CASINGUS COM LANCER INCOM LANCER INCOM LANCER INCOM

MATRIX MATRIX INTRODUCTS INTRODUC

Question 1

The matrices A, B and C are given below in terms of the scalar constants a, b, c and d, by

 $\mathbf{A} = \begin{pmatrix} -2 & 3 \\ 1 & a \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} b & -1 \\ 2 & -4 \end{pmatrix}, \qquad \mathbf{C} = \begin{pmatrix} 1 & c \\ d & 4 \end{pmatrix}.$

Given that $\mathbf{A} + \mathbf{B} = \mathbf{C}$, find the value of a, b, c and d.

Question 2

The matrices A, B and C are given below in terms of the scalar constants a, b and c, by

 $\mathbf{A} = \begin{pmatrix} a & 2 \\ 3 & 7 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} 2 & 4 \\ b & 2 \end{pmatrix}, \qquad \mathbf{C} = \begin{pmatrix} -1 & c \\ 3 & 2 \end{pmatrix}.$

Given that $2\mathbf{A} - 3\mathbf{B} = 4\mathbf{C}$, find the value of a, b and c.

a = 1, b = -2, c = -2

a = 8, b = 3, c = 2, d = 3

 $\begin{pmatrix} -2 & 3 \\ 1 & a \end{pmatrix} + \begin{pmatrix} b & -1 \\ 2 & -4 \end{pmatrix} = \begin{pmatrix} 1 & c \\ d & 4 \end{pmatrix}$ $\begin{pmatrix} -2+b & -2 \\ 3 & a-4 \end{pmatrix} = \begin{pmatrix} 1 & c \\ d & 4 \end{pmatrix}$

C=-2 d=3

A+B=C ⇒

 $\begin{array}{l} \Im A - \Im B = \Im L \stackrel{\sim}{\Rightarrow} 2 \begin{pmatrix} a & 2 \\ 3 & 1 \end{pmatrix} - \Im \begin{pmatrix} 2 & 4 \\ b & z \end{pmatrix} = 4 \begin{pmatrix} -1 & c \\ 3 & 2 \end{pmatrix} \\ \stackrel{\sim}{\Rightarrow} \begin{pmatrix} 2a & 4 \\ 6 & 14 \end{pmatrix} - \begin{pmatrix} 6 & 12 \\ b & c \end{pmatrix} = \begin{pmatrix} -4 & 4c \\ 1a & 6 \end{pmatrix} \\ \stackrel{\sim}{\Rightarrow} \begin{pmatrix} 2a - 4 & -8 \\ (2a + 2b - 6) \end{pmatrix} = \begin{pmatrix} -a & 4c \\ (2a - 2b - 2b - 2b - 2b - 2b - 2b \end{pmatrix} \\ \stackrel{\sim}{\Rightarrow} \begin{pmatrix} 2a - 6 - 4 & -4b \\ 2a - 2 & 3b - 6 & c - -2 \\ a - 1 & b - 2 & c \end{pmatrix} \end{array}$

The com

I.C.

N.G.S.

6

Question 3

21/2SII

Multiply each of the following matrices.

I.V.C.B. Madasm I.C.B. Madasmaths.Con $\mathbf{a}) \begin{pmatrix} 4 & 5 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ b) $\begin{bmatrix} 3 & 4 \end{bmatrix}$ c) $\begin{pmatrix} 3 & 1 \\ 1 & 2 \\ 1 & 7 \end{pmatrix} \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 \end{pmatrix}$ asmaths.com $\mathbf{d}) \begin{pmatrix} 2 & 1 & 1 \\ 4 & 6 & 5 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & -1 \\ -1 & 1 \end{pmatrix}$ $\mathbf{e}) \begin{pmatrix} 4 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ I.F.G.B. **f**) $\begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 3 & -5 \end{pmatrix}$ $, \begin{bmatrix} 2 & -2 \\ 5 & -5 \end{bmatrix}, \begin{bmatrix} 18 \\ 8 \end{bmatrix}, \begin{bmatrix} 9 & -29 \\ 25 & -37 \end{bmatrix}$ $\begin{bmatrix}
19 & 13 \\
5 & 5
\end{bmatrix}, \begin{bmatrix}
-8 & 30 \\
-5 & 16
\end{bmatrix},$ $\begin{pmatrix} 4 & 5 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 19 & 13 \\ 5 & 5 \end{pmatrix}$ b) $\begin{pmatrix} -4 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} r & -4 \\ -2 & 7 \end{pmatrix} = \begin{pmatrix} -8 & 30 \\ -5 & 16 \end{pmatrix}$ om I.F.C.B. $\begin{pmatrix} 3 & 1 \\ 1 & 2 \\ 1 & 7 \end{pmatrix} \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 5 & -1 & 2 \\ 0 & 3 & -1 \\ -5 & 13 & -6 \end{pmatrix}$ $\mathbf{d} \quad \begin{pmatrix} 2 & 1 & -l \\ 4 & -\delta & -S \end{pmatrix} \begin{pmatrix} l & -l \\ 1 & -l \\ -1 & -l \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -S & -S \end{pmatrix}$ e) $\begin{pmatrix} 4 & -l \\ 2 & -l \end{pmatrix} \begin{pmatrix} z \\ z \end{pmatrix} = \begin{pmatrix} l\theta \\ \theta \end{pmatrix}$ I.Y.G.B $\begin{array}{c} (4 & 1) \\ (1 & 2) \\ (1 & 2) \\ (1 & 4) \\ (1 & 4) \\ (1 & 3 \\ 3 & -5 \\ \end{array} \begin{array}{c} (4 & 1) \\ (1 & 2) \\ (1 & 2) \\ (1 & 2) \\ (1 & -7) \\ (1 & -3) \\ (1 & -7) \\ (1 & -3) \\ (2 & -3)$

The.

2

-10

-5

2+0+3 [+2+0 0+0+2 0+1+0 4+0+3 2+(+0

1+4+12 1+2+4 0+4+6 0+2+2 3+4+0 3+2+0

-4+2+4 0-2-8 0+0-2 61010 3-2+0

1201

4 5_

4 0 N

+6 +4 +6

6

6

8

2112

Question 4

Multiply each of the following matrices.

a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 4 \\ 0 & 1 & 2 \\ 3 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 4 & 2 \\ 0 & 3 & 1 \end{pmatrix}$$

c) $\begin{pmatrix} 4 & 1 & -1 \\ 0 & -1 & 2 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ -1 & 0 & 2 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 5 & 2 & 1 \\ 9 & 7 & 3 \end{pmatrix}$, $\begin{pmatrix} 2 & 17 & 7 \\ 1 & 10 & 4 \\ 4 & 7 & 5 \end{pmatrix}$, $\begin{pmatrix} 6 & 9 & 2 \\ 1 & -2 & -10 \\ 4 & 6 & 5 \end{pmatrix}$, $\begin{pmatrix} 6 \\ 8 \\ 9 \end{pmatrix}$

$$\int \begin{pmatrix} 1 & 1 & 4 \\ 0 & 7 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 & 0 & 4 \\ -5 & 5 \end{pmatrix}$$

Question 5

A matrix \mathbf{T} represents the linear transformation

$$\mathbf{T}\begin{pmatrix} x\\ y\\ z \end{pmatrix} : \mapsto \begin{pmatrix} X\\ Y\\ Z \end{pmatrix}$$

so that

ŀ.G.B.

