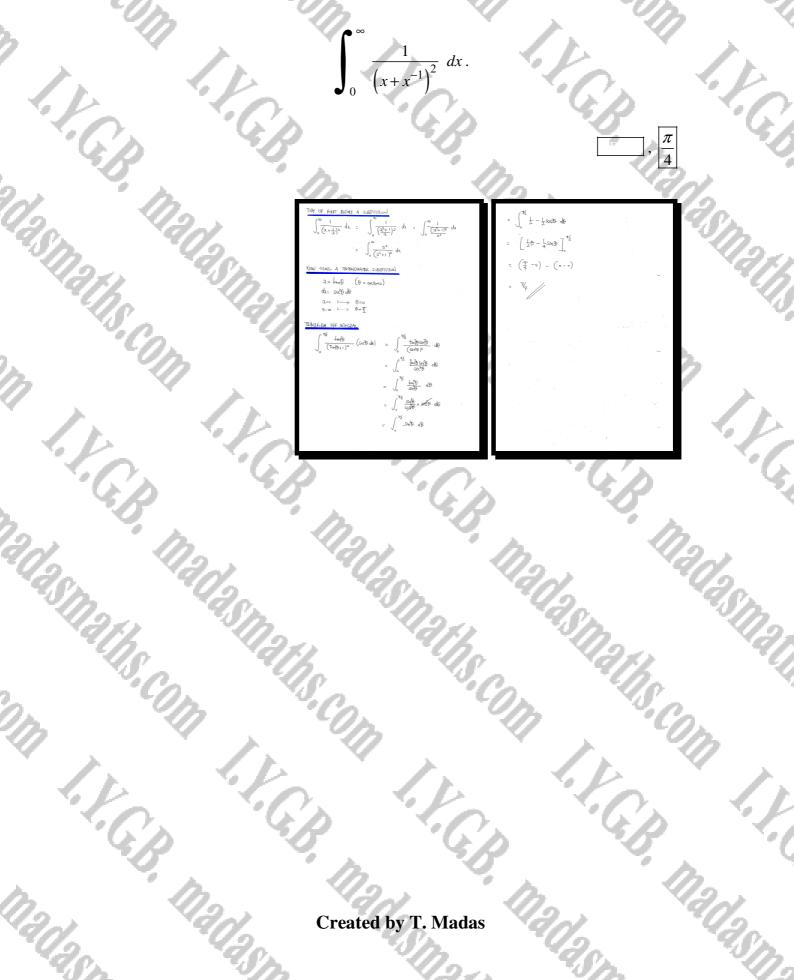
11.212SI1121

I.V.C.B. Madasm

proof

Created by T. Madas

I.V.C.P.


### Question 80 (\*\*\*\*+)

Use appropriate integration techniques to find an exact simplified value for



#### Question 81 (\*\*\*\*\*)

Use appropriate integration techniques to find an exact simplified value for



#### (\*\*\*\*\*) Question 82

Use the substitution  $t = tan(\frac{3}{2}x)$  to find, in terms of  $\pi$ , the exact value of

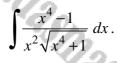




#### Question 84 (\*\*\*\*\*)

I.V.G.

By using the substitution  $t = tan\left(\frac{x}{2}\right)$ , or otherwise, show that


 $\int \frac{5}{4\cos x + 3\sin x} \, dx = \ln \left| \frac{2 + \sin x - 2\cos x}{2\sin x + \cos x - 1} \right| + C \, .$ 

 $\int \frac{S}{4\left(\frac{1-t^2}{1+t^2}\right)+3\left(\frac{2t}{1+t^2}\right)} \times \frac{2}{1+t^2} dt$ 美 = ションを = 共  $\frac{dt}{dt} = \frac{1}{2} \left( 1 + \frac{1}{2} \frac{3}{2} \right)$ <u>S(1+t2)</u> × 2 4(1-t2) + 3(2t) × 2 ++t2 dt  $\frac{dk}{dt} = \frac{1}{2} \left( 1 + \frac{1}{2} \right)$  $\frac{10}{4-4t^2+4t} dt = \int -\frac{s}{2t^2-3t-2} dt$  $d\lambda = \frac{2}{1+t^2}dt$  $\int -\frac{5}{(2t+1)(t-2)} dt = \int \frac{5}{(2t+1)(2t+1)} dt$ TAL PRACTIONS  $= \ln \left| \frac{1 + \frac{4}{5} \sin 2 - \frac{3}{5} \cos 2}{\frac{6}{5} \cos 2} \right| + C = \ln \left| \frac{5 + 4 \sin 2 - 3 \cos 2}{4 \cos 2 + \frac{3}{5} \sin 2} \right| + C$  $\int \frac{1}{2-t} + \frac{2}{2t+1} dt = \ln \left| 2t+1 \right| - \ln \left| 2-t \right| + C$  $= \left| h \left| \frac{2t+1}{2-t} \right| + C = \left| h \left| \frac{2ta_1 \frac{3}{2} + 1}{2-ta_1 \frac{3}{2}} \right| + C \right| \right|$  $\frac{2 \sum_{i=1}^{N} \left| \frac{2 \sin \frac{X}{2} + 1}{2 - \frac{\sin \frac{X}{2}}{\cos \frac{X}{2}}} \right| + C = \left| h \right| \left| \frac{2 \sin \frac{X}{2} + \cos \frac{X}{2}}{2 \cos \frac{X}{2} - \sin \frac{X}{2}} \right| + C$  $\frac{2sn_{z}^{2}sw_{z}^{2} + c_{0}\frac{x}{2}sn_{z}^{2}}{2cs\frac{x}{2}sn_{z}^{2} - sn_{z}^{2}sm_{z}^{2}} + c = \left[h\right]\frac{2sn_{z}^{2}\frac{z}{2} + \frac{1}{2}sn_{z}}{sn_{c} - sm_{z}^{2}\frac{x}{2}} + c$ = [h]  $= \left| h \left| \frac{2\left( \frac{1}{2} - \frac{1}{2}\cos^2 \right) + \frac{1}{2}\sin^2 }{\sin^2 - \left( \frac{1}{2} - \frac{1}{2}\cos^2 \right)} \right| + C = \left| h \right| \frac{1 - \cos^2 + \frac{1}{2}\sin^2 }{\sin^2 - \frac{1}{2} + \frac{1}{2}\cos^2 } \right| + C$  $= p \left[ \frac{3(mx + 00x + 1)mx}{2 - 3(00x + 00x)} \right] + C$ 

**Question 85** (\*\*\*\*\*)

I.C.B.

By using the substitution  $x = e^{-\frac{1}{2}u}$ , or otherwise, find a simplified expression for





proof

+30Mp = 5 cos(2-

 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ 

Jusa + 35m da

Scas/2-r) da

x) di

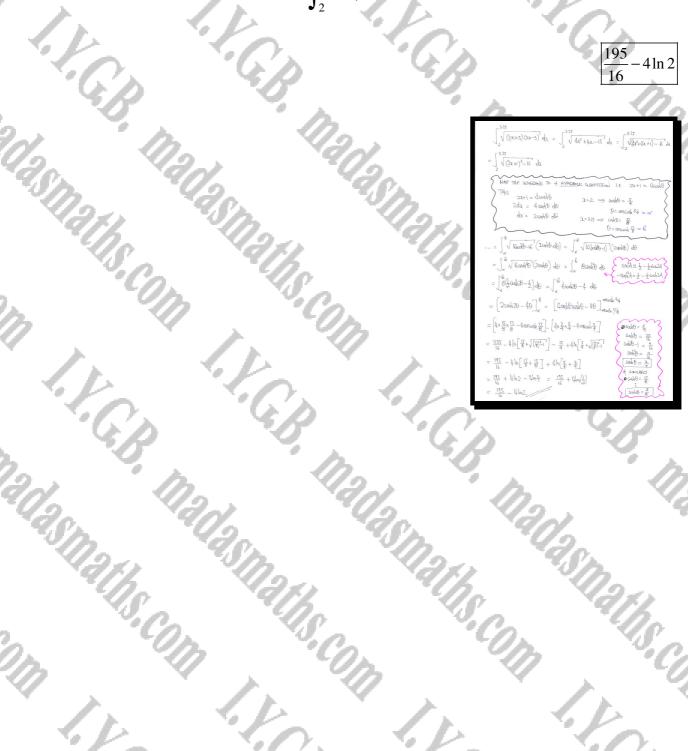
(x-x) + (x-x) + (x-x)

 $\frac{1}{10} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1$ 

 $\left| h_{1} \right| = \frac{1}{(cd(2-a))} + \frac{Sh_{1}(x-a)}{Cod(2-a)} + C$ 

- =  $\sqrt{e^{\theta} + e^{\theta}} + C = \sqrt{\frac{1}{2^2} + 2^2} + C$

#### Question 86 (\*\*\*\*\*)


ISMATHS COM INC.

I.F.G.B.

I.F.G.B.

Use a suitable hyperbolic substitution to find the exact value of

**5**3.75  $\sqrt{(2x+5)(2x-3)} \ dx \, .$ 



adasmaths.com

I.V.C.B. Madasn

The Com

 $-4\ln 2$ 

I.V.C.

6

11303ST131

Created by T. Madas

I.C.P.

(\*\*\*\*\*) Question 87

2

 $\tan 3\theta \equiv \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}.$ 

a) Prove the validity of the above trigonometric identity by writing  $\tan 3\theta$  as  $\tan(2\theta+\theta)$ .

**b**) Hence, show clearly that

......

COM I. F. C. B.

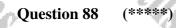
I.F.G.B.

 $\int_{1-2x^2-3x^4}^{2-\sqrt{3}} \frac{6x(3-x^2)}{1-2x^2-3x^4} \, dx = \ln 2.$ 

I.C.p.

proof

aths.com


nadasm

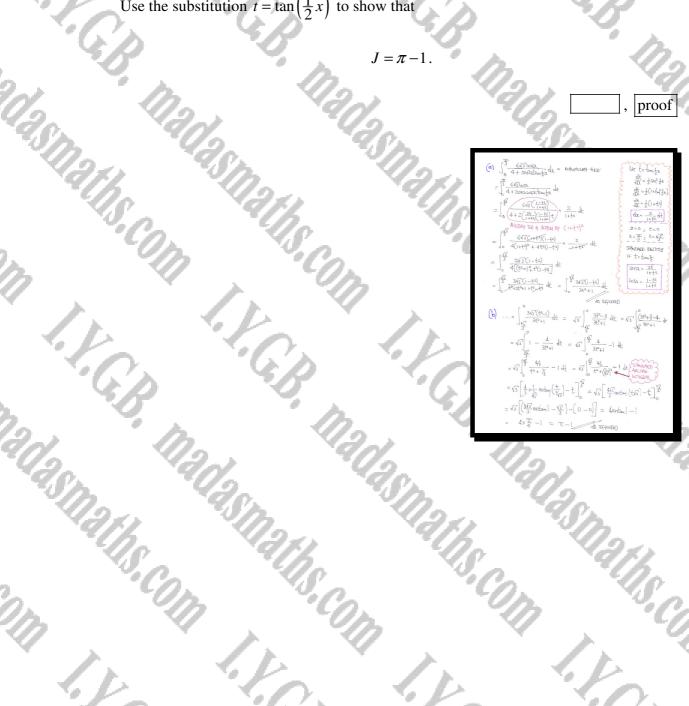
1.4

| No. 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ~ "(                                  | (a) $t_{0u}3\Theta = t_{0u}(20+6) = \frac{t_{0u}2\Theta + t_{0u}\Theta}{(-t_{0u}2\Theta + t_{0u}\Theta)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | 27aug + tant MUCAPY TO a some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - / / h.                              | $=\frac{2h_{0}\theta}{1-h_{0}t^{2}}+h_{0}\theta}{1-\frac{2h_{0}\theta}{1-h_{0}t^{2}}}=\cdots \qquad \begin{pmatrix} \text{AUCHEV TOP, A ROTES} \\ \text{OUCHEV TOP, A ROTES} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 105                                   | - start + taup(1-tu31) 3tup-tu30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       | $=\frac{3h_{u}G}{1-h_{u}^{2}G}+\frac{h_{u}G}{1-h_{u}^{2}G}=\frac{3h_{u}G}{1-3h_{u}^{2}G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | (b) $\binom{2-\sqrt{3}}{(2-\sqrt{3})} = \binom{2-\sqrt{3}}{(2-\sqrt{3})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | (b) $\int_{0}^{2-\sqrt{5}} \frac{G_{2}(3-3^{2})}{1-3x^{2}-3x^{4}} dx = \int_{0}^{2-\sqrt{5}} \frac{G_{2}(3-3^{2})}{(3x^{6}x^{2}-1)} dx = \dots$ Figure 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | $= \int_{0}^{2-d^{2}} \frac{\widehat{\mathcal{O}}_{x}(\underline{\lambda}-\underline{x}^{2})}{-(\underline{x}^{2}-1)(\underline{x}+1)} d\underline{x} = \int_{0}^{2-d^{2}} \frac{2+d^{2}}{\widehat{\mathcal{O}}_{x}(\underline{\lambda}-\underline{x}^{2})} d\underline{x} = \dots \text{ by subtraction}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | $\begin{cases} \begin{array}{c} x = t_{web} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | the side of the si |
| . SA                                  | 22-0 8-0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A 10                                  | $\begin{cases} \chi_{\pm 2} - \eta_{\pm}^{2} \Theta = \frac{\pi}{12} \end{cases} = \Im \ln (\operatorname{sac}_{\pm}^{\pm}) - \Im \ln (\operatorname{sac}_{\pm}) \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | $= 2\ln(\sqrt{2}) = \ln 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Not all                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.10                                  | and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18 A.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                    | and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · · · · · · · · · · · · · · · · · · · | 11 Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 971                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | , ' <i>qr</i> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                                     | n - cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       | $(n, \forall P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10                                    | Un Vil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ~// h                                 | - C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u></u>                               | and the second sec                                                                                                                                                                                                                                             |

Created by T. Madas

2017




adasmanan Alasman Alas

Madas,

I.V.G.B

$$f = \int_{0}^{\frac{\pi}{3}} \frac{6\sqrt{3}\cos x}{4 + \sin 2x \tan\left(\frac{1}{2}x\right)} dx.$$
  
$$\frac{1}{2}x$$
 to show that  $I = \pi - 1$ 

1. V.G. Use the substitution  $t = tan(\frac{1}{2}x)$  to show that



Maths.com

Smains.col

I.V.C.D

6

naths.com

Created by T. Madas

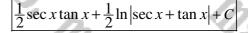
I.F.C.B.

| Question | 89 | (*****) |
|----------|----|---------|
|          |    |         |

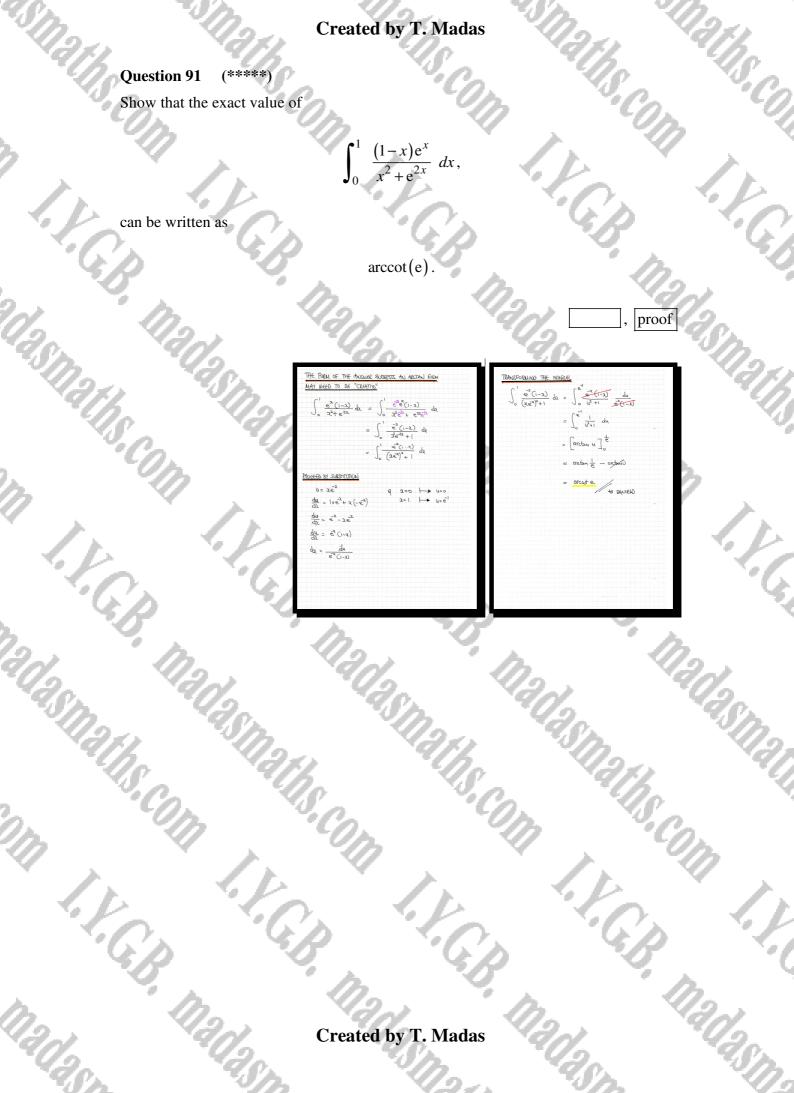
By considering the derivatives of  $e^x \sin x$  and  $e^x \cos x$ , find

 $e^x(2\cos x-3\sin x)\,dx\,.$ 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| $\frac{d}{dx} \begin{pmatrix} \vec{e}_{sonx} \end{pmatrix} = \vec{e}_{sonx} + \vec{e}_{cosx} \\ \vec{e}_{cosx} \begin{pmatrix} \vec{e}_{cosx} \end{pmatrix} \end{pmatrix} ddd q submark gives$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| $ \begin{array}{c} \frac{d}{dx} \left( \frac{\partial \partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x \right) = & \lambda^2 \left( \frac{\partial u}{\partial x} x \right)$ | :57<br>VD. |
| Here 2 edua - 3 et un = 2 $\frac{1}{20} \left( \frac{1}{2} e^{2}(u_1+u_2) - \frac{1}{2} e^{2}(\frac{1}{2} e^{2}(u_1-u_2) - \frac{1}{2} e^{2}(\frac{1}{2} u_1-u_2) - \frac{1}{2} e^{2}(\frac{1}{2} u_1 - \frac{1}{2} u_1 - \frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | li.        |
| $\therefore \int e^{2}(2\omega \alpha - 3\kappa_{MA})d\alpha = \frac{1}{2}e^{2}(5\omega \alpha - 5\kappa_{MA}) + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | //         |


 $\frac{1}{2}e^x(5\cos x - \sin x) + C$ 

#### Question 90 (\*\*\*\*\*)


P.C.P.