I.C.p

$$\mathbf{T}\begin{pmatrix}1\\0\\0\end{pmatrix}:\mapsto \begin{pmatrix}3\\4\\2\end{pmatrix}, \quad \mathbf{T}\begin{pmatrix}1\\1\\0\end{pmatrix}:\mapsto \begin{pmatrix}6\\1\\5\end{pmatrix}, \quad \mathbf{T}\begin{pmatrix}2\\1\\-4\}:\mapsto \begin{pmatrix}1\\1\\-1\end{pmatrix}.$$

Find the elements of T.

F.C.P.

Madasn

madasm

2

I.C.B.

🖲 ONE OF THE MAPPED OEDDES WE ARE GUEN IS <u>i</u> so we know.
THE FIRST COLUMN OF THE MATRIX
$\underline{T} = \begin{bmatrix} 3 & a & b \\ 4 & c & d \\ 2 & e & \xi \end{bmatrix}$
🙆 NOW WE NAP THE SHRETOD NECTORS, OBTIMUMOR ANNOTATIONS EXPLATIONS
$\begin{bmatrix} 3 & a & b \\ 4 & c & d \\ 2 & e & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 1 \\ 1 & 1 \\ 5 & -1 \end{bmatrix}$
$\begin{bmatrix} 3 + a & 6 + a - 4b \\ 4 + c & 8 + c - 4d \\ 2 + e & 4 + e - 4t \\ \end{bmatrix} \begin{bmatrix} 6 & 1 \\ 1 & 1 \\ z & -1 \end{bmatrix}$
THESE GRATION WED
• a+3=6 • c+4 =1 • e+2=5
0=3 <u>C=3</u> <u>C=3</u>
• $6+a-b=1$ • $8+c-b=c$ • $4+c-b\{z-1$ 9- $4b=1$ • $8-x-ba=1$ • $4+a-b\{z-1$ 8-4b + $4=ab$ • $8-4bb=2$ $d=1$ $f=2$
AND A DATEM ON ON OUT OF THE AND ON OUT OF THE ADDRESS OF THE OF
$T = \begin{bmatrix} 3 & 3 & 2 \\ 4 & -3 & 1 \\ 2 & 3 & 2 \end{bmatrix}$
17

MATRIX VW LESINEINS COM L. Y. G.B. MARINESCOM L.Y.G. MATRIX ROW REDUCTION T. I.Y.C.B. Madasmalls.Com I.Y.C.B. Marace EDE A.V.C.B. Madasmanniscom I.V.C.B. Managen

Question 1

Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

Question 2

C.p.

I.C.B.

x + 5y + 7z = 41 5x - 4y + 6z = 27x + 9y - 3z = 1

Solve the system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

F.C.P.

Question 3

x + 3y + 5z = 6 6x - 8y + 4z = -33x + 11y + 13z = 17

Solve the system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

Question 4

F.G.B.

I.C.P.

4x + 2y + 7z = 2 10x - 4y - 5z = 504x + 3y + 9z = -2

Solve the system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

20/201

he.

F.G.B.

Com

20

m

è

Question 5

x+3y+2z = 142x + y + z = 73x+2y - z = 7

Solve the system simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

Question 6

2x+5y+3z = 2x+2y+2z = 4x+y+4z = 11

Solve the above simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

x = 12, y = -5, z = 1

Question 7

2x + y - z = 3x + 3y + z = 23x + 2y - 3z = 1

Solve the system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

x = 3, y = -1, z = 2

Question 8

Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 3 & 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$

x = 3, y = -1, z = 0

Question 9

x+3y+2z = 13 3x+2y - z = 42x + y + z = 7

Solve the system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

.

 $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \\ 8 \end{pmatrix}$

x = 2, y = -1, z = 4

x = 1, y = 2, z = 3

Question 11

x+y+2z = 2 2x-y+z = -23x+y+4z = 2

Show, by reducing the augmented matrix of the above system of equations into row echelon form, that the solution can be written as

x = -t, y = 2 - t, z = t

where t is a scalar parameter.

proof
1212
PUT THE SUSTAIN OF EPUATION MID 4 NATELY
$\begin{array}{c} 1 + 4 + 2t = 2 \\ 21 - 9 + 2t = -2 \\ 3x + 9 + 4t = 2 \end{array} \xrightarrow{l} \qquad \qquad$
they eventually how operations
$ \begin{split} & \Gamma_{D_{1}}(2) \\ & \Gamma_{D_{2}}(3) \\ & \Gamma_{D_{2}}(3) \\ & \sigma - 2 - 2 - 2 - 4 \\ & \sigma - 2 - 2 - 2 - 4 \\ & \sigma - 2 - 2 - 2 - 4 \\ & \sigma - 2 - 2 - 2 - 4 \\ & \sigma - 2 - 2 - 2 - 4 \\ & \sigma - 2 - 2 - 2 - 4 \\ & \sigma - 2 - 2 - 2 - 2 - 4 \\ & \sigma - 2 - 2 - 2 - 2 - 4 \\ & \sigma - 2 - 2 - 2 - 2 - 2 - 2 - 4 \\ & \sigma - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 \\ & \sigma - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -$
$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
CONTINUE THE RESOLUTION, IGNORING THE BRITTON ROW
$\Gamma_{2i}(-1) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & i & i & 2 \end{bmatrix}$
$\begin{array}{c c} \underline{so} & \underline{so} & \underline{sc} & \underline{shhv} \\ \hline x + \underline{s} = o \\ \underline{y} + \underline{z} = \underline{z} \\ \end{array} \begin{array}{c} \underline{so} & \underline{s} = -\underline{z} \\ \underline{y} = \underline{z} - \underline{z} \\ \underline{y} = \underline{z} - \underline{z} \\ \underline{y} = \underline{z} - \underline{t} \\ \underline{z} = \underline{t} \end{array}$
Key To DOW OFFLATIONS

r (+)= NUCTION

1

Question 12

3x - 2y - 18z = 62x + y - 5z = 25

Show, by reducing the above system of equations into row echelon form, that the solution can be written as

 $\mathbf{r} = 8\mathbf{i} + 9\mathbf{j} + \lambda (4\mathbf{i} - 3\mathbf{j} + \mathbf{k}),$

where λ is a scalar parameter.

$\begin{pmatrix} 2 & 1 & 2 \\ 3 & -2 & -8 \\ -2 & -\frac{5}{2} & -\frac{5}{2} \end{pmatrix}$	$\frac{g_{\tilde{\lambda}}}{2} \left[\frac{e_{\tilde{\lambda}}}{e_{\tilde{\lambda}}} \right] \begin{pmatrix} 1 & 0 & -4 & 8 \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} $
(= 1 3 16 2 9+3	$\begin{array}{c} q \end{array} \begin{bmatrix} -1 \\ -1 \\ -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\$
	$\therefore \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

Question 13

x + y - 2z = 2 3x - y + 6z = 26x + 5y - 9z = 11

Show, by reducing the above equation system into row echelon form, that the consistent solution of the system can be written as

x = 1 - t, y = 3t + 1, z = t

where t is a scalar parameter.