Use integration by parts and suitable trigonometric identities to find

 $\sec^3 x \, dx$ .



11+



#### Question 92 (\*\*\*\*)

2

By using the substitution  $u = 1 + e^{-x} \tan x$ , or otherwise, show that the exact value of

Ś

1+

 $\bullet \frac{1}{4}\pi$  $2-\sin 2x$ dx,  $(1+\cos 2x)e^x+\sin 2x$  $\mathbf{J}_{0}$ can be written as  $\ln\left[2e^{-\frac{1}{8}\pi}\cosh\left(\frac{1}{8}\pi\right)\right]$ proof AIVIL TX3 THE FIRST -REACTION IN THE \_\_\_\_\_\_  $\mapsto$   $u=1+e^{\frac{\pi}{4}}=\infty$ x= # TEANSBELLING THE INTHE e<sup>2</sup> e<sup>2</sup> I.C.B. ma J. I- expus du [hlul];  $\left( \frac{1}{2} \right) - \left( \frac{1}{2} \right) = h \left[ \frac{1}{2} \left( e^{\frac{1}{2}} \left( e^{\frac{1}{2}} + \frac{1}{2} \frac{1}{2} \right) \right]$ ains 277 I.C. I.C.B.

#### Question 93 (\*\*\*\*\*)

The function f is a continuous function and a is a real constant.

$$\int_{0}^{a} f(x) dx \equiv \int_{0}^{a} f(a-x) dx$$

- **a**) Prove the validity of the above identity.
- **b**) Hence show clearly that

I.C.B.

I.F.G.B.

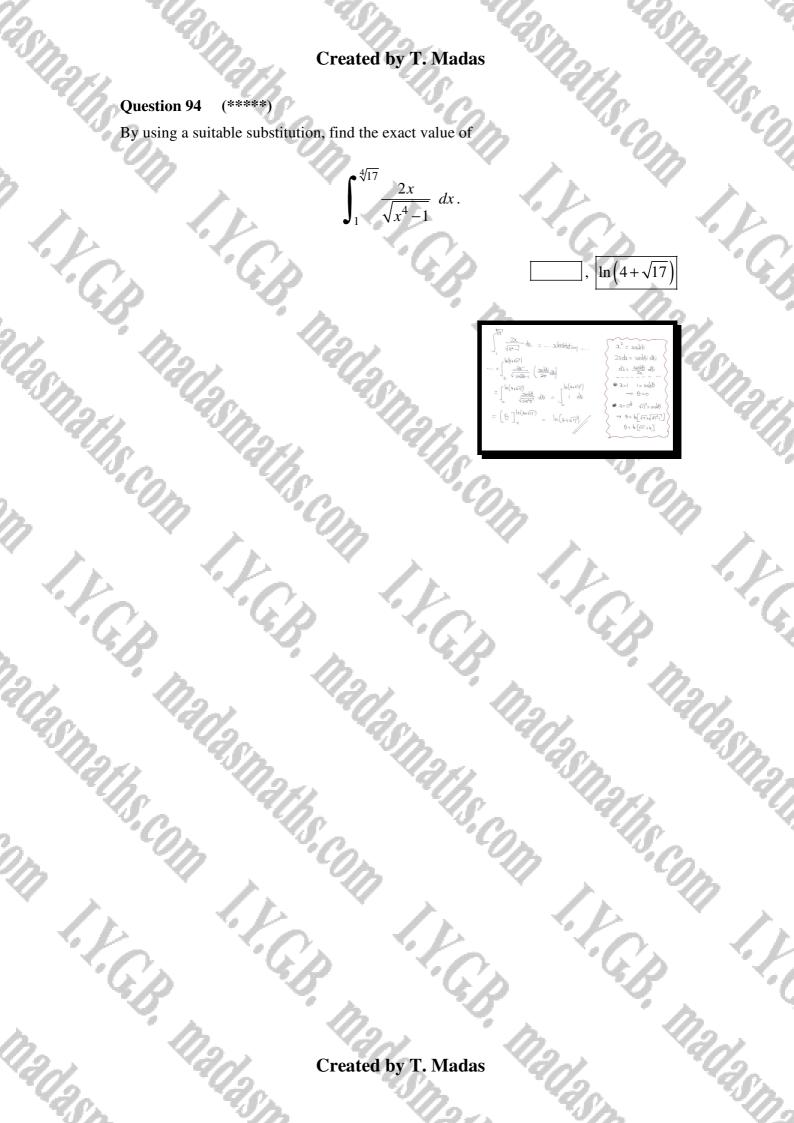
 $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx = \frac{1}{4} \pi^2$ 

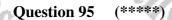
fa) dr  $= \int_{a}^{a} f(a-y) (-dy) = \int_{a}^{a} f(a-y) dy = \int_{a}^{a} f(a-x) dy$ (b)  $\int_{0}^{1} \frac{x_{SWX}}{x_{2\omega+1}} dx =$  $ds = \frac{(x-\pi)\pi c(c-\pi)}{(c-\pi)^{2}\omega + 1} \int_{0}^{\infty} dt = -(\omega) \frac{1}{2} \log \frac{1}{2$  $\int_{0}^{T} \frac{\alpha \sin x}{1+\cos^{2}x} \, dx = \int_{0}^{T} \frac{(T-x) \sin x}{1+\cos^{2}x} \, dx = \int_{0}^{T} \frac{\pi \sin x - \alpha \sin x}{1+\cos^{2}x} \, dx$  $\frac{z_{SINX}}{1+\omega_{X}^{2}} dx = \pi \int_{0}^{\pi} \frac{s_{NX}}{1+\omega_{X}^{2}} dx - \int_{0}^{\pi} \frac{z_{SNX}}{1+\omega_{X}^{2}} dx$  $\int dx = \int \frac{dx}{dx} \int dx = \int \frac{dx}{dx} \int \frac{dx}{dx} \int \frac{dx}{dx} = \int \frac{dx}{dx} \int \frac{dx}{dx} = \int \frac{$ dz (anten (Losz))  $\frac{d}{dt} \int dt = \pi \left[ -\frac{d}{dt} \int dt = \frac{d}{dt} \int dt = \frac{d}{d$  $\frac{2JM\lambda}{1+\log_2^2}d\lambda = \pi \left[ mby(\log) \right]_{\pi}^{\pi}$  $\frac{2.5M_{\rm X}}{1+6\delta_{\rm Y}} dt = \pi \left[ \frac{1}{1+1} \left[ \frac{1}{1+1} - \frac{1}{1+1} \left[ \frac{1}{1+1} - \frac{1}{1+1} \right] \right] = \pi \left[ \frac{1}{1+1} \left[ \frac{1}{1+1} + \frac{1}{1+1} \right] \right]$  $2\int_0^{T}\frac{2Sual}{1+\cos^2x}\,dx=\frac{T^2}{2}$  $\int_{0}^{\pi} \frac{x_{\text{bMX}}}{1+\omega_{\text{bX}}} dx = \frac{1}{4} \overline{11}^{2} \frac{1}{12} \frac{1}$ 

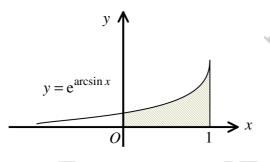
F.C.B.

12

¥.G.B.


proof


3


6

#### (\*\*\*\*\*) Question 94

By using a suitable substitution, find the exact value of







The figure above show the curve with equation

 $y = e^{\arcsin x}, x \in \mathbb{R}, |x| \le 1.$ 

The finite region, shown shaded in the figure, bounded by the curve, the coordinate axes and the straight line with equation x=1, is fully revolved about the x axis.

Find, an exact simplified value, for the volume of the solid of revolution formed.

| SETTING OF A NOWAH INHERA                                                                                 |                                                                       |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| $N = \pi \int_{\alpha_1}^{\alpha_2} (g(z))^2 dz = \pi$                                                    | $\int_{0}^{1} \left(e^{\alpha i \xi S M x}\right)^{2} dx$             |
| $= \pi \int_{0}^{1} e^{2a\pi S(h)x} dx$                                                                   |                                                                       |
| BY SUBSTITUTION                                                                                           |                                                                       |
| θ - amsmac                                                                                                | α=0 ⊨→ θ=0                                                            |
|                                                                                                           | a=1 1→ 0=E                                                            |
| $\frac{dx}{db} = \frac{dx}{db}$                                                                           |                                                                       |
| di = azi de                                                                                               |                                                                       |
| TRANSFORMING THE INTERAL                                                                                  |                                                                       |
| $\rightarrow V \circ \pi \int_{0}^{\frac{\pi}{2}} e^{2\varphi} (\cos \theta d\varphi)$                    | $= \pi \int_{-\infty}^{\frac{\pi}{2}} e^{i\theta} \cos\theta d\theta$ |
| BY PARTS TWICE OR COMPLEX MUNER                                                                           | 2                                                                     |
| $\Rightarrow V = \pi \ ke \left\{ \int_{0}^{\frac{\pi}{2}} e^{i\theta} e^{i\theta} d\theta \right\}$      |                                                                       |
| $\Rightarrow V = \pi \operatorname{ke} \left\{ \int_{0}^{\frac{\pi}{2}} e^{(2+i)\theta} d\theta \right\}$ |                                                                       |
| $\rightarrow V = \pi \operatorname{le} \left\{ \left[ \frac{1}{2+i} e^{(2+i)\theta} \right] \right\}$     | ₹}                                                                    |

 $V = \pi \operatorname{Re} \left\{ \frac{1}{2+i} \left[ e^{(2+i)\frac{\pi}{2}} - 1 \right] \right\}$  $\pi \operatorname{le} \left\{ \frac{2-i}{(2+i)(2-i)} \left[ e^{\pi} e^{i\frac{\pi}{2}} - i \right] \right\}$  $\left\{ \begin{array}{c} \frac{2-i}{s} \left[ e^{T} \zeta_{\text{LOS}} \overline{T} + i \, sm \overline{T} \right] - i \right] \right\}$ π 2e  $\pi \operatorname{Re} \left\{ \frac{2-i}{5} \left( \operatorname{ie}^{T} - i \right) \right\}$  $\pi \times \left(\frac{1}{5}\right) \mathbb{P} \left\{ (2-i)(e^{\pi}-i) \right\}$  $\frac{\pi}{e} \mathbb{P}_{e} \left\{ 2ie^{\pi} - 2 + e^{\pi} + i \right\}$  $\pi$ 

 $e^{\pi}$ 

21

Question 96 (\*\*\*\*\*)

F.G.B.

F.C.B.

$$= \int_{0}^{1} \frac{(x^{2}+1)(x^{2}+4)}{(x^{2}+3)(x^{2}-4)} dx.$$

Use appropriate integration techniques to show that

4

$$I = 1 + \frac{2}{7} \left[ \frac{\pi}{6\sqrt{3}} - 5\ln 3 \right]$$

| START BY PARTIAL FRACTIONS                                                                                                                                                                                                                                                                                                                          | 261 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\frac{(\mathfrak{A}^{2}+1)(\mathfrak{A}^{2}+\mathfrak{A})}{(\mathfrak{A}^{2}+\mathfrak{J})(\mathfrak{A}^{2}+\mathfrak{A})} = \frac{\mathfrak{A}^{4}+\mathfrak{S}\mathfrak{A}^{2}+\mathfrak{A}}{\mathfrak{A}^{4}-\mathfrak{A}^{2}-12} = \frac{(\mathfrak{A}^{4}-\mathfrak{A}^{2}-12)+6\mathfrak{A}^{2}+16}{(\mathfrak{A}^{4}-\mathfrak{A}^{2}-12)}$ | (   |
| $= 1 + \frac{6x^{2} + 16}{x^{4} - x^{2} - 12} = 1 + \frac{6x^{2} + 16}{(x^{2} + 3)(x^{2} - 4)}$                                                                                                                                                                                                                                                     |     |
| NOW LET $f=\alpha^2$                                                                                                                                                                                                                                                                                                                                | _   |
| $\dots = 1 + \frac{6t + 16}{(t+3)(t-4)} = 1 + \frac{-2}{-7} + \frac{40}{t-4}$                                                                                                                                                                                                                                                                       | = ( |
| (BY COURE OP NETHOD)                                                                                                                                                                                                                                                                                                                                |     |
| $= 1 + \frac{2}{7} \left[ \frac{1}{t+3} + \frac{26}{t-4} \right]$                                                                                                                                                                                                                                                                                   | 1   |
| $= 1 + \frac{2}{7} \left[ \frac{1}{2^{2}+3} + \frac{20}{3^{2}-4} \right]$                                                                                                                                                                                                                                                                           | 1   |
| $= 1 + \frac{2}{7} \left[ \frac{1}{\sqrt{2^2+3}} + \frac{20}{(2-2)(502)} \right]$                                                                                                                                                                                                                                                                   |     |
| $= 1 + \frac{2}{7} \left[ \frac{1}{x^2 + 3} + \frac{5}{3 + 2} + \frac{-5}{3 + 2} \right]$                                                                                                                                                                                                                                                           |     |
| (BY GOOKE UP AGMIN)                                                                                                                                                                                                                                                                                                                                 |     |
| $= 1 + \frac{2}{7} \left[ \frac{1}{\chi^2 + 3} + \frac{5}{\lambda - 2} - \frac{5}{\chi + 2} \right]$                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                     |     |

TURA  $\int_{1}^{0} \frac{(x_{2}+t)(x_{3}-t)}{(x_{3}+t)(x_{3}+t)} \, d\gamma = \int_{1}^{0} 1 + \frac{1}{2} \int_{1}^{1} \frac{x_{4}+3}{2} + \frac{x-5}{2} - \frac{x+5}{2} \int_{1}^{1} dy$  $\left[\alpha + \frac{2}{7}\left[\frac{1}{\sqrt{3}}\operatorname{antar}(\frac{\infty}{\sqrt{3}}) + 5\ln|x-2| - 5\ln|x+2|\right]\right]_{1}^{\circ}$  $\left[1 + \frac{2}{7}\left[\frac{1}{\sqrt{3}} \times \frac{\pi}{6} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{6}}\right] - \left[\frac{2}{7}\left[\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{6}}\right]$  $1 + \frac{2}{7} \left[ \frac{\pi}{6\sqrt{5}} - 5 \ln 3 \right]$  $1 + \frac{1}{7} \left[ \frac{\pi}{3\sqrt{5}} - 10 \ln 3 \right]$ 

ろ

ŀ.G.p.

6

proof

1+

#### (\*\*\*\*\*) Question 97

By using a suitable substitution, find the exact value of





äsillällis.Col

I.V.C.

naths.com

 $\ln\left(\frac{3}{2}\right)$ 

Question 98 (\*\*\*\*\*)

 $I = \int_{0}^{\arctan(\tanh(\ln 2))} \frac{\sec^2 x \tan 2x}{\tan x - \tan^3 x} dx$ 

Use appropriate integration techniques to show that

 $I = k + \ln 2,$ 

where k is a rational constant to be found.