1000	proof
121	
START BY WRITING THE SYSTEM IN MATTRIX FORM	L
$\begin{array}{c} x + y - 2z = 2 \\ 3x - y + 6z = 2 \\ 6x + 5y - 9z = 11 \end{array} \xrightarrow{\longrightarrow} \begin{bmatrix} 1 & 1 \\ 3 & -1 \\ 6 & 5 \end{bmatrix}$	-Z 2 6 2 -9 1
AR CROTTERNING SUMB- CHASS, CLARACUMTZ YARA	2LAOTTAGARO WOR
	1 -2 ! 2 1 -3 ; 1 -1 3 ; -1
$\Gamma_{\underline{X}}(I) = \begin{bmatrix} I & I & -2 \\ \circ & I & -3 \\ \circ & \circ & \circ \end{bmatrix} \begin{bmatrix} Z \\ I \\ Z \\ \sigma \end{bmatrix} \Gamma_{\underline{X}}(I) = \begin{bmatrix} I \\ \circ \\ \sigma \end{bmatrix}$	
EXTERATING THE SOUTION WE SHIVE	
x + z = 1 y - 3z = 1 y = 1 + 3z	
$= \underbrace{ter \ 2 = t}_{y = (+2t)}$	

2

Key To	2LADITA3990	
r. : :	NAN ROW (N Z	
「2(c 払)	MUTIPLY ROW 2 BY - }	
Γ ₃₁ (-ε)	WUTING ROW 3 BY -2, HUG ADD IT TO ROW I	

Question 14

3x - y - 5z = 52x + y - 5z = 10x + y - 3z = 7

Show, by reducing the above system into row echelon form, that the consistent solution of the system can be written as

Created by T. Madas

ng

MASIRALISCOM LANCER MARINESSMANNESSOM LANCER MARINESSMANNESS Antonactionactionactionactionactionactionactionactionactionactionactionactionactionactionactionactionactionaction

Question 1

The 2×2 matrix **A** is defined, in terms of a scalar constant *a*, by

$$\mathbf{A} = \begin{pmatrix} 4+a & a \\ 1 & 3 \end{pmatrix}.$$

a = -6

Ċ,

Given that \mathbf{A} is singular, find the value of a.

Question 2

١ø

The 2×2 matrix **B** is defined, in terms of a scalar constant b, by

$$\mathbf{B} = \begin{pmatrix} -1 & b+1 \\ -3 & b-4 \end{pmatrix}$$

Tasm.

Given that **B** is singular, determine the value of b.

adasmaths,

11202

COM

Question 3

202

Evaluate each of the following determinants to the answer given. V.C.B. Madasma The management of the second sec

Smaths.com I. K. C. B.

1720

I.V.G.B

a)	$\begin{array}{c} \underbrace{O(Whyb D_{1} W + Why E_{OUT} \ge C_{OU}}_{T_{1}} = \underbrace{O(T_{1} + T_{1})}_{T_{1}} = O(T_{1$
6)	$\begin{array}{c} \underbrace{(x,y,y,y)}_{i} = \underbrace{(x,y,y,y)}_{i} \underbrace{(x,y,y,y)}_{i} = \underbrace{(x,y,y,y)}_{i} \underbrace{(x,y,y,y)}_{i} \underbrace{(x,y,y,y)}_{i} = \underbrace{(x,y,y,y)}_{i} \underbrace{(x,y,y,y)}_{i} = \underbrace{(x,y,y,y)}_{i} \underbrace{(x,y,y,y)}_{i} = \underbrace{(x,y,y,y)}_{i} \underbrace{(x,y,y)}_{i} (x,y$
c)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
d)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Y.C.B. Madasn

The Com

¥.6.0.

1.4

Created by T. Madas

I.Y.G.B.

Question 4

C.5.

Evaluate each of the following determinants to the answer given.

Question 4
Evaluate each of the following determinants to the answer given:

$$a) \begin{vmatrix} 2 & 3 & -3 \\ 1 & 1 & 0 \\ -1 & 4 & -6 \end{vmatrix}$$

$$b) \begin{vmatrix} -2 & 10 & 3 \\ 1 & 6 & 4 = 0 \\ -1 & 2 & 0 \end{vmatrix}$$

$$c) \begin{vmatrix} 2 & 3 & 3 \\ -2 & 4 & 9 \\ -1 & 0 & -5 \end{vmatrix} = 29$$

$$d) \begin{vmatrix} 1 & 2 & -1 \\ 2 & 2 & -2 \\ -4 & 2 & 3 \end{vmatrix} = 29$$

$$d) \begin{vmatrix} 1 & 2 & -1 \\ 2 & 2 & -2 \\ -4 & 2 & 3 \end{vmatrix} = 0$$

Created by T. Madas

7

02

C.P.

The Co

5

Question 5

Evaluate the each of the following determinants to the answer given.

Exactly J. Madas
Pueston 5
Evaluate the cach of the following determinants to the answer given:

$$a_{1} \begin{bmatrix} -3 & 1 & 3 \\ 0 & 1 & -2 \\ 3 & 3 & 1 \end{bmatrix} = -36$$

$$b_{1} \begin{bmatrix} 7 & 9 & 4 \\ 4 & 4 & 3 \\ 2 & 7 & 2 \end{bmatrix}$$

$$c_{1} \begin{bmatrix} 3 & -1 & 4 \\ 3 & -3 & 8 \end{bmatrix} = 0$$

$$d_{1} \begin{bmatrix} 0 & -4 & 3 \\ -3 & -5 & 0 \end{bmatrix} = 0$$

$$f_{1} = 0$$

$$f_{2} = 0$$

$$f_{1} = 0$$

$$f_{2} = 0$$

Question 6

(C.P.

I.C.B.

The 3×3 matrix **A** is defined in terms of the scalar constant k by

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 3 \\ k & 2 & 4 \\ k - 2 & 3 & k + 7 \end{pmatrix}$$

Given that $|\mathbf{A}| = 8$, find the possible values of k.

AX BY THE FIRST O 2* -1 3* k 2 4 k-2 3 k+7 = 8 $\begin{vmatrix} 2 & 4 \\ 3 & k+7 \end{vmatrix} - (-i) \begin{vmatrix} k & 4 \\ k-2 & k+7 \end{vmatrix} + 3 \begin{vmatrix} k & 2 \\ k-2 & 3 \end{vmatrix} = 8$ k(k+7)-4(k-2)+3[3k-2(k-2)]=8 +3[k+4] 22 (k++)(k+46) - lo (k+4) = 8 2+20K+64-10K-40 = 8 2+10k+16 = 0 etc etc 45 36826

 $k = -2, \quad k = -8$

F.C.B.

madası,

Question 7

A transformation in three dimensional space is defined by the following 3×3 matrix.

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 3 & 1 \\ 4 & 0 & -5 \end{pmatrix}$$

a) Find the value of det A.

A cone with a volume of 26 cm³ is transformed by the matrix composition AB^2

b) Given that det $\mathbf{B} = \frac{1}{13}$, calculate the volume of the transformed cone.

(a)	$ \frac{\det A_{2}}{\det A_{2}} = \left \begin{array}{ccc} 1 & 3 & -1 \\ 2 & 3 & 1 \\ 4 & 0 & -5 \end{array} \right \left \begin{array}{c} \underline{T}_{2}(1) \\ \underline{T}_{2}(1) \\ 4 & 0 & -5 \end{array} \right \left \begin{array}{c} 3 & 4 & 0 \\ 2 & 3 & 1 \\ 4 & 0 & -5 \end{array} \right = \frac{6\gamma_{0}}{15t^{2}} = \frac{3}{15t^{2}} \left \begin{array}{c} 3 \\ 3 \\ 0 \\ -5 \end{array} \right \left \begin{array}{c} 1 \\ -6 \\ 4 \\ -5 \end{array} \right \left \begin{array}{c} 1 \\ -5 \end{array} \right \right $
	$= 3 \times (-12) - (-12) = -45 + 84 = 38$
(6)	$ AB^{2} = A B ^{2} = 39 \times (\frac{1}{3})^{2} = \frac{3}{13}$
	··· Cont 2 = to Cut

Question 8

A transformation in three dimensional space is defined by the following 3×3 matrix, where x is a scalar constant.

$$\mathbf{C} = \begin{pmatrix} 2 & -2 & 4 \\ 5 & x - 2 & 2 \\ -1 & 3 & x \end{pmatrix}.$$

Show that **C** is non singular for all values of x.