You may assume that the limit of the integrand, as x tends to zero, exists.

| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} \frac{P(0,0+60)}{P(0,1+60)} & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) \\ \hline p(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) \\ \hline p(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) \\ \hline p(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) \\ \hline p(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) \\ \hline p(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) \\ \hline p(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) & P(1+\sqrt{2},0) \\ \hline p(1+\sqrt{2},0) & P(1+\sqrt{2},0) $ | $= \int_{0}^{h_{2}} 2\cos^{2}\theta  d\theta = \int_{0}^{h_{2}} (\pm \pm \cosh \lambda)  d\theta$ $= \int_{0}^{h_{2}} (+ \cosh \lambda)  d\theta = \left[ \theta + \frac{1}{2} \sinh 2\theta \right]_{0}^{h_{2}}$ $= \frac{\int_{0}^{h_{2}} (+ \cosh \lambda)  d\theta}{\left\{ \sinh^{2}\theta + \sin^{2}\lambda\right\} \left\{ \sin^{2}\theta + \sin$ |
| $= \int_{0}^{1} \frac{du(u_{1}(u_{2}))}{(1-t_{1}(t_{1}))} \cdot \frac{du}{dt_{1}}$ $= \int_{0}^{1} \frac{du(u_{1}(u_{2}))}{(1-t_{1}(t_{1}))} \cdot \frac{du}{dt_{1}}$ $= \int_{0}^{1} \frac{du(u_{1}(u_{2}))}{(1-t_{1}(t_{1}))} \cdot \frac{du(u_{1}(u_{2}))}{(1-t_{1}(t_{1}))}$ $= \int_{0}^{1} \frac{du(u_{1}(u_{1}))}{(1-t_{1}(t_{1}))} \cdot \frac{du(u_{1}(u_{1}))}{(1-t_{1}(t_{1}))}$ $= \int_{0}^{1} \frac{du(u_{1}(u_{1}))}{(1-t_{1}(t_{1}))} \cdot \frac{du(u_{1}(u_{1}))}{(1-t_{1}(t_{1}))}$ $= \int_{0}^{1} \frac{du(u_{1}(u_{1}))}{(1-t_{1}(t_{1}))} \cdot \frac{du(u_{1}(u_{1}))}{(1-t_{1}(t_{1}))}$ $= \int_{0}^{1} \frac{du(u_{1}(u_{1}))}{(1-t_{1}(t_{1}))} \cdot \frac{du(u_{1}(u_{1}))}{(1-t_{1}(t_{1}))} \cdot \frac{du(u_{1}(u_{1}))}{(1-t_{1}(t_{1}))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $= \begin{bmatrix} 0 + \cosh(\cosh 0) \end{bmatrix}_{0}^{\ln 2} = \begin{bmatrix} h_{2} + \sinh((h_{0} + h_{0})) \end{bmatrix} = 0$ $\underbrace{Vow} = \frac{h_{2}}{2} = 2 + \frac{1}{2} \begin{bmatrix} e^{h_{2}} + e^{-h_{2}} \end{bmatrix} \times \frac{1}{2} \begin{bmatrix} e^{h_{2}} + e^{-h_{2}} \end{bmatrix}$ $= \begin{bmatrix} h_{2} + \frac{1}{2} \begin{bmatrix} e^{h_{2}} - e^{-h_{2}} \end{bmatrix} \times \frac{1}{2} \begin{bmatrix} e^{h_{2}} + e^{-h_{2}} \end{bmatrix}$ $= \begin{bmatrix} h_{2} + \frac{1}{2} \begin{bmatrix} e^{h_{2}} - e^{-h_{2}} \end{bmatrix} \times \frac{1}{2} \begin{bmatrix} e^{h_{2}} + e^{-h_{2}} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{h^{2}}{2} = \int_{0}^{h^{2}} \frac{2}{(1-b_{1}h_{1}h_{2})} \left( \frac{8cd\theta}{2} d\theta \right) $ $= \int_{0}^{h^{2}} \frac{2}{(1-b_{1}h_{2}h_{2})} \left( \frac{8cd\theta}{2} d\theta \right) $ $= \int_{0}^{h^{2}} \frac{2scd^{2}\theta}{3cd^{2}\theta} d\theta $ $= \int_{0}^{h^{2}} \frac{2scd^{2}\theta}{3cd^{2}\theta} d\theta $ $= \int_{0}^{h^{2}} \frac{2}{3cd^{2}\theta} d\theta $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= b_{12} + \frac{1}{4} \times \frac{3}{2} \times \frac{4}{2}$<br>= $\frac{15}{16} + \frac{102}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

 $k = \frac{15}{16}$ 

6

#### Question 99 (\*\*\*\*\*)

F.G.B.

I.C.B.

Use a suitable hyperbolic substitution to find a simplified expression for

 $\sqrt{(2x+5)(2x-3)} \, dx \, .$ 

# $\frac{1}{4}(2x+1)\sqrt{(2x+5)(2x-3)} - 4\ln\left[2x+1+\sqrt{(2x+5)(2x-3)}\right] + C$

I.C.B.

120

### Question 100 (\*\*\*\*\*)

It is given that the following integral converges to a finite value L.

$$\int_0^1 \frac{\ln x}{x-1} \, dx \, .$$

Show, with details workings, that

$$L = \sum_{r=1}^{\infty} \left[ \frac{1}{r^2} \right].$$

You may further assume that integration and summation commute.

|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1                                                                                                           | -           |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------|
| START WITH A S                                                             | UBAMICTICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |             |
| $\begin{cases} u = a_{-1} \\ du = da \\ a = a_{+1} \end{cases}$            | $\int_{0}^{1} \frac{h_{2}}{2-1} dx = \int_{0}^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>h(u+1)</u> du                                                                                              |             |
| \$11-03                                                                    | NOW RECALL POWER SEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 <del>46</del> 5                                                                                             |             |
| http://                                                                    | $\ln(1+\alpha) = \alpha - \frac{1}{2}\alpha^2 + 1$ | - fx3 - fx8 +                                                                                                 |             |
|                                                                            | $h(1+u) = \frac{u}{1} - \frac{u^2}{2}$<br>$h(1+u) = \sum_{r=1}^{\infty} \lfloor \frac{u^r}{2} \rfloor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               |             |
| RETURNING TO THE                                                           | INTERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |             |
| $\cdots = \int_{-1}^{0} \frac{1}{u} \times \ln l$                          | $(u_{n}) d\alpha = \int_{-1}^{0} \frac{1}{\alpha} \sum_{l=1}^{\infty} [$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>4</sup> <sup>F</sup> -C-3 <sup>Fai</sup> ]                                                               |             |
| ZEUHESHNIG THE ORDE                                                        | 2 OF INTECENTION AND SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NULATION, OBRILING DE                                                                                         | PHJDHAJCIES |
| $\dots = \sum_{p=1}^{\infty} \left[ \frac{(-1)^{p+1}}{p} \right]$          | $\int_{-1}^{0} \frac{1}{\alpha} \times \alpha^{t} dx = \sum_{0=1}^{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\left[ \frac{G_{11}}{C} \int_{-1}^{0} u^{C+1} du \right]$                                                    |             |
| $= \sum_{l=1}^{\infty} \left[ \frac{(l-1)^{l+1}}{l} \right]$               | $\left[\frac{1}{F}u^{r}\right]_{i}^{\circ} = \sum_{0}^{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{(-1)^{\text{PH}}}{(-1)^{\text{PH}}} \times \frac{1}{r} \left( o^{\text{P}} - (-1)^{\text{PH}} \right)$ | )]          |
| $= \sum_{l \ge 1}^{\infty} \left[ \frac{(-l)^{r_{l}}}{l^{\infty}} \right]$ | $\left(0 - (-1)^{\Gamma}\right) = \left[ \left(\frac{1}{2}\right)^{2} - \left(1 - 1\right)^{2}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{-(0)^{t+1}}{t^{2}} \times (-1)^{t+1}$                                                                  |             |
| $= \sum_{\infty}^{L=1} \left[ \frac{L_3}{(-l)_{2d}} \right]$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k]ten = 1 ten = 1                                                                                             |             |
|                                                                            | $\therefore \int_0^1 \frac{\ln x}{x-i} dt = \frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |             |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AL BAPUIERO                                                                                                   |             |

, proof

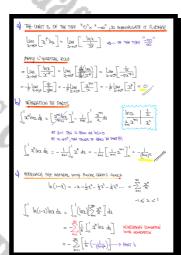
è

(\*\*\*\*\*) Question 101

**a**) If  $p \in (0, \infty)$ , show that

$$\lim_{x\to 0^+} \left[ x^p \ln x \right] = 0, \ x \in (0,\infty).$$

**b**) Hence find a simplified expression for


 $x^n \ln x \, dx, \, n \in \mathbb{N}$ .

c) Hence, showing a detailed method, evaluate

$$\int_0^1 \left[ \ln(1-x) \right] \ln x \ dx \, .$$

#### You may assume without proof that

- the integral converges.
- integration and summation commute.
  - $\sum \frac{1}{n^2} = \frac{1}{6}\pi^2, \ n \in \mathbb{N}.$ n=1



S INCHINA

1

 $(n+1)^2$ 

2

| $= (1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $= [-\frac{31^2}{6} + [$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| = 2- fuz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $= \frac{1}{6} \left( 12 - \pi^2 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

11+

Question 102 (\*\*\*\*\*)

$$J = \int \cos(\ln x) \, dx$$
 and  $J = \int \sin(\ln x) \, dx$ 

- **a**) Use an appropriate method to find expressions for I and J.
- **b**) Use the integral  $x^{i} dx$ , where i is the imaginary unit, to verify the answers given in part (a).

 $2x^i dx$ 

c) Find an exact simplified value for

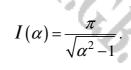
 $I = \frac{1}{2}x\left[\sin(\ln x) + \cos(\ln x)\right], \quad J = \frac{1}{2}x\left[\sin(\ln x) - \cos(\ln x)\right]$ 

$$\int_{1}^{e^{\frac{\pi}{2}}} 2x^{i} dx = \left(e^{\frac{1}{2}\pi} - 1\right) + \left(e^{\frac{1}{2}\pi} + 1\right)^{i}$$

| a) THOMAS MULH + 2                     | UBSTITUTION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| u=lm⊒<br>≈= e <sup>u</sup><br>dx≈ e"dy | $I = \int \cos(m_{\lambda}) d_{\lambda} = \int \cos(e^{i\theta} d_{\theta})$ $= \int e^{i\theta} \cos \theta d_{\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NOW DOUBLE NETHERAT                    | ION BY PHET, IONALEX EXPONENTIALS, OR INCRUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | 2011]]= = "(Ресси + Queed) + = "(-Piana + Queed)<br>= = "[(PtQ) (ceu + (Q-P)zina]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        | P+Q=1 Q Q-P=O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TIIIII                                 | : P=Q= ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | $\Rightarrow T = \frac{1}{2}e^{\alpha}(\omega + \omega n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | $\Rightarrow \overline{1} = \frac{1}{2}a \left[ los(ha) + sh(ha) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NUMBER AMPLE SHAFE SUMPLY              | al full dopzodał                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $J = \int sm(mx) dx =$                 | (e'sm(u) du Bot Now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | P+⊕=0<br>Q-P=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        | Q=12 Q P=-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | $\rightarrow J = \frac{1}{2}e^{4}(sum - cosm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        | $\implies \overline{J} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} \sum_{n=1}$ |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| STAKT BÅ CONTRACTION -4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathfrak{X}^{i} = e^{b_{\mathcal{X}} \mathfrak{I}^{i}} = e^{i b_{\mathcal{X}}} = cos(Ju_{\mathcal{X}}) + ism(Ju_{\mathcal{X}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\{a_{i},a_{i},i+(a_{i}),a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i},a_{i}$ |
| $\int x^i dx = \frac{1}{1+i} x^{1+i} + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\int \cos(m) + i \sin(m) dx = \frac{1-i}{2} - x x^{i} + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\int \log (i-i) \frac{dx}{dx} = \frac{1}{\sqrt{2}} \int \log (\log x) dx = \frac{1}{\sqrt{2}} \int \log (\log x) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $I + iJ = \Xi(v-i)[cosOm(x)+ism(m(x))] + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\mathbb{I} + \mathbf{i} = \mathbb{E} \left[ \cos(\theta n x) + \sin(\theta n x) + \mathbb{E} \left[ -\cos(\theta n x) + \sin(\theta n x) \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\mathcal{T}[(\mathcal{U}\mathcal{U})_{203}-(\mathcal{U}\mathcal{U})\mathcal{H}^2]_{\mathcal{H}^{\frac{1}{2}}} + [(\mathcal{U}\mathcal{U})\mathcal{H}^2+(\mathcal{G}\mathcal{U})\mathcal{H}^2]_{\mathcal{H}^{\frac{1}{2}}} = \mathcal{T}\mathcal{I} + \mathcal{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [[www.co-(www.]st = [ & [con)mz+(coloco]st - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ENALLY WIND PART (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\int_{1}^{e^{\frac{\pi}{2}}} dx = 2 \int_{1}^{e^{\frac{\pi}{2}}} dx dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $= 2 \left[ \frac{1}{2} x \left[ \cos(\eta \alpha) + \sin(\eta \alpha) \right] + \frac{1}{2} x \left[ \sin(\eta \alpha) - \cos(\eta \alpha) \right] \right] \left[ \frac{1}{2} \right]_{\mu}^{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $= \left[ 2 \left[ (\cos(\ln x) + \sin(\ln x) + 1 \left[ \sin(\ln x) - \cos(\ln x) \right] \right]^{\frac{1}{2}} \right]^{\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $= e^{3k} \left[ (0+1) + i (1-0) \right] - i \left[ (1+0) + (0-1) i \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $= e^{\frac{\pi}{2}}(1+i) - 1+i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### $= e^{i t} (i+1) - i + i$ $= (e^{i t} - i) + i (e^{i t} + i)$


(\*\*\*\*) **Question 103** 

Created by T. Madas  

$$I(\alpha) = \int_0^{\pi} \frac{1}{\alpha - \cos x} dx, |\alpha| > 1.$$
It is show that  

$$I(\alpha) = \frac{\pi}{\sqrt{\alpha^2 - 1}}.$$

I.F.G.B. Use an appropriate method to show that





asillatilis.com

I.F.C.

naths.com

#### (\*\*\*\*\*) Question 104

I.V.G.B.

Use appropriate integration techniques to show that

 $\int_{0}^{\frac{1}{2}} \frac{\arcsin\sqrt{x} - \arccos\sqrt{x}}{\arcsin\sqrt{x} + \arccos\sqrt{x}} \, dx = \frac{1}{\pi} - \frac{1}{2}.$ F.G.B.



ths.com

proof

4.60

Question 105 (\*\*\*\*)

If  $0 < k < \sqrt{2} - 1$  prove that

 $\int_{k}^{\frac{1-k}{1+k}} \frac{\ln x}{x^2 - 1} \, dx = \int_{k}^{\frac{1-k}{1+k}} \frac{\operatorname{artanh} x}{x} \, dx.$ 

nada,

17202

You need not evaluate these integrals.

I.G.B.

On I.Y.C.B.

I.V.C.B. Mad

I.V.G.B

 $\frac{\frac{1-k}{1+k}}{3^{2}-1} d\lambda = \int_{k}^{\frac{1-k}{1+k}} (hx_{k}) \frac{1}{3^{2}-1} d\lambda$ artighe 1 = [-linz)(artankz)]\_k - [-2] artankz dz de larbudrah - 1  $= \left[ (ln_{\lambda}) (prt_{m}k_{\lambda}) \right]_{l=k}^{k} + \int_{k}^{l+k} \frac{art_{m}k_{\lambda}}{x} d\lambda$ NOW IT SHARES TO SHOW THAT  $\left[ (\ln x) (\operatorname{artuch} x) \right]_{\substack{l=k \\ l\neq k}}^{k} = 0$  $\therefore \left[ (hx)(art_{m}hx) \right]_{\frac{1-k}{1+k}}^{k} = \left[ hx \times \frac{1}{2}h \frac{1+x}{1-x} \right]_{\frac{1-k}{1+k}}^{k}$  $= \frac{1}{2} \left[ \left( h_k \right) \left( h_k \left( \frac{1+k}{1-k} \right) \right) - \left( h_k \left( \frac{1-k}{1+k} \right) \times h_k \left( \frac{1+\frac{1-k}{1+k}}{1-\frac{1-k}{1-k}} \right) \right) \right]$  $= \frac{1}{2} \left[ \left( \ln k \right) \left( \ln \left( \frac{1+k}{1-k} \right) \right) - \left( \ln \left( \frac{1-k}{1+k} \right) \times \left( \frac{1+k+1-k}{1+k-1+k} \right) \right) \right]$  $= \frac{1}{2} \left[ \left( \left| \eta_{k} \right| \right) \left| \left| h_{\eta} \left( \frac{1+k}{1-k} \right) \right| \sim \left| h_{\eta} \left( \frac{1-k}{1+k} \right) \left| h_{\eta} \left( \frac{2}{2k} \right) \right| \right] \right]$  $= \frac{1}{2} \left[ (hk) h(\frac{1+k}{1-k}) - h(\frac{1-k}{1+k}) h(\frac{k}{k}) \right]$ = + [(bk) h(#) - (-1) h(#) hE7  $\left\{h\left(\frac{a}{b}\right)=-h\left(\frac{b}{b}\right)\right\}$ 

The Com

proof

4.6.0

1.5

21/2.51

The,

Created by T. Madas

I.C.B.

Y.C.B.

2017

4.6.0

1+

# Question 106 (\*\*\*\*\*)

2

Use integration by parts and trigonometric identities to find the exact value of

 $\int_0^{\frac{\pi}{6}} 12 \sec^3 x \ dx.$ Y.G.B. Mada I.F.C.p  $4 + 3 \ln 3$ 12500 da = 12500 secar secar da ... By preg E 12sectura de = [lescature] # = [12scFt+F-0] - [F 12secz (se2-1) dz 12×2=×15-(2sec3\_ \_ 12secx dr Research + JE 12 seconda Jost 2 stora dr + [12 in [ seca + tanz ]] 1254à de + 12/4/2+++|-12/4/ I.G.B. I.G.B. ma nadasn 21/18 COM I.Y.C.B. 277 I.Y.C.B. Madasa 0 I.C.B. CR Created by T. Madas

#### (\*\*\*\*) Question 107

12

I.F.G.B.

Smaths,

I.F.G.B.

11202ST

COM

I.F.G.B.

Determine, as an exact simplified fraction, the value of the following integral.