20.
EVALUATIONS. THE DETRUMMENT OF THE MATERX APPLE SUMPLIFICATION WITH ANALSTARY ORDATIONS
$ \begin{vmatrix} \zeta_{1} \\ \zeta_{2} \\ \zeta_{3} \\ \zeta_{4} \\ \zeta_{5} \\ \zeta$
EXPANDING BY THE FIRST ROW
$\dots = \begin{array}{c c} 2 \\ x+3 \\ 2 \\ z \\ z$
$= \Im \left[x^2 + 5a + 6 + 16 \right]$
$z = 2 \left[x^2 + 5x + 22 \right]$
$= \Im \left[\left(\alpha + \frac{x}{2} \right)^2 - \frac{\alpha}{4} + 22 \right]$
$= 2\left(x+\frac{x}{2}\right)^2 + \frac{2}{2} > 0 \text{for Au } \infty$
THEEFORG C IS NOW SNOULLE FOR AL 2.

proof

Question 9

C.p.

A transformation in three dimensional space is defined by the following 3×3 matrix, where k is a scalar constant.

Show that the transformation defined by A can be inverted for all values of k.

proof

24.

AS THE DETRUMINANT IS AWAYS POSITIVE, I.E (\$140, THE TERUSCOMMENT DESCRIBED BY A WULL BE INVIETIBLE FOR ALL &

Question 10

A transformation in three dimensional space is defined by the following 3×3 matrix, where y is a scalar constant.

$$\mathbf{M} = \begin{pmatrix} y - 3 & -2 & 0 \\ 1 & y & -2 \\ -1 & y -1 & y -1 \end{pmatrix}$$

If $|\mathbf{M}| = 0$, find the possible values of y.

y = -1, y = 0, y = 3

Question 11

Y.C.B.

A non invertible transformation in three dimensional space is defined by the following 3×3 matrix, where *a* is a scalar constant.

1+

7201

Question 12

The 3×3 matrices **A** and **B** are defined in terms of a scalar constant k by

$$\mathbf{A} = \begin{pmatrix} k & 9 & 2 \\ 1 & k & 0 \\ 5 & -1 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 1 & -3 & 2 \\ k & 2 & -1 \\ 4 & 1 & 1 \end{pmatrix}.$$

- **a**) Find an expression for det **A**, in terms of k.
- **b**) Find the possible values of k given that **AB** is singular.

$$\frac{\det \mathbf{A} = k^2 - 10k - 11}{\left| \left| k = -1, 11, \frac{1}{5} \right|}, \quad k = -1, 11, \frac{1}{5}$$

$$(a) |_{A|=} \left| \left| \frac{k + 2}{5} \right| = \frac{2}{3} \left| \frac{k}{1} \right| = \frac{k}{5} \left| \frac{k}{5} \right| = \frac{k}{1} \left| \frac{k}{5} \right| \frac{k}{5} \right| = \frac{k}{1} \left| \frac{k}{5} \right| \frac{k}{5} \right| = \frac{k}{1} \left$$

Question 13

Factorize fully the following 3×3 determinant.

X v + z

(x+y+z)(x-2y+z)

レンジャン 2 り キャン 3 そ エッリー - Cm3(1 し ス 3 そ	$\begin{array}{c c} x_{1}y_{1}z_{1} \\ x_{1}y_{1}z_{2} \\ x_{1}y_{1}z_{2} \end{array}$ = $(x_{1}y_{1}z_{2})$ $\begin{vmatrix} 1 & x & 1 \\ 2 & y & 1 \\ 3 & z & 1 \end{vmatrix}$
$= \begin{array}{c} \Gamma_{12}(-2) & = & (3+9+2) \\ \Gamma_{13}(-5) & = & (3+9+2) \\ \end{array} \begin{vmatrix} 1 & -\infty & 1 \\ 0 & g-2z & -z \\ 0 & z-3z & -z \end{vmatrix}$	∈ (34:9428) (-29+62+22-32)
= (2x+y+z)(x-2y+2z)	

Question 14

Factorize fully the following 3×3 determinant.

(x-y)(y-z)(z-x)

 $\begin{vmatrix} i & i & 1 \\ \lambda & j & 2 \\ g_{1} & g_{2} & g_{3} \\ g_{3} & g_{3} & g_{3} \\ g_{4} & g_{2} & g_{3} \\ g_{5} & g_{3} & g_{3} \\ g_{5} & g_{3} & g_{3} \\ g_{5} & g_{3} & g_{3} \\ g_{5} & g_{5} \\ g_{7} & -1 \\ g_{7} & g_{7} \\ g_{7} & g_{7} \\ g_{7$

Question 15

2

Factorize fully the following 3×3 determinant.

$\overline{(a-b)(b-c)(c-a)(a+b+c)}$

1+

Question 16

Factorize fully the following 3×3 determinant.

MATRIX VERSE MATRIX INVERSE ASTRAIRS COM INTERVISE INTERVISED IN THE INTERVISED INTERV

Question 1

c)

d)

Smarns.com I.K.

I.F.G.B.

1. Y.C.

20/2.5

Find the inverse for each of the following 2×2 matrices.

 $\mathbf{C} = \begin{pmatrix} -2 & 2 \\ -4 & 3 \end{pmatrix}$

 $\mathbf{D} = \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix}$

1. V. G.B. M. 2013

a)	$\underline{\Delta}_{-} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \\ -g \end{array}\right\}}_{-2} = \underbrace{\left\{ \begin{array}{c} 1 \\ g \end{array}\right\}}_{-$
	$ \underbrace{A}_{-1}^{-1} = \frac{1}{-\frac{2}{2}} \begin{bmatrix} -\frac{2}{2} & +\frac{1}{2} \\ -3 & 2 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} -\frac{2}{2} & 2 \\ -\delta & 2 \end{bmatrix} = \begin{bmatrix} 2 & \frac{2}{2} \\ -\delta & -2 \end{bmatrix} $
6)	$\underline{B} = \begin{pmatrix} 3 & l \\ l & l \end{pmatrix} \qquad \underline{B} = (3xl) - (lxl) = 3 - l = 2$
	$\mathbf{\hat{\Sigma}}^{-1} = \frac{1}{\underline{2}} \begin{bmatrix} \mathbf{i} & -\mathbf{i} \\ -\mathbf{i} & 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \mathbf{i} & -\mathbf{i} \\ -\mathbf{i} & 3 \end{bmatrix}$
4	$ \underbrace{ \begin{array}{c} \underline{C} \end{array}}_{-4} = \begin{bmatrix} -2 & 2 \\ -4 & 3 \end{bmatrix} \qquad \left[\underline{C} \right] = (-2x3) - (-4x2) = -6+8 = \underline{2}. $
	$\frac{C}{2} = \frac{1}{2} \begin{bmatrix} 3 & -2 \\ +4 & -2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & -2 \\ 4 & -2 \end{bmatrix}$
d)	$\underbrace{\widetilde{D}}_{2} = \begin{bmatrix} 3 & -\psi \\ 2 & -\delta \end{bmatrix} \qquad \underbrace{ \widetilde{D} }_{2} = \begin{bmatrix} 3 \times (-4) \end{bmatrix} - \begin{bmatrix} 2 \times (-4) \end{bmatrix}_{2} = -9 + \theta = -1$
	$ \underbrace{\overset{-1}{D}}_{-1}^{-1} = \underbrace{\overset{+4}{I}}_{-2} \underbrace{\overset{-3}{3}}_{-2}^{-1} = \begin{bmatrix} -3 & 4\\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -4\\ 2 & -3 \end{bmatrix} $ (6.4. Set C INNEX:

The Com

1.4.6.0

6

COM

Created by T. Madas

I.V.G.B.