 $\int_{\frac{3}{2}}^{\frac{5}{2}} \left(4x^2 - 16x + 15\right)^4 dx.$ 

| PROCEED BY FACTORIZING                                                                                                                                                                          |                           |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|
| $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (4x^2 - 16x + 15)^4 dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left[ (2x - 3x^2 - 16x + 15)^4 dx - 16x + 15 \right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$      | s)(22 - 5 )] <sup>4</sup> | dø       |
| $= \int_{\frac{3}{2}}^{\frac{5}{2}} (2x-3)^{\frac{6}{2}} (2x-3)^{\frac{6}{2}} dx$                                                                                                               |                           |          |
| INTHODATE BY PAQUES                                                                                                                                                                             | ,                         |          |
| 5 Z Z                                                                                                                                                                                           | {(22-3)                   | 8(22-3)3 |
| $\dots = \left[\frac{1}{10}(2x_2)^{\frac{1}{2}}(2x_2)^{\frac{1}{2}}\right]_{\frac{1}{2}}^{\frac{1}{2}} - \frac{\frac{1}{2}}{\frac{1}{2}}\int_{1}^{1}(2x_2)^{\frac{1}{2}}(2x_2)^{\frac{1}{2}}dx$ | 10 (22-5)5                | (22-5)   |
| INTEGRATE BY PARIS FOR A SECOND TIME                                                                                                                                                            |                           |          |
|                                                                                                                                                                                                 | (21-3)                    | 6(22-3)2 |
| $= -\frac{4}{5} \left[ \frac{1}{12} (20+3)^2 (20-5)^6 \frac{1}{2} - \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} (20+3)^2 (20-5)^6 dx \right]$                                                 | 1 (2-5) <sup>2</sup>      | (20-2)2  |
| $\frac{2}{5}\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (2t-2)^{\frac{\pi}{2}} dt$                                                                                                                     |                           |          |
| BY PARES FOR A THED TIME                                                                                                                                                                        |                           |          |
| - [r. 2] = 1 <sup>2</sup> 3.2                                                                                                                                                                   | (22-3)2                   | 4(22-3)  |
| $=\frac{2}{5}\left\{\left[\frac{1}{2}(\alpha-3(\alpha-5)^{2})\right]_{\frac{1}{2}}^{\frac{1}{2}}-\frac{1}{7}\int_{\frac{1}{2}}^{\frac{1}{2}}(\alpha-3(\alpha-5)^{2})dq\right\}$                 | 14(21-5)7                 | 2(2-5)   |
| $= -\frac{1}{22} \int_{\frac{1}{2}}^{\frac{1}{2}} (2z-3) (2z-2)^{2} dz$                                                                                                                         |                           |          |

| C- 12 (2 . )                                                                                                                                                      | 22-3              | 2          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|
| $= -\frac{4}{35} \left\{ \left[ \frac{1}{16} (2t-5) \right]_{\frac{1}{2}}^{\frac{1}{2}} - \frac{1}{8} \left\{ \frac{1}{(2t-5)}^{\frac{1}{2}} dt \right\} \right]$ | 1/2 (22-3)<br>-23 | 2<br>(72-5 |
| 1 1 2 8                                                                                                                                                           | harris            |            |
| $=\frac{1}{70}\int_{\frac{3}{2}}^{\frac{5}{2}}(2x-5)^{8} dx$                                                                                                      |                   |            |
| $\frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}_{\frac{1}{2}} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}_{\frac{1}{2}}$       |                   |            |
| ~                                                                                                                                                                 |                   |            |
| $\frac{1}{1260} \left[ (22-5)^{\frac{1}{2}} \right]_{\frac{3}{2}}^{\frac{5}{2}}$                                                                                  |                   |            |
| $=\frac{1}{1260}\left[0-(-2)^{9}\right]$                                                                                                                          |                   |            |
|                                                                                                                                                                   |                   |            |
| 512<br>1260                                                                                                                                                       |                   |            |
| 315                                                                                                                                                               |                   |            |
|                                                                                                                                                                   |                   |            |
| 1.                                                                                                                                                                |                   |            |
|                                                                                                                                                                   |                   |            |
|                                                                                                                                                                   |                   |            |
|                                                                                                                                                                   |                   |            |
|                                                                                                                                                                   |                   |            |
|                                                                                                                                                                   |                   |            |
|                                                                                                                                                                   | ÷                 |            |
|                                                                                                                                                                   | - Mar.            |            |
|                                                                                                                                                                   | 1                 |            |
| 1                                                                                                                                                                 | Ø >               | ۰.         |
|                                                                                                                                                                   | 1 M. T.           | æ          |
|                                                                                                                                                                   | 45 A              | 21         |
|                                                                                                                                                                   | - A .             | 5          |
|                                                                                                                                                                   |                   |            |

Madasmaths.com

l.Y.C.B.

 $\frac{128}{315}$ 

6

nadasm

madasn

Created by T. Madas

2011

[.Y.C.]

Madasmans.com

#### (\*\*\*\*\*) Question 108

Smarns com t. r. c.p.

I.F.G.B

0

ISMATHS.COM

Use the substitution  $u = \sqrt{\frac{1+x}{1-x}}$ , to evaluate the following integral.

$$\int_{0}^{4} \frac{3}{(4x+5)\sqrt{1-x^2}-3(1-x^2)} dx.$$
  
Give the answer in the form  $\frac{1}{7}(a+\sqrt{b})$ , where *a* and *b* are integers.

| ~// ·//                               | START BY FREAMENC. THE SUBSTITUTION GOVEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | THU IS NOW A STRACHT PORCHAN INTERATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dr dr                                 | $ \begin{array}{c} u \leftarrow \sqrt{\frac{1+2s}{1+2s}} & \underbrace{d_{2s}}{d_{2s}} = \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{1-d_{2s}}_{(d_{1})(2s)} & \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{1+2s}_{(d_{2})(2s)} & \underbrace{d_{2s}}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{1+2s}_{(d_{2})(2s)} & \underbrace{d_{2s}}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{2s})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} & \underbrace{(d_{1})(2s) + 2s}_{(d_{1})(2s)} \\ u^{2} = \underbrace{(d_{1})(2s) + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $= \int_{1}^{\infty} \frac{6}{(3n-1)^2} d_{\theta} = \left[-\frac{2}{3n-1}\right]_{1}^{\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 A 10                               | $u^{4} = \frac{1+\lambda}{1-\chi}$ $\frac{d\lambda}{dM} = \frac{2u^{3}+2u}{(u^{5}u)^{2}}$ $u^{3} + 2u$ $(u^{2}u)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= \left[\frac{2}{1-3\alpha}\right]_{1}^{\alpha} = \left[\frac{2}{1-3\alpha}\right]_{1}^{\frac{1}{3}\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (D. 3)                                | $\int u^2 - 1 = u^2_3 + 3$ $du = (u^2 + 1)^2 = -\frac{2u^2 x^2}{2u^2 + 3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the second s |
| "Uh '                                 | $\begin{cases} u^{k-1} = -\tau_i(t^{k}_i) & \text{id}_{k} - \frac{du}{(t^{k+1})} du \\ \vdots & u^{k-1} = \frac{u^{k-1}}{u^{k+1}} \end{cases} \xrightarrow{k} u^{k} = \frac{du}{(t^{k+1})} \frac{du}{du} \qquad \vdots = \frac{u^{k-1}}{(t^{k+1})^{k}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{646WATING}{2} = \frac{2}{1 - \sqrt{3}} - \frac{2}{1 - 3} = \frac{2}{1 - \sqrt{3}} + \frac{2}{1 - \sqrt{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · · · · · · · · · · · · · · · · · · · | $\begin{cases} \begin{array}{c} \left( \frac{1}{1} \frac{1}{1} \frac{1}{1} + \frac{1}{1} $ | $= \frac{2(1+\sqrt{e})}{1-1e} + 1 = \frac{(1+\sqrt{e})}{-1e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | 2 - 2 - 2 + → u= f(c = <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $= \frac{1 + \sqrt{12}^{1}}{-7} + 1 = -\frac{1}{7} - \frac{1}{7}\sqrt{12} + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | BEEN THE TRANSFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= \frac{6}{7} - \frac{1}{7}\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                     | $\int_{0}^{t_{0}} \frac{3}{(k_{1}+S_{0})_{1}\frac{1}{1-\sqrt{2}^{2}}-3(j-2t^{2})} dt = \int_{t}^{\infty} \frac{3}{\frac{4j_{0}^{2}+1}{(k_{1}^{2}+1)} + \frac{2j_{0}}{(k_{1}^{2}+1)} -3 - \frac{4j_{0}}{(k_{1}^{2}+1)^{2}}} dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $=\frac{1}{7}(e-\underline{h}_{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NOCH THAT THE SUBSTITUTION 2= SM & OR 2= 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | $= \int_{1}^{\infty} \frac{ 2\eta_{1} }{\left[\frac{2\eta_{1}/(\eta_{1}^{2}\eta_{1})}{(\eta_{1}^{2}\eta_{1}^{2})} - \frac{n_{0}k}{(\theta_{1}\eta_{1}^{2})}\right]^{d^{2}}} ds$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BY THE "UTTLE +" IDENTITHE IS FIRE MORE NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       | $= \int_{1}^{k} \frac{2\lambda_{1}}{\lambda_{1}(y_{1}^{2}y_{1}) - 12y_{1}^{2}} dy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ZUGTTAUGHAM ZTI UN LEGONOL ZI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - Q A - 2                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | $= \int_{1}^{\infty} \frac{6}{14^{n}+1-6n} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · / / ·                               | 10. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | 901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2. del                                | ~U2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CPA CO                                | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The de                                | ~ · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Var. Oh                               | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.0 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       | dr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | x> (D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | 6 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 100 ×                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C/2.                                  | ·0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>n</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       | Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>n</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       | -Uh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Y - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | ~ <i>I</i> I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V Sal                                 | 1. 10/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| _ |
|---|
| 5 |
| 3 |
|   |

ths.com

 $, \frac{1}{7} (6 - \sqrt{15})$ 

Madasmaths.com

¥.6.0.

110

K.G.B.

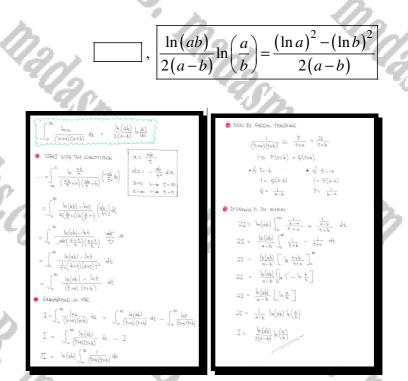
Maths.com I.Y.C.B. Madash Created by T. Madas

#### Question 109 (\*\*\*\*\*)

I.F.C.B. Mad

COM

I.Y.C.B.


Smaths,

I.F.G.p

Use the substitution  $x = \frac{ab}{t}$  to find the exact value of

$$\int_0^\infty \frac{\ln x}{(x+a)(x+b)} \, dx,$$

where a and b are real positive constants with a > b.



2017

The Com

14

14

aths com

I.Y.C.B. Madası

.C.

# Question 110 (\*\*\*\*\*)

I.V.G.B.

I.V.G.B. M.

I.C.P.

20

Use appropriate integration methods to show that

GB

I.G.p.

P.C.A

 $\int_{0}^{1} 12x^{2} \arctan x \, dx = \pi - 2 + \ln 4.$ 

Mada

12



CONSIDER THE DIRFRESSION

@ THUS REARCANGING GUES

STIMUS 10997 @

23

F.G.B.

 $\frac{d}{dl} \left[ \lambda^{3} \operatorname{antur} \right] = 3\lambda^{2} \operatorname{antur} + 3^{3} \times \frac{1}{1+\lambda^{2}}$   $\Rightarrow \frac{d}{d\lambda} \left[ \frac{d^{3}}{dl} \operatorname{antur} \right] = 1\lambda^{2} \operatorname{antur} + \frac{4\lambda^{3}}{1+\lambda^{2}}$ 

 $\Rightarrow 4x^{2}aydon(x) = \int 12x^{2}aydon(x) dx + \int \frac{dx^{2}}{1+x^{2}} dx$   $\Rightarrow 4x^{2}aydon(x) = \int 12x^{2}aydon(x) dx + \int \frac{dx(2x+1) - 4xx}{x^{2}+1} dx$   $\Rightarrow 4x^{2}aydon(x) = \int 12x^{2}aydon(x) dx + \int dx dx - \int \frac{dx}{x^{2}+1} dx$ 

 $= \int 2x^2 \arctan 2 \, dx = 4x^2 \arctan x + \int \frac{dx}{x^2+1} \, dx - \int 4x \, dx$   $= \int 12x^2 \arctan 2 \, dx = 4x^2 \arctan x + 2x(x^2+1) - 2x^2 + C$ 

 $\implies \int_{-1}^{1} 12 x^{2} \operatorname{constand} d\lambda = \left[ 4x^{3} \operatorname{constand} + 2 \ln(x^{2} + 1) - 2x^{2} \right]_{0}^{1}$ 

 $= \left[ 4 \times \frac{1}{4} + 2 \ln 2 - 2 \right] - \left[ \mathbf{p} + 2 \ln 1 - \mathbf{p} \right]$ 

I.F.G.B.

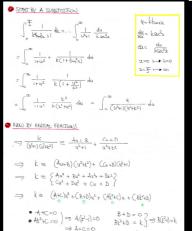
4.60

6

11.202.SI

mada

#### Question 111 (\*\*\*\*\*)


I.F.C.p

I.V.G.B.

I.F.G.B.

Use appropriate integration methods to find, in terms of k, a simplified expression for

 $\int_0^{\frac{\pi}{2}} \frac{1}{1+k^2 \tan^2 x} \, dx \, , \ |k| \neq 1 \, .$ 



 $\int_{u}^{\infty} \frac{k}{(\underline{u}^2 u)(\underline{u}^2 t \underline{u}^2)} du = \int_{u}^{\infty} \frac{k}{\underline{u}^2 t} - \frac{k}{\underline{u}^2 t^2} du$  $\frac{k}{k^{2}}\int_{0}^{\infty}\frac{1}{u^{2}H} - \frac{1}{u^{2}k^{2}} dx = \frac{k}{k^{2}}\left[akbmq - \frac{1}{k}akbmq\right]_{k}^{0}$  $\frac{k}{k^{2}+1}\left[\left(\frac{\pi}{2}-\frac{\pi}{2k}\right)-o\right] \quad = \quad \frac{k}{k^{2}+1}\times\frac{\pi}{2}\times\left(1-\frac{1}{k}\right)$  $(k-t)(k+1)^{\times} \frac{\pi}{2} \times \frac{k}{k} = \frac{\pi}{2(k+1)}$ 

277

5

I.V.G.B.

Mada.

 $\frac{\pi}{2(k+1)}$ 

1.

Created by T. Madas

I.V.C.I

Question 112 (\*\*\*\*\*)

 $I = \int_0^{\frac{1}{2}\ln 3} \operatorname{sech} x \, dx \, .$ 

- **a**) Use the substitution  $u = e^x$  to show that  $I = \frac{\pi}{k}$ , where k is a positive integer.
- **b**) Given that  $t = \tanh\left(\frac{1}{2}x\right)$  show that ...

**i.** ... 
$$\frac{dt}{dx} = \frac{1}{2} (1 - t^2).$$

**ii.** ... if  $x = \frac{1}{2} \ln 3$ , then  $t = 2 - \sqrt{3}$ .

- c) Use the results of part (b) to find again the exact value of I.
- **d**) Show that I can be written as

$$\int_0^{\frac{1}{2}\ln 3} \frac{\cosh x}{1+\sinh^2 x} \, dx$$

and hence obtain the exact value of I for a third time.

| The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| $ \begin{array}{l} \left( \mathbf{\hat{q}} \right) \int_{0}^{\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac$ |    |
| $ \begin{array}{c} (b) (\mathbf{I})  t = t_{out} h_{2}^{2} \\ \begin{array}{c} (\mathbf{I})  t'' = t_{out} h_{2}^{2} \\ ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| $ \begin{array}{l} \begin{array}{c} (c) \\ \end{array} \int_{a}^{\frac{1}{2}h^{2}} scd\alpha_{2} \ dx &= \int_{a}^{b} \frac{1}{cdx_{1}^{2}} \ dx &= -h_{1} \ lt + h \ c \ rds + l_{2}^{2} \\ \end{array} \\ &= \int_{a}^{2-c^{2}} \frac{1}{cdx_{1}^{2}} \ e^{-\frac{1}{2}} \ dt \\ &= \int_{a}^{2-c^{2}} \frac{1}{c^{2}} \ e^{-\frac{1}{2}} \ dt \\ \end{array} \\ &= \int_{a}^{2-c^{2}} \frac{1}{c^{2}} \ e^{-\frac{1}{2}} \ dt \\ &= \int_{a}^{2-c^{2}} \frac{1}{c^{2}} \ dt \\ dt \\ &= \int_{a}^{2-c^{2}} \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5  |

 $d = \begin{bmatrix} \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{$ 

proof

Question 113 (\*\*\*\*\*)

 $I = \int_0^1 2 \operatorname{arsinh} \sqrt{x} \, dx$ .

The value of I is to be found using two methods.

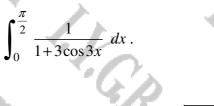
**a**) Use the substitution  $x = \sinh^2 \theta$  to show that

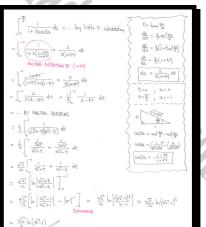
 $I = 3\ln\left(1+\sqrt{2}\right) - \sqrt{2} \ .$ 

A different approach is to be used to find the value of I.