COM

Question 2

F.G.B.

I.C.P.

Find, in terms of k, the inverse of the following 2×2 matrix.

$$\mathbf{M} = \begin{pmatrix} k & k+1 \\ k+1 & k+2 \end{pmatrix}.$$

Verify your answer by multiplication.

F.C.B.

madası

Question 3

20

The 2×2 matrices **A** and **B** are given by

$$\mathbf{A} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 9 & 12 \\ 4 & 5 \end{pmatrix}$$

ths.com

2

2 1

X =

nadasmans.com

I.F.C.p

18.CO)

1+

nadasm.

Inadası

Find the 2×2 matrix **X** that satisfy the equation

¹²035772

00

I.F.G.B.

adasmaths

KGB.

2011

.com

Created by T. Madas

madasmaths,

2011
Question 4

F.G.B.

F.G.B.

The triangle T_1 is mapped by the 2×2 matrix

onto the triangle T_2 , whose vertices have coordinates $A_2(-1,2)$, $B_2(10,15)$ and $C_2(-18,-14)$.

 $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & -1 \end{pmatrix}$

Find the coordinates of the vertices of T_1 .

F.C.B.

Question 5

The triangle T_1 is mapped by the 2×2 matrix

 $\mathbf{B} = \begin{pmatrix} 4 & -1 \\ 3 & 1 \end{pmatrix}$

onto the triangle T_2 , whose vertices have coordinates $A_2(4,3)$, $B_2(4,10)$ and $C_2(16,12)$.

 $A_{1}(1,0)$

a) Find the coordinates of the vertices of T_1 .

b) Determine the area of T_2 .

		- YO' 2
	P)	54 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
• B <u>a</u> =b		(1)0) 3' (4,0) (4,0)
⇒ BB⊇ = B ['] b		det B = 7 (Rem PAGE a)
$\implies 3 \pm 2 \pm 5 \pm 2$ $\implies 3 \pm 2 \pm \frac{1}{7} \begin{pmatrix} 1 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 4 & 1 & 4 & 1 & 16 \\ 3 & 1 & 10 & 1 & 12 \end{pmatrix}$ $4_{5} = \frac{1}{8}, C_{2}$: $4244 \text{ of } T_2 = 6 \times 7 = 42$
$\Rightarrow \underline{x} = \frac{1}{7} \begin{pmatrix} 7 & 14 & 28 \\ 0 & 28 & 16 \end{pmatrix}$		
$\implies \mathfrak{L} = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 4 & 0 \end{pmatrix}$		
$ \langle \rangle \rangle \otimes \langle \rangle \otimes \rangle \otimes$		

 $B_1(2,4)$, $C_1(4,0)$, area = 42

F.C.B.

Question 6

Ĉ.Ŗ

The triangle T_1 is mapped by the 2×2 matrix

onto the triangle T_2 , whose vertices have coordinates $A_2(-7,-1)$, $B_2(5,5)$ and $C_2(7,16)$.

 $\mathbf{B} = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$

a) Find the coordinates of the vertices of T_1 .

b) Determine the area of T_2 .

$A_1(-4,1)$, $B_1(2,1)$, $C_1(1,5)$, area = 20

a) STAT BY FINDING THE INVALUE OF B
$d_{HT}\underline{B} = (2x3) - (1x1) = .5$
$\underline{\underline{B}}_{-1} = \frac{1}{2} \begin{pmatrix} x & -1 \\ -1 & z \end{pmatrix}$
LET 3. BE THE CO-ORDINATION OF T, & D THE CO-ORDINATION OF J
$ \begin{array}{l} \Rightarrow \underbrace{B_{2,z}}{B_{2,z}} = \underbrace{b}_{1} \\ \Rightarrow \underbrace{B_{2,z}}{B_{2,z}} = \underbrace{B_{2,z}}{B_{2,z}} \\ \Rightarrow \underbrace{T_{2,z}}{B_{2,z}} \\ \\ \Rightarrow \underbrace$
b) there to look the first of T, since two of my internets
HONE THE SAMUL HEIGHT
$\frac{4\mu}{4\pi B} = 5$
$2x3 = \frac{2}{\sqrt{2}} \xrightarrow{6} 40k \therefore$ $2x3 = \frac{2}{\sqrt{2}} \xrightarrow{6} 40k \therefore$ $(+)$

2

COM

i C.B.

Question 7

20

Find the inverse of each the following 3×3 matrices.

Question 8

Find the inverse of each the following 3×3 matrices.

1

Question 9

Find the inverse of each the following 3×3 matrices.

Question 10

The 3×3 matrix **A** is given below.

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 2 & -2 \\ 3 & 4 & -1 \end{pmatrix}$$

a) Find the inverse of A.

The point P has been mapped by A onto the point Q(6,0,12).

b) Determine the coordinates of P

4 5 6 $A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 2 & -2 \\ 3 & 4 & -1 \end{pmatrix}$ MATRIX OF MUNIORS = MATPIX OF GREAM ADJUGATE MATERX = ALL (ALLUGATT) $f_{1}^{2} = \frac{1}{12} \begin{pmatrix} 6 & -3 & 0 \\ -6 & 1 & 4 \\ -6 & -5 & 4 \end{pmatrix}$ Ap = 4 AAP = Aa $\begin{bmatrix} 1\\ k\\ 1\\ k\\ 1\\ k \end{bmatrix} = \begin{pmatrix} 2k+0+\delta k\\ k+0+\delta k\\ k+0+\delta k \\ k+0+\delta k \\ k+0+\delta k \end{pmatrix} = \begin{pmatrix} 2\\ k\\ k\\ k+0+\delta k \\ k+0+\delta$.₽(3,1,1)

6

 $^{-1} = \frac{1}{-1}$

12

3 0

P(3,1,1)

Question 11

The 3×3 matrix **M** is given below.

$$\mathbf{M} = \begin{pmatrix} 5 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 3 & 1 \end{pmatrix}.$$

a) Find the inverse of M.

The point A has been transformed by **M** into the point B(5,2,-1).

b) Determine the coordinates of *A*.

5

-5

A(1, -2, 4)

2

1

-4 13

 $\mathbf{M}^{-1} = \frac{1}{9}$

Question 12

F.G.B.

i C.B.

The 3×3 matrix **A** is given below.

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 2 \end{pmatrix}.$$

- a) Find the inverse of A.
- **b**) Hence, or otherwise, solve the system of equations

$$y + z = 4$$

$$y + 2z = 4$$

$$A^{-1} = \begin{pmatrix} -2 & 0 & 1 \\ 1 & 1 & -1 \\ 1 & -2 & 1 \end{pmatrix}, \quad x = 2, \quad y = 1, \quad z = -3$$

(a)
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 2 \end{pmatrix}$$
 MATTER OF MUNDELE $\begin{pmatrix} 2 & 1 & -1 \\ 0 & -1 & -2 \\ -1 & -1 \\ 3 & 4 & 2 \end{pmatrix}$
MITER OF GAMERELE $\begin{pmatrix} 2 & -1 & -1 \\ 0 & -1 & -2 \\ -1 & -1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & -1 \\ -$

F.G.B.

Mana

F.G.B.

1+

Madası,

Question 13

F.G.B.

F.C.B.

The 3×3 matrix **M** is given below.

$$\mathbf{M} = \begin{pmatrix} 3 & 2 & 1 \\ 1 & -2 & -1 \\ 1 & 0 & 3 \end{pmatrix}$$

- a) Find the inverse of M.
- **b**) Hence, or otherwise, solve the following system of equations.

$$3x + 2y + z = 7$$
$$x - 2y - z = 1$$
$$x + 3z = 11$$

$$\mathbf{M}^{-1} = \frac{1}{12} \begin{pmatrix} 3 & 3 & 0 \\ 2 & -4 & -2 \\ -1 & -1 & 4 \end{pmatrix}, \quad \mathbf{x} = 2, \quad \mathbf{y} = -1, \quad \mathbf{z} = 3$$

$$\mathbf{q} = \begin{bmatrix} 3 & 2 & 1 \\ 1 & -2 & -1 \\ 1 & 0 & 3 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -3 & 2 & 1 \\ 1 & -2 & -1 \\ 1 & 0 & 3 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & 4 & 2 \\ 6 & 6 & -2 \\ 0 & -4 & -8 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & 4 & 2 \\ 6 & 6 & -2 \\ 0 & -4 & -8 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & 4 & 2 \\ -4 & 6 & 6 \\ 2 & 2 & -4 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 6 \\ 2 & 2 & -4 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 6 \\ 2 & 2 & -4 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 6 \\ 2 & 2 & -4 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 6 \\ 2 & 2 & -4 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 6 \\ 2 & 2 & -4 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 6 \\ 2 & 2 & -4 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 6 \\ 2 & 2 & -4 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 6 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ 2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -2 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -4 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -4 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -4 & 2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -4 & -2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -4 & -2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -4 & -2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -4 & -2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & 0 \\ -4 & 6 & 4 \\ -4 & -2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & -6 \\ -4 & -6 & -2 \\ -4 & -2 & -6 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -4 & -6 & -6 \\ -4 & -2 & -6 \\ -4 & -2 & -6 \end{bmatrix}$$

$$\mathbf{M} =$$

i G.p.

Madasn

121/2.5m

Question 14

The 3×3 matrix **A** is given below.

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & -3 \\ 2 & 4 & 3 \\ -4 & 2 & -1 \end{pmatrix}$$

The matrix A is non singular.

a) Evaluate $\mathbf{A}^2 - \mathbf{A}$.

b) Show clearly that

F.G.B.

ŀ.C.p.

 $=\frac{1}{20}[\mathbf{A}-\mathbf{I}].$

.C.A

ち

 $I_{\text{opt}} = \int_{-\infty}^{\infty} \int_{-\infty}^$

F.G.B.

Madasn.

20**I**

ne,

F.G.B.

COM

mada

MATRIX MATRIX TRANSFORMATIS IN TRANSFORMATIS

Question 1

Describe fully the transformation given by the following 2×2 matrix.

$ \begin{pmatrix} \frac{12}{13} & \frac{5}{13} \\ -\frac{5}{13} & \frac{12}{13} \end{pmatrix}. $	I.F.C.
rotation,	anticlockwise, by $\arcsin\frac{5}{13}$
m i	
42N2 1	$\begin{split} \mathcal{A} &= \begin{pmatrix} \frac{12}{35} & \frac{75}{15} \\ -\frac{12}{35} & -\frac{12}{35} \end{pmatrix} \\ \mathrm{der} \ \mathcal{A} &= \ \frac{12}{35} \times \frac{12}{35} - \frac{5}{35} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \approx 1 & \longrightarrow & \mathcal{H} \text{ IDMITON} \end{split}$
asp.	NATIFIC WORTS FIND APPROX HERE θ_{200}) $\theta_{400} = \theta_{200}$)
1212	(Δ <u>5</u>) = <u>θ</u> 2 θ = 22.6 TH
-98	$\begin{bmatrix} cos(22+6) & -sin(22+6) \\ sin(22+6) & -sin(22+6) \\ sin(22+6) & cos(22+6) \\ \hline \frac{1}{25} & \frac{1}{15} \\ \frac{1}{15} & \frac{1}{15} \\ \hline \frac$
° Co	$ \begin{bmatrix} c_{S}(-2\epsilon_{s}) & c_{S}(\eta_{s}) \\ sm(-2\epsilon_{s}) & c_{S}(-2\epsilon_{s}) \\ sm(-2\epsilon_{s}) \\ sm(-2\epsilon_{s})$
the set of a set of the set of th	

Question 2

Describe fully the transformation given by the following 3×3 matrix.

 $\begin{pmatrix} 0.28 & -0.96 & 0 \\ 0.96 & 0.28 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

rotation in the z axis, anticlockwise, by $\arcsin\frac{24}{25}$

Question 3

A plane transformation maps the general point (x, y) to the general point (X, Y) by

 $\begin{pmatrix} X \\ Y \end{pmatrix} = \mathbf{A} \begin{pmatrix} x \\ y \end{pmatrix}$

where **A** is the 2×2 matrix $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

- a) Give a full geometrical description for the transformation represented by A stating the equation of the line of invariant points under this transformation
- **b**) Calculate A^2 and describe geometrically the transformation it represents.

shear parallel to y = 0, $(0,1) \mapsto (2,1)$ line of invariant points y = 0,

(a) $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ $A^{2} = AA$ $= \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ $A^{2} = AA$ $= \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ $A^{2} = AA$ $= \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$ $\Rightarrow KR, PRMULT THE AAM$ $\Rightarrow THE (A_{1}) \rightarrow (A_{1})$ $\Rightarrow KR, PRMULT THE AAM$ $\Rightarrow THE (A_{1}) \rightarrow (A_{1})$ $\Rightarrow KR, PRMULT THE AAM$

shear parallel to y = 0, $(0,1) \mapsto (4,1)$

Question 4

A plane transformation maps the points (x, y) to the points (X, Y) such that

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 6.4 & -7.2 \\ -7.2 & 10.6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

a) Find the area scale factor of the transformation.

The points which lie on a straight line through the origin remain invariant under this transformation.

b) Determine the equation of this straight line.

Question 5

i.G.B.

P.C.B.

The transformation represented by the 2×2 matrix A maps the point (3,4) onto the point (10,4), and the point (5,-2) onto the point (8,-2).

nana,

-|A =|

 $A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$

F.G.B.

207

F.C.B.

 $\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$

è

21/2.57

mana

Determine the elements of A.

Question 6

The 2×2 matrices **A** and **B** are given below

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 1 & 0 \\ -2 & 2 \end{pmatrix}$$

The matrix C represents the combined effect of the transformation represented by the **B**, followed by the transformation represented by A.

a) Determine the elements of C.

b) Describe geometrically the transformation represented by C.

Question 7

The 3×3 matrices **A** and **B** are given below.

0 0 00 1 0 0 -1 **B** = -1 0 and 0 0 0 0 0

a) Describe geometrically the transformations given by each of the two matrices.

The matrix C is defined as the transformation defined by the matrix A, followed by the transformation defined by the matrix B.

b) Describe geometrically the transformation represented by C.

A: rotation about x axis, 90° anticlockwise, **B**: reflection in the xz plane,

C : reflection in the plane y = z

Question 8

The 3×3 matrices **A** and **B** are given below.

 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$

a) Describe geometrically the transformations given by each of the two matrices.

The matrix C is defined as the transformation defined by the matrix A, followed by the transformation defined by the matrix B.

b) Describe geometrically the transformation represented by **C**.