**b**) Use the substitution  $u = \sqrt{x}$ , followed by a suitable hyperbolic substitution to to verify the answer of part (a).

| n v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co                                              |                                                                                                                                                                                                                                                                                                                                             | , proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| °Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Un                                            |                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{c} (\mathfrak{d}) & \overbrace{Cosh(ursub)}^{Cosh(ursub)} \\ & \underset{Sh(v \sim u)}{Sh(v \sim u)} \\ & \underset{Sh(v \sim u)}{Sh(v \sim u)} \\ & \underset{Sh(v) \sim u}{Sh(v \sim u)} \\ & \underset{I + Sh(v) \sim u}{Sh(v \sim u)} \\ & \underset{I + Sh(v) \sim u}{Sh(v \sim u)} \\ & \underset{I + Sh(v) \sim u}{Sh(v \sim u)} \\ & \underset{I = I}{Sh(v \sim u)} \\ & \underset{I = I}{I} \\ & \underset{I = I}{Sh(v \sim u)} \\ & \underset{I = I}{Sh(u \sim u)} \\ & \underset{I = I}{Sh(u \sim u)} \\ & \underset{I = I}{I} \\ \\ & \underset{I = I}{I} \\ & \underset{I = I} \\ & \underset{I = I}{I} \\ & \underset{I = I}{I} \\ & \underset{I = I} \\ & \underset{I = I \\ & \underset{I = I} \\ & I = \mathsf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 20                                           | $u_{1} = \dots \int_{0}^{1} 2u u_{2} + u_{3} + \dots$ $u_{n} = u_{n} + \dots + u_{n} + \dots + u_{n} + \dots + u_{n} + \dots + $                                                                                                                                            | $\begin{array}{c} y = (y, z) \\ y = (y, z) $ |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | habiti { = {2u <sup>2</sup> ansonh<br>3<br>40_{ | $ \begin{array}{c c} 2u^{2} & 4u \\ 1 & 1 \\ u \end{array} \right _{0}^{1} = \int_{0}^{1} \frac{2u^{2}}{u^{4}+1} du \\ - \int_{0}^{1} \frac{2u^{2}}{v^{4}u^{2}+1} du \\ v \end{array} \right _{0}^{1} \qquad \qquad$ | harr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $= \frac{1}{2} (\frac{1}{2} \cos \theta_{1})^{2} + \frac{1}{2} \cos \theta_{2} + \frac{1}{2} \cos \theta_$ | $=\int_{0}^{0} 2sm_{P}^{2}\theta$               | $du = \int_{0}^{0} \frac{2(\frac{1}{2} \cos \theta - \frac{1}{2})}{2(\cos \theta - \frac{1}{2})} d\theta$                                                                                                                                                                                                                                   | $ \begin{array}{l} u = sinh0 \\ \frac{du}{d\theta} = cah0 \\ \frac{du}{d\theta} = cah0 \\ \frac{du}{d\theta} = hob d\theta \\ u = 1, \theta = orsmk1 \\ u = 0, \theta = 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $= \left[ \begin{array}{c} \Psi_{coh} Z \Phi & - \frac{1}{2} S \Phi Z \Phi \\ = \left[ \begin{array}{c} \Phi \left[ 1 + 2 S \Phi A T \Phi \right] - S \Phi \Phi T \Phi S \Phi \\ \end{array} \right]_{\phi}^{arcode} \\ = \left[ \left( arcsh_{1} \right) - X \Phi - 1 X cohe \left( arcsh_{1} \right) - \left[ 1 - 0 - 0 \\ \end{array} \right] \end{array} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | $(-1 d_{\Theta} = \left(\frac{1}{2}Snh2\Theta - \Theta\right]_{\Theta}^{(d_{\Theta}n_{H})} = (1 \times csh(n_{\Theta}h_{H}) - arcon$                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $= 3 a a b (1 + \lambda_2) - \lambda_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5. I = 2am                                      | $(1+N^2)$<br>$M_{1} = (N^2 - h(1+N^2))$<br>$(1+N^2) - N^2 + h(1+N^2)$                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | (1+N2) - N2                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |


#### Question 114 (\*\*\*\*\*)


By considering the differentiation of products of appropriate functions, find

 $e^{x} \left( 3 \sec^{2} x + 2 \sec^{2} x \tan x + 2 \tan x \right) dx.$ 

#### Question 115 (\*\*\*\*\*)

By using a trigonometric substitution or otherwise, find an exact simplified value for the following integral.





 $\frac{\sqrt{2}}{6}\ln\left(\sqrt{2}-1\right)$ 

 $\left| e^{x} \left( 2 \tan x + \sec^{2} x \right) + C \right|$ 

Sec(35til 25til 25til buy +2bana) da

 $\frac{d}{dt}(e^{2}st_{n}^{2}) = e^{2}st_{n}^{2} + 2e^{2}st_{n}^{2}bu_{n} \times |s|^{N}$   $\therefore \left[e^{2}(3st_{n}^{2} + 2st_{n}^{2}bu_{n}) + 2bu_{n}\right] dx = 2e^{2}t_{n}^{2}$ 

#### Question 116 (\*\*\*\*\*)

F.G.B.

I.C.p

Find the value of the following definite integral.

$$\int_{0}^{\frac{1}{2}} \frac{12x-1}{(6x^2-x-1)(6x^2-x-5)+10}$$

Give the answer in the form  $\arctan\left(\frac{1}{n}\right)$ , where *n* is a positive integer.

| $\int_{-\infty}^{\frac{1}{2}} \frac{ z_{\partial_{x}-1} }{(h_{x}^{2}-x_{x}-i)(h_{x}^{2}-x_{x}+i)+i\sigma} dx$ | . 4= 6x <sup>2</sup> -x-1                                                             |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| $\int_{0}^{0} (h t^2 - \chi_{-1}) (h t^2 - \chi_{+2}) + 0$                                                    | $\begin{cases} \cdot \frac{du}{dy} = 13y - 1 \\ \cdot \frac{du}{12x - 1} \end{cases}$ |
| (u+6)+10                                                                                                      | {· 01= 122-1                                                                          |
| )_ ((u+6)+10 _ber                                                                                             | $\{\cdot, 6t^2 - 1 + 5 = u + 6\}$                                                     |
| $\int_{-1}^{0} \frac{1}{u^2 + 6u + 10} du$                                                                    | Z. 2=0 -1 €                                                                           |
|                                                                                                               | {· 2-2 +> 1=0 }                                                                       |
| $\int_{-1}^{0} \frac{1}{(u^2 + 6u + 9) + 1} du$                                                               | (1-1-1)                                                                               |
|                                                                                                               |                                                                                       |
| [artoy(ut3)] = an                                                                                             | tay 3 - antay Z.                                                                      |
|                                                                                                               |                                                                                       |
| SIMPURY FORTHER COME THE Young                                                                                | (4-В) ИСАЛПУ                                                                          |
| SUMPURY ASCRIPC CEINS RHE four<br>four [ancturs -anctors] =                                                   | (4-B) 1000174<br>tau(antrefs) - tou (on tau 2)<br>1 + tau(antrefs) tou (on tau 3)     |
| uupury fuendre conso-nue tou<br>tou [anitous-anitous] =                                                       | (4-B) 10w317y<br>tau(antugs) - tou(antau <u>z)</u>                                    |
| umpury factifie construe tou<br>tou [antous -antous] =                                                        | (4-B) 1000174<br>tau(antrefs) - tou (antre 2)<br>1 + tou(antrefs) tou (antre 3)       |

*n* = 7

he

ng

I.C.B.

m

2

dx

Question 117 (\*\*\*\*\*)

R

I.C.B.

$$I = \int_{-\frac{1}{\sqrt{3}}}^{1} \frac{\sqrt{1+x^2}}{x^4} \, dx \, .$$

Y.C.B.

 $\frac{2}{3}(4-\sqrt{2})$ 

α=smhθ da=aash8 d0

sund 0 = 1 sund 0 = 1 sund 0 = 1 sund 0 = 1  $xed^2\theta + 1 = 2$ 

iotho = Jz

Sinh 0 = 1

sinkto = ±

 $\cos(d^2\theta = 3)$  $(0)=d_{10}^{2}+1=4$ 

 $\omega H_{0}^{2} = 4$ 

wthe= 2

F.G.B.

 $a = \frac{1}{\sqrt{2}}$ 

 $= \pm \left[ \omega th \theta \right]_{\omega h \theta = 2}^{\omega h \theta = 2}$ 

è

a) Use a trigonometric substitution to show that

 $I = \frac{2}{3} \left( a + b\sqrt{2} \right),$ 

where a and b are integers to be found.

**b**) Use a hyperbolic substitution to verify the answer of part (**a**).

1+22 da 1+ tu20 (st20 de) da = 5430 d0 a=1 1→ 0=∓  $l = \frac{1}{\sqrt{\xi^2}} \mapsto \theta = \frac{\pi}{\kappa}$ Sector do  $\int_{\pi}^{\#} \frac{1}{\cos^2\theta} \times \frac{\cos^2\theta}{\sin^2\theta} d\theta$ NOW BY B ITON (OR AWATHER SUBSTITUTION  $u=sm\theta$ ) - 1- att 30  $= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(\sin\theta)^{4} d\theta = \left[-\frac{1}{2}(\sin\theta)^{-3}\right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$  $\frac{1}{2}\left[2_{3}^{2}-\left(\sqrt{2}\right)_{3}\right] = \frac{1}{2}\left[8-5\sqrt{2}\right]$  $= \frac{1}{3} \left[ \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} \int_{-\infty}^$  $\frac{2}{3} \left[ 4 - \sqrt{2} \right]$  $=\frac{1}{3}\left[\begin{array}{c}\frac{1}{\frac{1}{8}}-\frac{1}{\frac{1}{2\sqrt{2}}}\\ \end{array}\right]=\frac{1}{3}\left[\begin{array}{c}8-2\sqrt{2}\end{array}\right]$ -48 86600 5  $=\frac{2}{3}(4-\sqrt{2})$ 

## Question 118 (\*\*\*\*\*)

i C.B.

The function f is defined in the largest real domain by the equation

 $f(x) \equiv \arccos |2x-1|.$ 

Determine the area of the finite region bounded by f and the coordinate axes.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m.                                                                                                                                                                                                                                                                                                                                                         |
| <u>Style order A secret</u><br><u>3</u><br><u>3</u><br><u>4</u><br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13<br>1<br>2<br>2<br>2<br>2<br>2<br>1<br>3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\text{IElecentrol by PRYS GARS}}{= \begin{bmatrix} -9 \text{ ord} \end{bmatrix}_{0}^{\infty} + \int_{0}^{\infty} \frac{1}{\cos \theta} d\theta}$ $= \begin{bmatrix} \sin \theta \\ -9 \text{ ord} \end{bmatrix}_{0}^{\frac{\infty}{2}}$ $= \frac{1}{4}$ $\frac{4 \text{ Uzely ATWE LOCKING AT THE}}{\frac{4 \text{ ord} \text{ ord}}{\cos \theta}}$ |
| $f_{a} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left( \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{$ | $\begin{array}{c} \nabla = \sigma \pi cos(-x) \\ \sigma = \sigma \pi cos(-x) \\ (sb_{2} + -x) \\ cb_{3} + -c \\ cb_{4} + -c \\$ | $= \frac{1}{2} - \int_{-\infty}^{\infty} 1 - \cos \theta$ $= \frac{1}{2} - \int_{-\infty}^{\infty} 1 - \cos \theta$                                                                                                                                                                                                                                        |

area = 1

1 -0 Bmiz Gaoi-

i C.B.

12.50

Γ

200

Question 119 (\*\*\*\*\*)

By considering

asmaths.com

I.V.G.B

$$\frac{\sin\left[(2m+1)x\right]}{\sin x} - \frac{\sin\left[(2m-1)x\right]}{\sin x}, \ m \in \mathbb{N},$$
  
ue of  
$$\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} \sin 7x$$

determine the exact value of

 $\int_0^{\frac{1}{2}\pi} \frac{\sin 7x}{\sin x} \, dx.$ 

Com

17.21/2ST

2017

I.C.B.

COM I.F. G.B.

SION, ER MEN  $\frac{Sh[(2n+1)x]}{Sh2} - \frac{Sh[(2n-1)x)}{Sh2}$  $\frac{\frac{\partial L}{\partial x} \left[ c_{\underline{x}} \left[ \frac{\partial w + |x|}{x} \right]}{c_{\underline{x}} \left[ c_{\underline{x}} \left[ \frac{\partial w + |x|}{x} \right] \right]} = c_{\underline{x}} \left[ c_{\underline{x}} \left[ \frac{\partial w + |x|}{x} \right] c_{\underline{x}} \left[ \frac{\partial w + |x|}{x} \right] \right]$ 25142 (05(2m2) = 2005(2m2) 2606(2012) IN [0,7/2]  $\int_{0}^{\frac{T}{2}} \frac{\sin[(2m+1)2]}{\sin \lambda} - \frac{\sin[(2m-1)2]}{\sin \lambda} d\lambda - \int_{0}^{\frac{T}{2}} 2m_{\lambda}(2m\lambda) d\lambda$  $\int_{-\infty}^{\frac{1}{2}} \frac{2\pi}{2m^2} \frac{2\pi}{2m} dt = \int_{-\infty}^{\infty} \frac{\sin(2k-1)\lambda}{\sin\lambda} d\lambda = 0$ sin(zm+1) de  $\int_{-\infty}^{\infty} \frac{2n_2}{2m_1} dx = \int_{-\infty}^{\infty} \frac{2n_2}{2m_2} dx$ 

2017

The Com

 $\frac{1}{2}\pi$ 

aths com

Y.G.D.

6

Created by T. Madas

I.C.B.

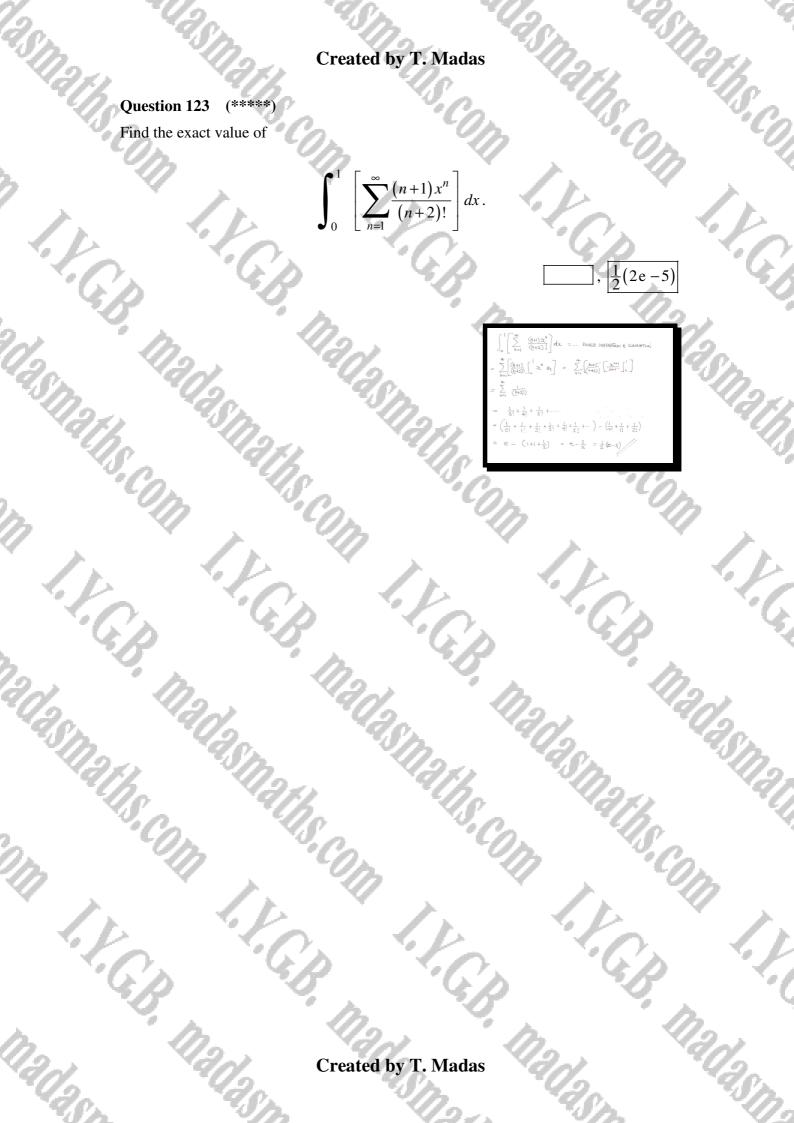
#### (\*\*\*\*) Question 120

Find in exact simplified form the value of the following definite integral.