2

Question 9

The matrix $\mathbf{A}: \mathbb{R}^2 \mapsto \mathbb{R}^2$ and the matrix $\mathbf{A}: \mathbb{R}^2 \mapsto \mathbb{R}^2$ are defined as

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos 45^\circ & -\sin 45^\circ \\ 0 & \sin 45^\circ & \cos 45^\circ \end{pmatrix}$$

Describe geometrically the transformations given by each of these matrices. State in each case the equation of the line of invariant points.

A : shear parallel to y axis, $(1,0) \mapsto (3,1)$

B: rotation in the x axis, 45°, anticlockwise, $\mathbf{A}: x = 0$, $\mathbf{B}: y = z = 0$, i.e. x axis

A= (10)	AI=1 14 ARMA 1	S PRISIDING IND REFLECTION
$ \begin{array}{c} \underline{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad$	$\begin{bmatrix} 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	9 (co) 1 (co) 1 (co) 1 (co)
$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & coals - a \\ 0 & anyly & a \\ 1 & 1 & 1 \\ x & y & z \end{bmatrix}$	(NO 867)) = 24 ⁵ 112 + 24 ⁵ 20 terror
i ⊷i a	"THE OLEGN SEETION BY 45° ANTIQUOR PUNNE	s" IS A STRUDAED ENTATICAL WIRE ABOJT O, OF THE GZ
THE MATTER REPLESS	TIS ROTATION BY 45°	ANTIGOORUNSE, ABONT
WITH APUATION Y =	= 2 = 0	(-iwes iffer iffer)

Question 10

Ĉ.Ŗ.

î C.B.

The 2×2 matrix **A** is given below.

$$\mathbf{A} = \begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}.$$

Determine the elements of A^3 and hence describe geometrically the transformation represented by A.

$$\mathbf{A}^{3} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}, \text{ rotation of } 120^{\circ}\text{, anticlockwise \& enlargement of S.F. 2} \text{ both about the origin and in any order.}$$

1+

202.sm

madası,

R.J.

Question 11

I.C.B.

COM

N.C.

I.C.B.

Find the image of the straight line with equation

2x + 3y = 10,

 $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$

under the transformation represented by the 2×2 matrix

 $\begin{array}{c} \underline{\text{METPD} A} \\ \underline{\text{METPD} A} \\ \underline{\text{BY}} & \underline{\text{METEDDA}} A(5_{10}) \notin B(5_{12}) \text{ Us on THE UNSE} \\ \underline{\text{MPO}} & \underline{\text{THSEE POINTS GATIO THOSE NEW POSITIONS} \\ \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 5 & 1 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 5 & 1 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 5 & 1 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 5 & 1 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 5 & 1 & 2 \\ 3 & -1 \end{pmatrix} \\ \underline{\text{MPO}} & \underline{\text{THSE}} & \underline{\text{POINTS}} & \underline{\text{G}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} \\ \underline{\text{MPO}} & \underline{\text{THSE}} & \underline{\text{THSE}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} \\ \underline{\text{THSE}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} \\ \underline{\text{MPO}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} \\ \underline{\text{MPO}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} \\ \underline{\text{MPO}} & \underline{\text{S}} \\ \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} & \underline{\text{S}} \\ \underline{\text{S}} & \underline{\text{S}} \\ \underline{\text{S}} & \underline{\text{S}} \\ \underline{\text{S}} & \underline{\text{S}} \\ \underline{\text{S}} & \underline{\text{S}}$

The,

I.F.G.B.

COM

Madasn

m

COM

1.0

1.4

Question 12

Find in Cartesian form the image of the straight line with equation

$$\frac{x-2}{3} = \frac{y+2}{4} = \frac{1-z}{2},$$

COM

under the transformation represented by the 3×3 matrix **A**, shown below.

Question 13

 $\mathbf{M} = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

The 3×3 matrix **M** above, describes two consecutive geometrical transformations of 3 dimensional space, which can be carried out in any order.

Describe geometrically each these two transformations.

Question 14

A plane transformation maps the general point (x, y) onto the general point (X, Y), by

- a) Find the area scale factor of the transformation.
- **b**) Determine the equation of the straight line of invariant points under this transformation.
- c) Show that all the straight lines with equation of the form

where c is a constant, are invariant lines under this transformation.

x + y = c,

d) Hence describe the transformation geometrically.

SF=3, y=x, stretch perpendicular to the line y = x, by area scale factor 3

 $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = 2\chi_2 - (-1)(-1) = 3$ ARA SCALL FATEL IS 3 4 POINT IS W $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} \alpha \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ y \end{pmatrix}$

 $x + 2y = y \rightarrow y = 2$ UPUST LINE (POINS NOT INUPRIMIT)

 $\binom{-1}{2}\binom{\alpha}{-2+c}$ $\begin{pmatrix} 2\alpha + \alpha - c \\ -\alpha - 2\alpha + bc \end{pmatrix} = \begin{pmatrix} 3\alpha - c \\ -3\alpha + 2c \end{pmatrix}$

Adding guis X+Y

Question 15

Describe fully the transformation given by the following 2×2 matrix

5 3 The description must be supported by mathematical calculations. reflection in y = 2x $-\frac{3}{5}\times\frac{3}{5}-\frac{4}{5}\times\frac{4}{5}=$ cos20 sn20 Sin20 -60520 20 = - 3 19= 126.87 ±360, 0= 233.13 ± 360, tay (63.43); the cost = $+\frac{1}{4S}$ (Θ is that Θ and Θ F.G.B. ton 9=2 he. 200 I.C.B. F.G.B.

Question 16

The matrices A and B are defined as

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & k \end{pmatrix}$$

where k is a scalar constant.

a) Without calculating **AB**, show that **AB** is singular for all values of k.

b) Show that **BA** is non singular for all values of k.

When k = -2 the matrix **BA** represents a combination of a uniform enlargement with linear scale factor \sqrt{a} and another transformation *T*.

c) Find the value of a and describe T geometrically.

a=8, rotation about *O*, clockwise, by 45°

 $\underline{A} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{pmatrix}$ ON MUCTIPULATION: AB = (* MATRIX WITH A ZENO ROW (OR DOWNA) HAS ZEAD DETARMINIANT (NOT THAT THE ODDORESE IS NOT TRUE DUE TO THE WAY MATTRICES $\underline{\underline{B}} \underline{\underline{A}} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & k \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 1 \end{pmatrix}$ $=\begin{pmatrix} 2 & 2 \\ k & k+4 \end{pmatrix}$ der (BA) = 840 Re AU L, 50 NON SINGOLAR 0) 1F k=-- $\underline{B} \underbrace{\underline{A}}_{i} = \begin{pmatrix} 2 & 2 \\ -2 & 2 \end{pmatrix} = 2 \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = 2 \underbrace{\underline{I}}_{i} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $= \sqrt{2} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$

Question 17

The 2×2 matrix **M** is defined by

 $\mathbf{M} = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}.$

Find, by calculation, the equations of the two lines which pass through the origin, that remain invariant under the transformation represented by M.