| Com C    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >        |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| r. I.V.  | $\int_{3^{-\frac{1}{6}}}^{3^{\frac{1}{6}}} \left(x^2 + \frac{1}{x^4}\right)^{-2} dx \; .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · F.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1      |
| Cp Cp    | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $, \frac{\pi}{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|          | STOP BY (4) KITAL THEY OP - Let $w_{\sigma} 2^{\frac{1}{2}} \neq \frac{\delta}{\delta} = 2^{\frac{1}{2}}$<br>$\begin{pmatrix} \delta \\ -2 \end{pmatrix} = \sqrt{2} \begin{pmatrix} \delta \\ -2 \end{pmatrix} \begin{pmatrix} $ | Totally collective ful the desired for the gavanted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.     |
| m. alas  | $ \int_{-\infty}^{0} \left( \frac{x^2 + \frac{1}{2x^2}}{2x^2} \right)^2 dx + \int_{-\infty}^{0} \left( \frac{x^2 + \frac{1}{2x^2}}{2x^2} \right)^2 dx - \int_{-\infty}^{0} \left( \frac{x^2}{2x^2 + 1} \right)^2 dx $ $ = \int_{-\infty}^{0} \frac{x^2}{\sqrt{x^2 + 1^2}} dx $ $ Bood THE SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N} \frac{1}{2\pi N (x^2 + 1)^2} dx   The SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N} \frac{1}{2\pi N (x^2 + 1)^2} dx   The SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N (x^2 + 1)^2} dx   The SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N (x^2 + 1)^2} dx   The SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N (x^2 + 1)^2} dx   The SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N (x^2 + 1)^2} dx   The SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N (x^2 + 1)^2} dx   The SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N (x^2 + 1)^2} dx   The SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N (x^2 + 1)^2} dx   The SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N (x^2 + 1)^2} dx   The SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N (x^2 + 1)^2} dx   The SABATTERON \frac{1}{2x^2} - \frac{1}{4\pi N (x^2 + 1)^2} dx $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{l} & \sum_{i=1}^{Q} \left[ \left( \hat{U}_{i} \hat{U}_{i} \hat{U}_{i} \hat{U}_{i} + \frac{\xi_{i} \xi_{i}}{1 - \xi_{i}} - \frac{\xi_{i} \xi_{i}}{1 - \xi_{i}} - \frac{\xi_{i} \xi_{i}}{1 - \xi_{i}} \right]_{i}^{\xi_{i}} \\ & = \frac{\xi_{i}}{\xi_{i}} \left[ \hat{U}_{i} \hat{U}_{i} \hat{U}_{i} + \frac{\xi_{i} \xi_{i}}{1 - \xi_{i}} - \frac{\xi_{i} \xi_{i}}{1 - \xi_{i}} - \frac{\xi_{i} \xi_{i}}{1 - \xi_{i}} - \frac{\xi_{i} \xi_{i}}{1 - \xi_{i}} \right] \\ & = \frac{\xi_{i}}{\xi_{i}} \left[ \hat{U}_{i} \hat{U}_{i} \hat{U}_{i} \hat{U}_{i} + \frac{\xi_{i} \xi_{i}}{1 - \xi_{i}} - \frac{\xi_{i} \xi_{i}}{1 - \xi_{i}} - \frac{\xi_{i} \xi_{i}}{1 - \xi_{i}} \right] \\ & - \frac{\xi_{i}}{1 - \xi_{i}} \left[ \hat{U}_{i} $                                                                            | 10       |
| the nar  | $\frac{1}{2} = \sum_{k=1}^{n} \frac{1}{2} \left( \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} d_{i} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{bmatrix} \frac{2\gamma}{2\xi} - \frac{1}{\xi} \sqrt{\xi} & -\frac{1}{\xi} \sqrt{\xi} & -\frac{1}{\xi} \sqrt{\xi} \\ \frac{2\gamma}{\xi} - \frac{1}{\xi} \sqrt{\xi} & -\frac{1}{\xi} \sqrt{\xi} & -\frac{1}{\xi} \sqrt{\xi} \\ \end{bmatrix} = \frac{1}{\xi} \begin{bmatrix} \frac{2\gamma}{\xi} & -\frac{1}{\xi} \sqrt{\xi} & -\frac{1}{\xi} \sqrt{\xi} \\ \frac{2\gamma}{\xi} & -\frac{1}{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \\ \frac{2\gamma}{\xi} & -\frac{1}{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \\ \frac{2\gamma}{\xi} & -\frac{1}{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \\ \frac{2\gamma}{\xi} & -\frac{1}{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \\ \frac{2\gamma}{\xi} & -\frac{1}{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} \sqrt{\xi} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 6      |
| Com Co   | $= \begin{bmatrix} \frac{1}{2} \sqrt{2} (\xi_{11})^{2} \end{bmatrix}_{n}^{0} - \int_{n}^{0} \frac{1}{2} \frac{2^{n}}{2^{n}+1} d_{1} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= \frac{1}{6} \left[ \frac{7}{2} + \frac{7}{24} \frac{1}{2} + \frac{7}{24} \frac{1}{2} + \frac{7}{24} \frac{1}{2} + \frac{7}{24} \frac{1}{2} + \frac{7}{24} \frac{1}{24} + \frac{7}{24} $ | 2        |
|          | $\frac{\partial}{\partial t} \left( \cos \theta (x_{1}) - \frac{1 + x_{2}}{2} \right) = \frac{1 + x_{2}}{1 + (\theta \theta)^{2}} \times 2 \alpha^{2} = \frac{1 + x_{2}}{2 \alpha^{2}}$ $= \frac{\partial}{\partial t} \left( \cos \theta (x_{2}) \right) = \frac{1 + x_{2}}{1 + (\theta \theta)^{2}} \times 2 \alpha^{2} = \frac{1 + x_{2}}{2 \alpha^{2}}$ $= \frac{\partial}{\partial t} \left( \cos \theta (x_{2}) \right) = \frac{1 + x_{2}}{2 \alpha^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| V. Ko    | 1.V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · 60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 14 B 15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 1 12     | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.      |
| sp. "ass | TASIN .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AQ20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 281      |
| The Man  | i the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| COm "    | · Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y Jr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2        |
| S. C.    | , ita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        |
| CB C     | 1 · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>,</u> |
| n. no.   | Created by T. Madas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120      |
| 02 402   | Created by 1. Madas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~~() <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19       |

#### (\*\*\*\*) Question 121

Determine a simplified expression, in the form  $\ln \left\lceil f(n) \right\rceil$ , for the following sum.




ici.

#### (\*\*\*\*) Question 122

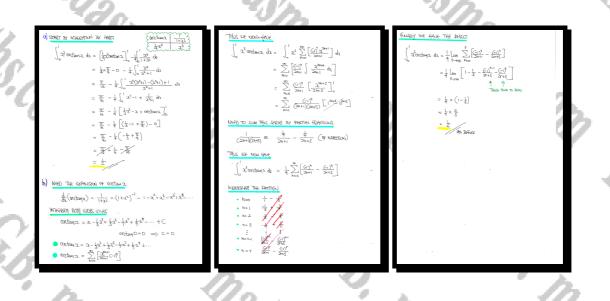
Use appropriate integration methods to find a simplified expression for

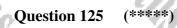
 $x \arccos\left[\frac{1-x^2}{1+x^2}\right] dx.$ I.F.C.p  $-x + (1 + x^2) \arctan x + \text{constant}$ CONTUTINALISE HIT OURO 20 lay (20) - 2 [2tay (20) a= butto  $\frac{1-2^2}{1+2^2} = \frac{1-\tan(\frac{1}{2}\theta)}{1+\tan^2(\frac{1}{2}\theta)}$  $\frac{1}{2}\theta \operatorname{hem}^2(\frac{1}{2}\theta) - \operatorname{hem}(\frac{1}{2}\theta) + \frac{1}{2}\theta + C$ d&={sec^(30) d0 d&={[1+tay(30]d0]  $\frac{1}{2}\Theta\left(1+\tan^{2}(\pm\theta)\right)-\tan(\pm\theta)+C$ maths, \_ <u>tan²(to)</u> se?(to) a = tony ±0 retoma = ±0  $(a_{2})_{2\omega} (\underline{a_{2}})_{2\omega} - (\underline{a_{2}})_{2\omega} = (a_{2})_{2\omega} (\underline{a_{2}})_{2\omega} = (\underline{a_{2}})_{2\omega} (\underline{a_{2}})$  $= \omega \hat{c}(\underline{1}0) - Sw^{2}(\underline{1}0)$  $= \left[ \operatorname{ontours} \left[ \left[ 1 + \lambda^{2} \right] - \alpha + C \right] \right]$ (1+22) arctime +C TEANSFORMING. THE INTERRAL WE HAVE  $\int 3 \arccos\left(\frac{1-\chi^2}{1+\chi^2}\right) dx = \int -4\omega_1\left(\frac{1}{2}\theta\right) \arccos\left(\omega_2\theta\right) \left[\frac{1}{2}Se_1^2\left(\frac{1}{2}\theta\right) dx\right]$ = (to bulle)sec2(to) do LATION BY PARTS 120 buy(20) Set (20) puil (to)  $= \frac{1}{2} \Theta h u^{2}(\frac{1}{2} \Theta) - \int \frac{1}{2} h u^{2}(\frac{1}{2} \Theta) d\Theta$ I.C.B. =  $\frac{1}{2}\theta \log^2(\frac{1}{2}\theta) - \frac{1}{2}\int 2\theta \log^2(\frac{1}{2}\theta) d\theta$ nadasn 2017 20 I.F.C.B. I.V.G. I.F.G.B madası



#### Question 124 (\*\*\*\*\*)

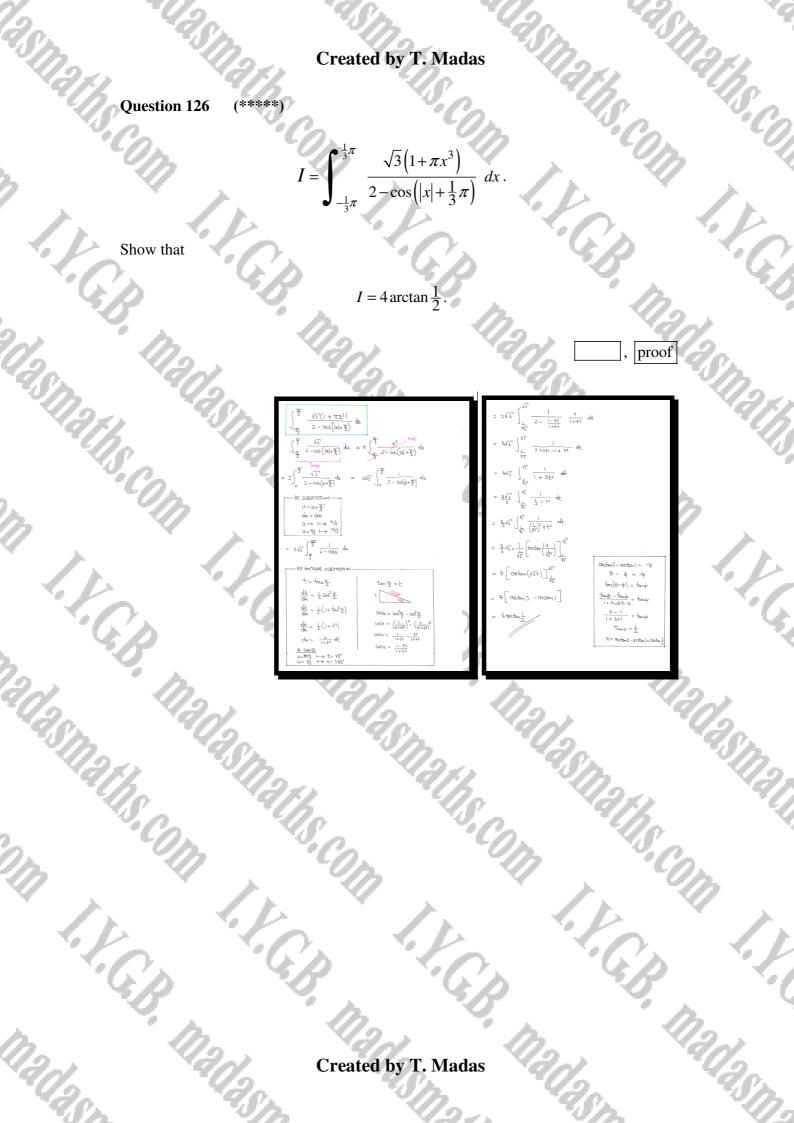
P.C.P.


a) Use an appropriate integration method to evaluate the following integral.


 $x^3 \arctan x \, dx$ .

**b)** Obtain an infinite series expansion for  $\arctan x$  and use this series expansion to verify the answer obtained for the above integral in part (a).

 $\frac{1}{6}$ 


[you may assume that integration and summation commute]





Find the exact value of





#### Question 127 (\*\*\*\*\*)

By expressing the integrand in the form  $\operatorname{sech}^2 x f(\tanh x)$ , or otherwise, find the value of the following integral.

•  $\frac{1}{2} \ln \frac{5}{3}$ 1.Y.G.B  $\sqrt{2}$  sech x dx.  $\sqrt[4]{\sinh 2x \cosh x} - \sqrt[4]{2 \sinh^3 x}$  $\mathbf{J}_0$ ], 2 £<sup>l</sup>n <del>3</del> √2sech x  $\operatorname{sed}^{2}_{2}(\operatorname{tarha})^{\frac{1}{2}}(1-(\operatorname{tarha})^{\frac{1}{2}})^{-2} dx$ = [ € - (tanka)\*]  $\frac{2^{\frac{1}{2}(\operatorname{sech} 2)^{\frac{1}{2}}}{(\operatorname{cos})^{\frac{1}{2}}} = (2 \operatorname{sech}^{\frac{1}{2}})^{\frac{1}{2}} dx$  $\Rightarrow 1 = \int \frac{\frac{1}{2} h_{1}^{2}}{\frac{1}{(2syl)}}$  $\frac{d}{d\lambda} \left[ \left[ 1 - (tauba)^{\frac{1}{2}} \right]^{-1} \right] = - \left[ 1 - (tuuba)^{\frac{1}{2}} \right]^{-\frac{1}{2}} \left[ -\frac{1}{2} (tauba)^{\frac{1}{2}} x \operatorname{stel}_{\lambda}^{-1} \right]^{\frac{1}{2}}$ + 1/2 stdiz (tauha) 2 [ 1 - (tauha)2] 2  $\frac{1}{2^{\frac{1}{2}}(\operatorname{seck} x)^{\frac{1}{2}}}$ ⇒I= ( →I = (  $\operatorname{tarm}\left(\frac{1}{2}|h_{\frac{2}{2}}\right) = -\frac{e^{\ln\frac{2}{2}}-1}{e^{\ln\frac{2}{2}}+1}$ tandy (zhuž) =  $\frac{s-2}{\frac{s}{2}+1} = \frac{1-\frac{s}{2}}{1+\frac{s}{2}}$  $\implies \boxed{ = \int_{0}^{\frac{1}{2} \ln \frac{1}{2}} \frac{Sech_{2}}{(\tan h_{2})^{\frac{1}{2}} - (\tan h_{2})^{\frac{1}{2}}} ]^{2} dt}$  $= \int_{0}^{\frac{1}{2}h\frac{\pi}{2}} \frac{sch^{2}x}{(tanh_{2})^{\frac{1}{2}} - (tanh_{2})^{\frac{1}{2}}} dx$ · THTURNING TO THE  $= 2 \left[ \frac{1}{1-\sqrt{2}} - \frac{1}{1-0} \right]$  $\rightarrow I = \int_{1}^{2h_{3}^{2}} \frac{sech^{4}x}{(tenh_{3})^{4}} \int_{1}^{1}$ tha) 1/2 da 1+ F.G.B. 2112.51 200 I.C.B. I.C.B. Inadası Created by T. Madas

#### (\*\*\*\*) Question 128

1.K.G.

.C.

Ka,

Use appropriate integration techniques to show that

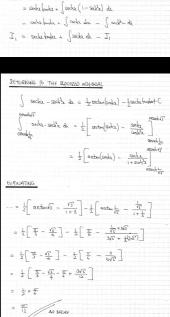
 $\operatorname{arsinh}\sqrt{3}$ 

 $\operatorname{sech} x(1 - \operatorname{sech} x) dx = \frac{\pi}{12}$ 

arsinh $\frac{1}{\sqrt{3}}$ 

| $\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Secha = Lacl                        | $= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} - \frac{1}{2} \cos \theta  d\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{cccc} & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - seche turbe de - 24020            | F 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $= \int_{\overline{x}}^{\overline{x}} \frac{\sec \lambda_{1} = \cos \lambda_{2}}{\sin \lambda_{2} - \sin \lambda_{2}} = \int_{\overline{x}}^{\overline{x}} \frac{1}{\sin \lambda_{2}} \frac{1}{\sin \lambda$                                                                                                                                                                                                                                          | da = <u>eruð</u> dð<br>sochetanha   | = 20 - ± SM20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FOR THE WHITS                       | = (= - +) - (= - ++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccc} 1-66c=1-6kcze\\ 0 & 0 & 0 & 25e=1\\ 0 & 1-6kcze\\ 0 & 0 & 0 & 0 & 1-6kcze\\ 0 & 0 & 0 & 0 & 0 & 1-6kcze\\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ⇒secha = cos θ                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{rcl} \textbf{H} = 1 & \textbf{A} \textbf{B} \textbf{A} \textbf{C} \\ \textbf{H} = \textbf{A} \textbf{A} \textbf{A} \textbf{A} \\ \textbf{H} = \textbf{A} \textbf{H} \\ \textbf{H} = \textbf{A} \\ \textbf{H} \\ \textbf{H} = \textbf{A} \\ \textbf{H} = \textbf{A} \\ \textbf{H} = \textbf{A} \\ \textbf{H} \\ \textbf{H} = \textbf{H} \\ \textbf{H} = \textbf{H} \\ \textbf{H} = \textbf{H} \\ \textbf{H} = \textbf{H} \\ \textbf{H} \textbf{H} \\ \textbf{H} = \textbf{H} \textbf{H} \\ \textbf{H} = \textbf{H} \textbf{H} \\ \textbf{H} \textbf{H} \textbf{H} \\ \textbf{H} \textbf{H} \textbf{H} \textbf{H} \textbf{H} \textbf{H} \textbf{H} \textbf{H}$                                                                                                                                                                                                                                                                                                                                                                                                                                     | ⇒ Coshiz = Sec0                     | = 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{c} = \int_{\overline{x}}^{\overline{x}} \frac{1 - \frac{1 - \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2}}} & \Rightarrow sub_{\overline{x}}^{2} = \frac{1 + i\theta}{1 + \theta} \\ \Rightarrow + sub_{\overline{x}} = \frac{1}{2} \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2}} & \Rightarrow sub_{\overline{x}} = \frac{1}{2} \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} & \Rightarrow sub_{\overline{x}} = \frac{1}{2} \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} & \Rightarrow sub_{\overline{x}} = \frac{1}{2} \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}}{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}} \frac{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}} \frac{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}} \frac{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}} \frac{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}} \frac{1 + \frac{1}{2} \sqrt{2}} \frac{1 + \frac{1}{2} \sqrt{2}} \\ = \int_{\overline{x}}^{\overline{x}} \frac{1 + \frac{1}{2} \sqrt{2}} \frac{1 + \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Rightarrow calar = sc^2 \theta$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-85e = 1-5kou⇔                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | METHOD TWO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $I_{i} = \int \frac{h_{i}(x_{i} \times x_{i})}{h_{i}(x_{i} \times x_{i})} \frac{h_{i}(x_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =+SiMha =+ for 0                    | WORK EACH INDEFINITE INTEGRAL SPANDATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | I = Secha de = Secha sedia da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $= \int_{\overline{\Delta}}^{\overline{\Delta}} (1 - \operatorname{sech}_{\Delta} \frac{1}{2} \operatorname{sech}_{\Delta} - \frac{1}{2} \operatorname{sech}_{\Delta} \operatorname{sech}_{\Delta} \frac{1}{2} = \frac{1}{2} \operatorname{sech}_{\Delta} \operatorname{sech}_{\Delta} \frac{1}{2} sec$ | → 9 <u>= %</u>                      | = sechalanhu + [ secha fauh3. da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| = tube = tube - certatudar - fre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | = sechz burkz + ] sechz (1-sechiz) dz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $=\int_{\pi}^{\overline{F}} (1-\cos^2\theta)^2 \sin^2\theta  d\theta \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | - architemphan of contra da - for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T' = 260726MG + 2201507 - T'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | T - alle fort & T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | $T^{1} = \operatorname{sechstandist} T^{2} \operatorname{sechstandist} T^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | RETURNING TO THE REPURED INTEGRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DETURNING TO THE ADURED WITGARL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2T, = schabula + Jacks de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4).                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - + - store puntor + J steam at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a state to be an independent of | ∫ secha -sechã da = ±ontan(unho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | $\begin{array}{l} 8640e - 4aberd - 4aberd - 4baberd - 8baberd - 8ba$ |

J soche - sechte de = J seche de - J sechte de = [seehz dz - [zseehz funkz + z]seekz dz =  $\frac{1}{2}\int$ secha de  $-\frac{1}{2}$ secha tanha NERT WE NEED Seetha da


Iz = Jacdra da « Jacobra da « Jacobra da

= <u>J</u> <u>codes</u> de = ...

 $\frac{1000}{100} \text{ BY INSPECTION} \text{ As } \frac{d}{da} \left( \arctan(anha) \right) = \frac{1}{1+anha} \times \cosh(anha) = \frac{1}{1+anha} \times \cosh(anha)$ ок 4 ливятнополь и= шира orctau(smha) +C

= J sech a da = andou(surha) + C

N.C.



proof

1+

#### Question 129 (\*\*\*\*\*)

The function f is defined as.

 $f(x) = \arctan x$ ,  $x \in \left(-\frac{1}{2}\pi, \frac{1}{2}\pi\right)$ .

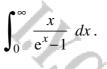
- **a**) Find a simplified expression for  $\int f(x) dx$ .
- **b**) By considering the tangent compound angle identity, or otherwise, find an exact simplified value for

 $\int_{1}^{2} \arctan\left[\frac{1}{x^2 - 3x + 3}\right] dx.$ 

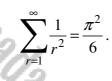
| <u></u>                                                                                                                    |                | 100                                            |
|----------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------|
| a) <u>fartawa da 184 subs</u>                                                                                              | Lonnit         | b= arctanz                                     |
| _ ] 0 sezo do                                                                                                              |                | dat = zero qo                                  |
| NOW PROCEED BY INTHERAT                                                                                                    | ICON BY PARTS  | -                                              |
| - 0-teur0-[teur0 d0<br>= 0teur0-[h]sec0[t                                                                                  | C              | $\cos_{1}\theta = \frac{1}{\sqrt{2^{2}t^{2}}}$ |
| + ) Qzaijh+ QmeshQ =                                                                                                       | - C            | tano sito                                      |
| $= \operatorname{acarctany} + \ln\left(\frac{1}{\sqrt{3^2+1}}\right)$ $= \operatorname{acarctany} - \frac{1}{2}\ln(2^2+1)$ |                |                                                |
| ALTHENIATULE BY PARTS & DE                                                                                                 |                | . [ 1 x arcture de                             |
| (and)                                                                                                                      | = acristians - |                                                |
|                                                                                                                            | = rantay2 - 1  | 2 <u>1+22</u> αλ<br>4<br>1660607702)           |
|                                                                                                                            | = zantanz-\$   |                                                |
|                                                                                                                            |                |                                                |
|                                                                                                                            |                |                                                |

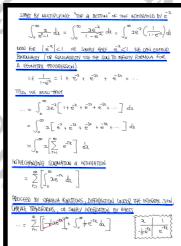
b) (1.11) THE 4-12 Provide  $\frac{1}{2^{3}-3x+3} = \frac{1}{(2^{3}-3x+3)} + \frac{$ 

 $\pi - \ln 2$ 


, x arctan  $x - \frac{1}{2} \ln (x^2 + 1)$ 

#### Question 130 (\*\*\*\*\*)


K.C.


I.C.B.

Use appropriate integration techniques to find an exact simplified value for the following improper integral.



You may assume without proof that







ŀ.G.p.

 $\frac{\pi^2}{6}$ 

1+

KC.

#### Question 131 (\*\*\*\*\*)

The positive solution of the quadratic equation  $x^2 - x - 1 = 0$  is denoted by  $\phi$ , and is commonly known as the golden section or golden number.

This implies that  $\phi^2 - \phi - 1 = 0$ ,  $\phi = \frac{1}{2} (1 + \sqrt{5}) \approx 1.62$ .

a) Show, with a detailed method, that

$$\frac{d}{dx}\left[x\left(x^{\phi}+1\right)^{1-\phi}\right] = \left(x^{\phi}+1\right)^{-\phi}.$$

**b**) Show, with full justification, that

$$\lim_{x \to \infty} \left[ x \left( x^{\phi} + 1 \right)^{1-\phi} \right] = 1$$

c) Show further that

$$1 - \frac{1}{\sqrt[\phi]{2}} = \int_{1}^{\infty} \frac{1}{\left(x^{\phi} + 1\right)^{\phi}} dx.$$

3



PLOCEED AS ROLLOWS  $\left| \prod_{j \neq 0} \left[ \frac{(\mathcal{T}_{\phi^{+1}})_{\phi^{-1}}}{\mathcal{T}} \right] = \left| \prod_{j \neq 0} \left[ \frac{\mathcal{T}_{\phi^{-1}}}{\mathcal{T}} \left( 1 + \mathcal{T}_{\phi^{-1}} \right) \right]_{\phi^{-1}} \right]$  $= \lim_{X \to 00} \left[ \frac{\mathcal{X}}{\mathcal{Q}} \left( (+ \mathcal{X}^{\phi})^{\phi_{-1}} \right) \right] = \lim_{X \to \infty} \left[ \frac{\mathcal{X}}{\mathcal{Q}} \left( (+ \frac{1}{X^{\phi}})^{\phi_{-1}} \right) \right]$  $\simeq \lim_{\lambda \to \infty} \left[ \frac{1}{(1+\frac{1}{\lambda^{*}})^{\frac{1}{2}}} - \frac{1}{(1+\frac{1}{\lambda^{*}} - \nu)} \right]$ C) FINALLY THE NOTICAL  $\int_{0}^{\infty} \frac{(1-\phi)^{2}}{(2^{0}+1)^{2}} dx \quad = \cdots \quad \text{page}(a) = \left[ -2(2^{0}+1)^{1-\phi} \right]_{0}^{\infty}$  $= \frac{\chi(z_{i+1})_{i+1}}{\chi_{z_{i+1}}} \left( \begin{array}{c} \sqrt{z_{i+1}} \\ - \sqrt{z_{i+1}} \\ - \sqrt{z_{i+1}} \end{array} \right)_{i+1} = 1 - 1 \left( 1_{i+1} \right)_{i+1}$ PARTIN  $= 1 - (1^{\phi} + 1)^{1-\phi} = 1 - (1+1)^{1-\phi} = 1 - 2^{1-\phi}$  $\begin{array}{rcl} \underbrace{NOW} & SINCE & \varphi^2 - \varphi - | = 0 & \Longrightarrow & \varphi^2 - \varphi = | & & & \\ & & \Rightarrow & \varphi - 1 = \frac{1}{\varphi} & & & \\ & & \Rightarrow & 1 - \varphi = -\frac{1}{\varphi} & & \\ \end{array}$ HANKE WE HAVE 1- 1/2

proof

1+

Question 132 (\*\*\*\*\*)

It is given that

• 
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{1}{4}\pi$$
  
•  $1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \dots = \frac{1}{12}\pi^2$   
•  $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2$ 

Assuming the following integral converges find its exact value.

 $\int_0^1 (\ln x) (\arctan x) \, dx \, .$ 

[you may assume that integration and summation commute]

| Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -00              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| TO LUMMARY THAT THE ADDREAM AND A THAT THE THE ADDREAM OF THE ADDREAM AND A THAT ADDREAM AND ADDREAM AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>soum</u><br>J |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CETH-            |
| $ \underbrace{ \begin{array}{l} \underbrace{ V(\alpha) \ \ \ } \left[ \sum_{j=0}^{n} (-j_{\alpha}^{\alpha}, j_{\alpha}^{\alpha}) + \sum_{j=0}^{n} (-j_{\alpha}^{\alpha}, j_{\alpha}) + \sum_{j$ | مر<br>مراجع      |
| $\begin{array}{c c} \underbrace{\left  \log(2M_{12N}) & \overline{\mathcal{H}} \mathcal{H} \left( \log(2M_{12N}) & \overline{\mathcal{H}} \right) \\ & \underbrace{\left  \frac{1}{2} \frac{1}{2} & $                                                                                                                                                                                                                                                                                                                                                                    | t                |

| SUUMPERAND SO FRE                                                                                                                                                                                                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\int_{0}^{0} \left(\operatorname{urd}^{(p(\ell))}(n\ell)\right) d\ell = \sum_{\infty}^{N=0} \left[\frac{(2m)(5m)2}{(-1)^{N+1}}\right] = -\frac{4}{\Gamma} \sum_{\infty}^{N=0} \left[\frac{(2m)(2m+1)2}{(-1)^{N}}\right]$ |  |
| CRETIFIN SOULH FARTIAL FRACTIONS                                                                                                                                                                                          |  |
| $\frac{1}{(n_{H})^{2}(2m_{I})} \equiv \frac{1}{(2m_{I})^{2}} + \frac{2}{(2m_{I})^{2}} + \frac{2}{(2m_{I})^{2}} + \frac{2}{(2m_{I})^{2}}$                                                                                  |  |
| $ \left\{ 1 \equiv A(2m_{1}) + B(2m_{1})(2m_{1}) + C(2m_{1})^{2} \right\} $                                                                                                                                               |  |
| • [f $\eta_{n-1}$ • [f $\eta_{n-\frac{1}{2}}$ • [f $\eta_{n-2}$<br>$  \pi - A$ $  = \frac{1}{2}C$ $  \pi + 1 + 3 + C$<br>A = -1 $C = 4$ $  n - 1 + 8 + 14B = -2$                                                          |  |
| THIS WE NOW HAVE                                                                                                                                                                                                          |  |
| $\int_{0}^{1} (\operatorname{arthau}_{2}) (l_{M}) dx = -\frac{1}{4} \sum_{h=0}^{\infty} \left[ \frac{-(-1)^{h}}{(h+1)^{2}} + \frac{-2(-1)^{h}}{(h+1)} + \frac{4(-1)^{h}}{2h+1} \right]$                                   |  |
| $= \frac{4}{\Gamma} \sum_{m=0}^{N-0} \frac{(\mu+1)_{n}}{(-1)_{n}} + \frac{7}{\Gamma} \sum_{m=0}^{N-0} \frac{(\mu+1)_{n}}{(-1)_{n}} - \sum_{m=0}^{N-0} \frac{(\mu+1)_{n}}{(-1)_{n}}$                                       |  |
| LOCUNG AT THE REMUZE GUE                                                                                                                                                                                                  |  |
| $1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{1} + \frac{1}{2} - \dots = \sum_{\substack{n=0 \\ n \neq n}}^{\infty} \frac{\zeta_{1} J^{n}}{2n n!} = \frac{1}{4} \overline{1}$                                                 |  |
| $1 - \frac{1}{4} + \frac{1}{2} - \frac{1}{16} + \frac{1}{26} - \dots = \sum_{k=0}^{26} \frac{(2k)^k}{(2m)!^2} = \frac{\pi^2}{12}$                                                                                         |  |
| 1-2+5- ++5 e = (-1) e h2                                                                                                                                                                                                  |  |
| Truster we have                                                                                                                                                                                                           |  |
| $\int_{0}^{1} (\operatorname{ordzer}_{2})(\operatorname{bac}) d\alpha = \frac{1}{4} (\frac{\pi^{2}}{12}) + \frac{1}{2} \ln 2 - \frac{1}{4} \Pi$                                                                           |  |
| = =====================================                                                                                                                                                                                   |  |
| $= \frac{1}{2\pi} (\sqrt{3} - 12\pi + 24 \ln 2)$                                                                                                                                                                          |  |

1

48

E.B.

 $\pi^2 - 12\pi + 24 \ln 2$ 

Question 133 (\*\*\*\*\*)

Find the value of

 $\frac{\sin\frac{9}{2}x}{\sin\frac{1}{2}x} dx.$  $\frac{1}{\pi}$ 

You may assume that the integrand is continuous at x = 0.

| $\frac{1}{\pi}\int_{-\pi}^{\pi}\frac{s_{1n}\frac{q}{2x}}{s_{1n}\frac{1}{2x}}dz \simeq \frac{z}{\pi}\int_{0}^{\pi}\frac{s_{1n}\frac{q}{2x}}{s_{1n}\frac{1}{2x}}dz$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NOW LET I BE THE ABOUT INTERRAL AND PROCEED BY                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| A SUBSITICTION                                                                                                                                                    | B= T-z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                   | $q\theta = -q\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                   | π ← → 0<br>0 ← → π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 0                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $= I = \frac{2}{\pi} \int_{\pi}$                                                                                                                                  | $\frac{\omega_{\mu}\left(\frac{p}{2}\left(\theta-\pi\right)\frac{p}{2}\right)}{\omega_{\mu}\left(1-\frac{p}{2}\right)\left(1-\frac{p}{2}\right)}\left(1-\frac{p}{2}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $\Rightarrow I = \frac{2}{\pi} \int_{0}^{\pi}$                                                                                                                    | $\frac{Sim}{2} \left( \frac{2\pi}{2} - \frac{9}{2} \right) \frac{1}{2} \frac$ |  |
| ⇒I= ₹]                                                                                                                                                            | SIN (Z-0) 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $\Rightarrow l = \frac{2}{\pi} \int_{0}^{\pi}$                                                                                                                    | $\frac{d x}{d x} = \frac{d x}{d x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| REAR RANGING THE T                                                                                                                                                | ABOUE OPUATION AS FOLLOWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                   | $\frac{\sin\frac{4}{2}x}{\sin\frac{4}{2}x} dx + \frac{2}{\pi} \int_{0}^{\pi} \frac{\omega x^{\frac{4}{2}x}}{\omega x^{\frac{4}{2}x}} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

ADDING THE ITEM IN THE IMEROAND HIT WARD , NAODS  $I = \frac{1}{\pi} \int_{-\infty}^{\pi} \frac{sm_{2}^{2}x\cos_{2}x + \cos_{2}x\sin_{2}x}{sm_{2}^{2}\cos_{2}x + \cos_{2}x\sin_{2}x} dx$  $I = \frac{1}{\pi} \int_{0}^{\pi} \frac{\sin\left(\frac{\pi}{2}x + \frac{1}{2}x\right)}{\frac{1}{2}\left(2\sin\frac{\pi}{2}x + \frac{1}{2}x\right)} dx$  $I = \frac{1}{\pi} \int_{0}^{\pi} \frac{\Omega n S x}{\frac{1}{2} sm x} dt$  $J = \frac{2}{\pi} \int_{0}^{\pi} \frac{\sin 5x}{\sin x} dx$ NORT BY COMPLEX NUMBRES (OR + REDUCTION FORMULA) cos0+isin0 = C+is => (cas0+ism0)= (C+is)=  $\Rightarrow SIN 50 = 5C^{2} + 5iC^{2} + 5i^{2}$   $\Rightarrow SIN 50 = 5C^{2} + 5iC^{2} + 5i^{2}$ =  $5 \not\leq (1 - \not\leq^2)^2 - 10 \not\leq^4 (1 - \not\leq^2) + \not\leq^4$ = 55 (1-252+54) - 1052 + 1053 + 55 = 5\$ - 10\$ + 5\$ + 10\$ +10\$ +10\$ +5" = 16\$ - 20\$ + 5\$ = 16510 - 20510 + 55mE

RETORNING TO THE INTHERAK WE OBTITUD 1 (65145a - 205147a + Sema de I = 2 0 Sma, ₩ſ 169112 - 20915 + 5 da  $I = \frac{2}{\pi} \int_{0}^{1} \frac{1}{16} \left( \frac{1}{2} - \frac{1}{2} \cos^2 \theta - 2\theta (\frac{1}{2} - \frac{1}{2} \cos^2 \theta) + 5 d\theta \right)$ 4-80022+4022-10 100022+5 da T =  $-1 + 2\log_2 + \frac{1}{2}\left(\frac{1}{2} + \frac{1}{2}\log_2 \frac{1}{2}\right) dx$ ₹∫. 1 + 26052 + 2100cla da. Γ. 2 1 02

22

The Com

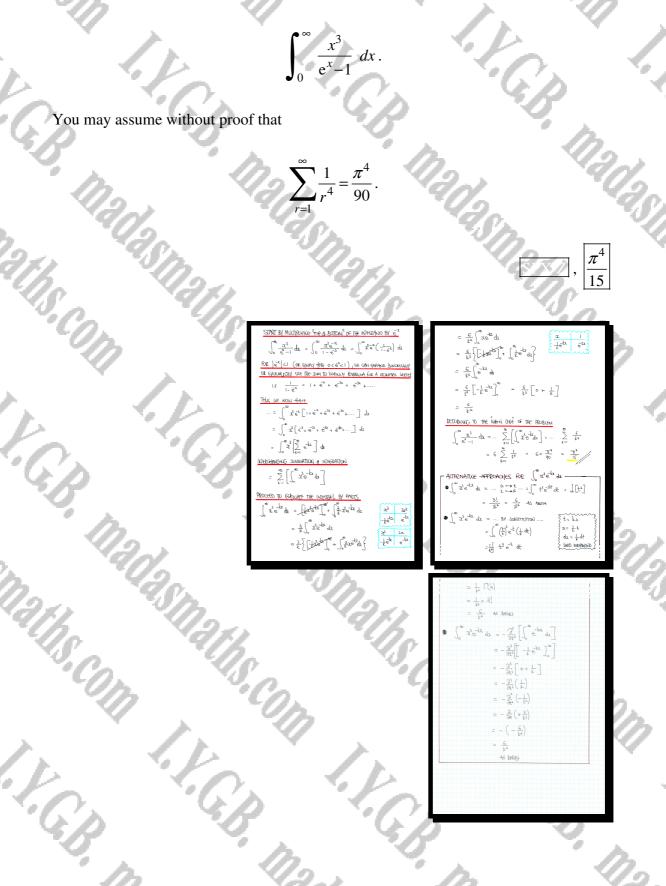
\_,2

í.

1+

2028m

hs.com


Created by T. Madas

I.Y.G.B.

I.C.B

#### Question 134 (\*\*\*\*\*)

Use appropriate integration techniques to find an exact simplified value for the following improper integral.



11+

#### (\*\*\*\*) Question 135

The function f is defined as

$$f(x) = \arctan\left(\frac{1}{2x^2}\right), \quad x \in (-\infty, \infty).$$

- **a**) Find a simplified expression for f'(x)
- **b**) Show that  $\lim_{x \to \pm \infty} \left[ x f(x) \right] = 0$ .

c) Determine the value of  $\lim_{x \to \pm \infty} \left| \ln \left[ \frac{2x^2 - 2x + 1}{2x^2 + 2x + 1} \right] \right|$ 

**d**) Hence find the value of  $\int_{-\infty} f(x) dx$ .

lim

 $x \rightarrow \pm \infty$ 



 $\frac{\operatorname{arctorn}(\frac{1}{2\lambda^2})}{\frac{1}{\lambda}}$  $\begin{array}{c} \left\lfloor \lim_{\lambda \to \infty} \left\lfloor \frac{-\frac{4\lambda^2}{4\lambda^2 + 1}}{-\frac{1}{\lambda^2}} \right\rfloor^{4-\frac{1}{2}} \\ \end{array} \right| = \left\lfloor \lim_{\lambda \to \infty} \left\lfloor \frac{4\lambda^2}{4t^2 + 1} \right\rfloor \end{array}$  $= \lim_{\lambda \to \pm \infty} \left[ \frac{4}{4 + \frac{1}{2\lambda}} \right] = \frac{0}{4} = 0$ 

 $\lim_{n \to \pm \infty} \left[ \ln \left[ \frac{2t^2 - 2x + 1}{2t^2 + 2x + 1} \right] \right] = \lim_{x \to \pm \infty} \left[ \ln \left[ \frac{2 - \frac{2}{3x} + \frac{1}{3^2}}{2 + \frac{2}{3x} + \frac{1}{3^2}} \right] \right]$ 

I.C.B.

.K.C.

 $\eta\left(\frac{1}{2\eta^2}\right) d_{\lambda}$ 0, f(0)=E  $y(dz) = \int -\frac{4y^2}{4x^2+1} dz$  $\int \frac{4a^2}{4x^4+1}$ NOW BY THE SOPHIE GROUN  $a^{4}_{i} + 4b^{4}_{i} \equiv (a^{2}_{i} + 2b^{2}_{i} + 2ab)(a^{2}_{i} + 2b^{2}_{i} - 2ab)$ OR BY COMPLETING THE SHOULD  $(\eta_{x}^{4} + 1) = ((\eta_{x}^{4} + \eta_{x}^{2} + 1) - \eta_{x}^{2} = (\eta_{x}^{2} + 1)^{2} - (\eta_{x}^{2})^{2}$  $= (2\lambda^2 + 1 - 2\lambda)(2\lambda^2 + 1 + 2\lambda)$ BY LOOKLANS AT THE LOTING uic luliit of PMET (E) of SLOPECTING Here  $(2a^2-2a+1)(2a^2+2a+1) =$  $\dots = \int_{-\infty}^{\infty} \frac{l_0^2}{4\lambda^4 + 1} \, d\lambda = \int_{-\infty}^{\infty} \frac{4\lambda^2}{(2l_-^4 - 2l_+)(2l_+^4 + 2l_+)} \, d\lambda$ 

 $2x^2 - 2x + 1$ 

 $2x^2 + 2x + 1$ 

: ()

FRACTIONS NEXT

 $\frac{4a^2}{(2a^2-2a+i)(2a^2+2a+i)} \equiv \frac{-\sqrt{a}+B}{2a^2-2a+i} + \frac{Cx+D}{2a^2+2a+i}$ 

 $4\chi^{2} \equiv 2A\chi^{2} + 2A\chi^{2} + A\chi$  $+ 2B\chi^{2} + 2B\lambda + B$  $2C\chi^{2} - 2C\chi^{2} + C\lambda$  $+ 2D\chi^{2} - 2D\lambda + D$ 

 $= (a + z - a + A) \leq 2 c + D$ 

RETURNING TO THE INSTERIOAL  $\dots = \int_{-\infty}^{\infty} \frac{x}{2k^2 - 2k + 1} - \frac{x}{3k^2 + 2k + 1} dk.$  $= \int_{-\infty}^{\infty} \frac{x}{2^{\lambda} - 2x + 1} d\lambda - \int_{-\infty}^{\infty} \frac{x}{2^{\lambda} + 2x + 1} d\lambda$ 

 $\frac{2(A-C)=4}{A-C=2}$ 

 $4x^2 \equiv (A_{a} + B)(2x^2 + 2x + 1) + (Cx + D)(2x^2 - 2x + 1)$ 

 $4x^{2} = 2(A+C)x^{3}+2(A+B-C+B)x^{4}+(A+2B+C-2B)x+(B+D)$ 

B=D=0

: A=1 8 [C=-1]

 $= \frac{1}{4} \int_{-\infty}^{\infty} \frac{(d_{2}-2)+2}{2^{2}-2x+1} dt - \frac{1}{4} \int_{-\infty}^{\infty} \frac{(d_{2}+2)-2}{2x^{4}+2x+1} dt$  $= \frac{1}{4} \int_{-\infty}^{\infty} \frac{4k^2}{2k^2 - 2k + 1} \, dk - \frac{1}{4} \int_{-\infty}^{\infty} \frac{4k + 2}{2k^2 + 2k + 1} \, dk + \int_{-\infty}^{\infty} \frac{4}{2k^2 - 2k + 1} \, dk$  $+\int \frac{1}{2t^2+2t+1} dt$  $= \left[\frac{1}{4}\ln(2t^2-2t+1) - \frac{1}{4}\ln(2t^2+2t+1)\right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{t}{4t^2-3t+2} dt$  $+ \int_{-\frac{1}{4x^2+9x+2}}^{\frac{1}{4x^2+9x+2}} dx$  $= \left[\frac{1}{4} \left( h_{1} \left[ \frac{2\lambda_{1}}{2\lambda_{2}+2\lambda_{1}+1} \right] \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{(2\lambda_{1}+1)^{\lambda}+1} d\lambda + \int_{-\infty}^{\infty} \frac{1}{(2\lambda_{1}+1)^{\lambda}+1} d\lambda \right]$ WHERE ALS , di [ Dictor (21.51)] = 2.4.13+1

2017

madasn.

1+

 $f(x) dx = \frac{1}{2}\pi$ 

BGT B+D=0

I.C.B.

- tay (20+1) aptroy (20-1) aptroy (20+1) 늘 [ 포+포+포 + 포 ]

#### Question 136 (\*\*\*\*\*)

A family of functions  $f_n(x)$ , where n = 0, 1, 2, 3, 4, ..., satisfies the equation

$$\sum_{n=0}^{\infty} \left[ t^n f_n(x) \right] = \left( 1 - 2xt + t^2 \right)^{-\frac{1}{2}}$$

By integrating both sides of the above equation with respect to t, from 0 to 1, show that

 $\sum_{n=0}^{\infty} \left[ \frac{f_n(\cos \theta)}{n+1} \right] = \ln \left[ 1 + \operatorname{cosec} \left( \frac{1}{2} \theta \right) \right].$ 

You may assume in this question that integration and summation commute.

 $= \sum_{n=1}^{\infty} \frac{\int_{V} (ux)}{n+1} = \left[ \frac{1}{\sqrt{2}} \int_{V} \frac{u}{\sqrt{2}} \int_{V}$  $\sum_{n=1}^{\infty} t_{n}^{2}(x) = (1-2xt+t^{2})^{\frac{1}{2}}$ SET 2 = 650  $g_{2n-1-n} \left[ \left[ \frac{\partial g_{nn1} + n}{\partial m^2} \frac{1}{2} + \frac{1}{2} \right] s \right] = \frac{(\theta_{2n})}{1+n} \frac{1}{2} \overset{\infty}{=} \underbrace{ =}$  $\sum_{k=n}^{\infty} -t^{k} \oint_{u_{i}} (wsb) = -\frac{l}{\sqrt{l-2twsb+t^{2}}}$  $\int_{-\infty}^{\infty} \frac{dy}{dx} \int_{-\infty}^{\infty} \frac{dy}{dx} - \int_{-\infty}^{\infty} \frac{dy}{dx} - \int_{-\infty}^{\infty} \frac{dy}{dx} - \int_{-\infty}^{\infty} \frac{dy}{dx} = \frac{(\partial g_{\alpha})_{\alpha} f_{\alpha}}{1 + 4} \xrightarrow{\infty}_{-\infty} \frac{\partial g_{\alpha}}{\partial x} = \frac{\partial g_{\alpha}}{\partial x} + \frac{\partial g_{\alpha}}{\partial x} = \frac{\partial g_{\alpha}}{\partial x} + \frac{\partial g_{\alpha}}{\partial x} + \frac{\partial g_{\alpha}}{\partial x} + \frac{\partial g_{\alpha}}{\partial x} + \frac{\partial g_{\alpha}}{\partial x} = \frac{\partial g_{\alpha}}{\partial x} + \frac$ INTERATE BOTH STORE OF THE EQUATION WER TO t, ROM O to 1  $\left[\frac{\partial \omega_{-1}}{\partial mz}\right]_{ml} = \left[\frac{\partial \left[\frac{\partial \omega_{-1}}{\partial mz} + \left(\frac{\partial \omega_{-1}}{\partial mz} - \frac{1}{\partial mz}\right)_{ml}\right]_{ml} = \frac{\partial \left[\frac{\partial \omega_{-1}}{\partial mz}\right]_{ml}}{\partial mz} - \frac{\partial \omega_{-1}}{\partial \omega_{-1}}\right]_{ml} = \frac{\partial \left[\frac{\partial \omega_{-1}}{\partial mz}\right]_{ml}}{\partial mz} = \frac{\partial \left[\frac{\partial \omega_{-1}}{\partial mz}\right]_{ml}}{\partial mz}$  $\Longrightarrow \int_0^1 \left[ \sum_{k=0}^\infty t_i^* \oint_{k_k} (\omega \theta) \right] d\varepsilon \quad = \quad \int_0^1 \frac{1}{\sqrt{1-2\xi \cos \theta + \xi z}} d\varepsilon$  $\int_{0}^{\infty} \frac{\partial h(\log \theta)}{\partial t^{1}} = \int_{0}^{\infty} \frac{\partial h(\log \theta)}{\partial t^{1}}$  $\Longrightarrow \sum_{k=0}^{\infty} \left( \int_{\tau}^{t} (\omega \Omega) \int_{0}^{t} t^{k} \, dt \right) = \int_{0}^{1} \frac{1}{\sqrt{(t-\omega \Omega)^{2} + 1-\omega_{0}^{2} \theta^{-1}}} \, dt$  $\Rightarrow \sum_{n=1}^{\infty} \frac{l_n(\omega D)}{n+1} = l_n \left[ \frac{1-\omega D + \sqrt{2-2\omega D^2}}{1-\omega D} \right]$  $\Longrightarrow \sum_{k=0}^{\infty} \left[ \int_{\mathbb{R}^{d}} (\omega \beta) \left[ \left[ \frac{t^{(n)}}{t^{(n)}} \right]_{0}^{1} \right] = \int_{0}^{1} \frac{1}{\sqrt{(t-\omega \beta)^{2}+\omega \beta \beta}} dt$  $= \frac{\theta_{201-1}\sqrt{s}\sqrt{+(\theta_{201-1})}}{\theta_{201-1}\sqrt{s}\sqrt{-1}} = \frac{1}{1} = \frac{\theta_{201}}{\theta_{201-1}\sqrt{s}} = \frac{\theta_{201}}{\theta_{201-1}} = \frac{\theta_{201-1}}{\theta_{201-1}} = \frac{\theta_{201-1}}{\theta$  $\longrightarrow \sum_{linem}^{\infty} \frac{\frac{1}{h_{n+1}}}{h_{n+1}} - \int_{0}^{1} \frac{1}{\sqrt{(t-\log\theta^{2}+\sin^{2}\theta^{-1}})} d\theta$  $(NOW I - UOSO = I - (I - 2SIM^2H) =$  $\sqrt{1-\omega_s \theta} = \sqrt{2} \sin \frac{\theta}{2}$ =  $\frac{1}{2} \frac{1}{m^2} \frac{1}{2m^2} \frac{1}{2m^2} \frac{1}{m^2} = \frac{1}{m^2} \frac{1}{m^2} = \frac{1}{m^2} \frac{1}{m^2}$  $\Rightarrow \sum_{h=0}^{\infty} \frac{\int_{H} (log\theta)}{h+l} = h \left[ \frac{Sh^{\frac{D}{2}} + l}{Sm^{\frac{D}{2}}} \right]$  $= \int_{0}^{\infty} \frac{\partial \omega_{n+1}}{\partial \omega_{n+1}} = \int_{0}^{0} \frac{\partial \omega_{n+1}}{\partial \omega_{n+1}} dt$  $= \int_{a}^{b} \frac{1}{2} \frac{1}{2} \frac{1}{a} \frac{1}{a} \frac{1}{a} \frac{1}{a} \frac{1}{a} = \int_{a}^{b} \frac{1}{a} \frac{1}$  $\underset{\theta \neq 0}{\operatorname{dev}} = \sum_{n=0}^{\infty} \left[ \sum_{\substack{n \neq -1 \\ \theta \neq n \neq 1}} \left( \frac{\mu_n}{1 + 1} \right) d_{n(2,1)} \right] \quad = \quad \left( \frac{\partial_{n(2)} \mathcal{Y}}{\partial_{n(2,1)}} \right)_{\theta = 1}^{\infty} \underset{\theta \neq 0}{\leftarrow} \cdots \underset{\theta \neq 0}{\operatorname{dev}} \left( \frac{\partial_{n(2)} \mathcal{Y}}{\partial_{n(2,1)}} \right)_{\theta = 1}^{\infty} \left( \frac{\partial_{n(2)} \mathcal{Y}}{\partial_{n(2,1)}} \right$  $\frac{g_{20^{j-1}=j}}{g_{20^{j-1}=j}} \left[ \left[ \frac{g_{10^{j-j}=j}}{1+g_{102}^{j}} + \frac{y}{g_{102}^{j}} \right]_{M} \right] = \frac{(g_{20})_{M}}{(g_{20})_{M}} \stackrel{o}{=} \frac{g_{20^{j-1}=j}}{g_{20^{j}=j}^{j}} \stackrel{o}{\leftarrow} \frac{g_{20^{j}=j}}{g_{20^{j}=j}^{j}} \stackrel{o}{\leftarrow} \frac{g_{20^{j}=j}}{g_{20^{j}=j}^{j}} \stackrel{o}{\leftarrow} \frac{g_{20^{j}=j}}{g_{20^{j}=j}^{j}} \stackrel{o}{\leftarrow} \frac{g_{20^{j}=j}}{g_{20^{j}=j}^{j}} \stackrel{o}{\leftarrow} \frac{g_{20^{j}=j}}{g_{20^{j}=j}} \stackrel{g}{\leftarrow} \frac{g_{20^{j}=j}}{g$ 

proof