92.	20	
METIHD -A	FINDING THE EIGENVERTON	IS AND HEAVE THE UNKS
• Let A line through the observables of the deverticed of a way where the observables of the deverticed of a way where $\begin{bmatrix} x & y & y & y & y & y & y & y & y & y &$	$\frac{16}{3y_{1}=32}$ $\frac{3y_{2}=32}{3x=3y}$ $\therefore y_{1}=x$	$\frac{15}{3y_{z} - 3}$ $\frac{3y_{z} - 3x_{z}}{3x_{z} - 3y_{z}}$ $\therefore y_{z} - x_{z}$
• Hince we also the quarticity $X = 3m_X$ $M_X = 1$ $M_X = 1$ $M_X = 1$ $M_X = 1$		
. THE EXPONDION WHIS ARE $y=2$ a $y=2$ METHED & (or defendances) I find the arbitratic quation of M		
$ \begin{array}{c} \Rightarrow & \partial^{2} < \begin{pmatrix} 3 \\ 2 & 0 - y \\ 0 - y & 3 \end{pmatrix} = 0 \\ \end{array} \begin{array}{c} \Rightarrow & \partial^{2} - d = 0 \\ \Rightarrow & (y)_{7}^{2} - d = 0 \\ \Rightarrow & (y)_{7}^{2} - d = 0 \end{array} $		

Question 18

C.B.

I.C.B.

The curve C has equation

 $5x^2 - 16xy + 13y^2 = 25.$

This curve is to be transformed by the 2×2 matrix **A**, given below.

 $\mathbf{A} = \begin{pmatrix} -1 & 2 \\ -2 & 3 \end{pmatrix}.$

Show that, under this transformation matrix, the image of C is the circle with equation

 $x^2 + y^2 = 25.$

proof

i C.B.

2

DETRUMINE THE TRANSFORMATION SPUATIONS			
$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \iff \begin{bmatrix} 2x \\ y \end{bmatrix} = \frac{1}{-3+4} \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$			
HANCE WE ATAVE			
• a= 3x-27			
• y = 2x - Y			
SUBSTITUTE INTO THE EQUATION $5x^2 - 6xy + 13g^2 = 25$			
\Rightarrow $5(3x-2\gamma)^2 - l_0(3x-2\gamma)(2x-\gamma) + l_3(2x-\gamma)^2 = 25$			
$\implies S(9X^2 - 12XY + 4y^2) - l_6(6X^2 - 7XY + 2Y^2) + l_3(4X^2 - 4XY + Y^2) = 2C$			
$ = \begin{cases} 45\chi^{2} - 60\chi^{4} + 22\chi^{2} \\ -9\chi^{2} + 112\chi^{2} - 32\chi^{2} \\ 52\chi^{2} - g2\chi^{2} + 13\chi^{2} \end{cases} = 25 $			
N2 N2			

Question 19

The 3×3 matrix **A** is defined by

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

a) Describe geometrically the transformation given by A.

The 3×3 matrix **B** represents a rotation of 180° about the line x = z, y = 0.

b) Determine the elements of **B**

The 3×3 matrix C is represents the transformation defined by **B**, followed by the transformation defined by A.

c) Describe geometrically the transformation represented by C.

0 0 **A** : rotation about y axis, 90° clockwise 0 -1 0 **B** =

1)

0

1 0

C: rotation about z axis, 180°

Question 20

The 3×3 matrix **R** is defined by

$$\mathbf{R} = \begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

The image of the straight line L, when transformed by **R**, is the straight line with Cartesian equation

$$\frac{x+2}{3} = \frac{y-1}{2} = \frac{z-1}{4}.$$

Find a Cartesian equation for L.

,	$\frac{x-2}{-3}$	$=\frac{y}{z}$	$\frac{-1}{-1} =$	$\frac{z-1}{4}$
	5			0
SOMET BY FINI	<u>2000</u> Zuo]⊂o ⊂ 1¦ c	2SE OF R	- NSE EUN	-1 0 0

0

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
(SELF INVIRIAL)
MeANETERIZE THE DIVE
$\frac{2c+2}{3} = \frac{9-1}{2} = \frac{2-1}{4} = \lambda \implies 3a=3a=2$
y = 21 +1
$Z = 4\lambda + l$
$\Rightarrow \Delta = F \Rightarrow$
$\Rightarrow \underline{\vec{R}} = $
$\Rightarrow x \in \mathbb{R}^{1} \times$
$ \Rightarrow \begin{bmatrix} x \\ y \\ z \\ z \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3\lambda_{1-2} \\ 3\lambda_{1+1} \\ \lambda_{1+1} \end{bmatrix} = \begin{bmatrix} -3\lambda_{1+2} \\ 2\lambda_{1+1} \\ 4\lambda_{1+1} \end{bmatrix} $
tanningth & to GET
$\frac{2i-2}{-5} = \frac{3i-1}{2} = \frac{3i-1}{4} = 2$
. og
$\frac{2-\chi}{3} = \frac{9-1}{2} = \frac{2-1}{4}$
1

Question 21

The 3×3 matrix **C** is defined by

 $\mathbf{C} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$

Find, in Cartesian form, the image of the plane with Cartesian equation

2x + y - z = 12

under the transformation defined by C

START BY PARAMETARIZING THE FLAME - TAKE MAY 3 POINT ON
THE PURNE SAY A(G1010), B(011210) & C(0101-12)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
HENCE WE HAVE
$\begin{split} \mathcal{I} = \begin{bmatrix} \mathcal{S} \\ \mathcal{A} \\ \mathcal{A} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \mathcal{Y} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \mathbf{b} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{split}$
$\begin{bmatrix} a \\ y \\ z \end{bmatrix} = \begin{bmatrix} c - \lambda + \gamma \\ 2\lambda \\ 2\gamma \end{bmatrix}$
NOW TOANSDEN THE PREAMETGERED FUTURE
$ \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \lambda + \mu \\ 2\lambda \\ 2\mu \end{bmatrix} = \begin{bmatrix} c_1 \lambda + \mu \\ c_2 \lambda + \mu + 2\lambda \\ c_3 \lambda + \mu + 2\lambda + 2\lambda \\ c_4 \lambda + 2\lambda + 2\lambda \\ c_4 \lambda + 2\lambda \\ c_4 \lambda + 5\lambda \end{bmatrix} = \begin{bmatrix} c_4 \lambda + \mu \\ c_4 \lambda + 5\lambda \\ c_4 \lambda + 5\lambda \\ c_4 \lambda + 5\lambda \end{bmatrix} $
X = 6+3,44 ⇒ <u>1¹ = X - 6 -37</u> X = 6-7,434 Z - 647,434
SUBSTITUTING INVO THE CITHER TWO GRIVATIONS
Thus $Y = 6 - \lambda + 3(X - 6 - 3\lambda)$ $Z = 6 + \lambda + 3(X - 6 - 3\lambda)$

(≈ 6-λ + 3X-118 - 9λ ζ ≈ 6+λ + 3X-18 - 9λ ζ
(= 3×−12-102) = 3×−12-102) ⇒
DI = 3X-Y-12 7 ==9 8λ = 3X-Z-12 J ==9
ολ = 12x-4Y-48 ζ ⇒ λ = 15x-5z-60 ζ ⇒
1×−47−48 = 1≤x−5z −60 5×−47+5z = −12
1x + 4y + 5z = 12

3x + 4y - 5z = 12

Question 22

A transformation $T : \mathbb{R}^2 \mapsto \mathbb{R}^2$ is represented by the 2×2 matrix A below.

 $\mathbf{A} = \begin{pmatrix} -3 & 8 \\ -1 & 3 \end{pmatrix}.$

- a) Find the determinant of A and explain its significance in sign and size.
- b) Find the equation of the line of the invariant points of A.
- c) Determine the entries of the 2×2 matrix **B** which represents a reflection about the line found in part (b), giving all its entries as simple fractions.

The 2×2 matrix **A**, consists of a shear represented by the matrix **C**, followed by a reflection represented by the matrix **B**.

d) Determine the elements of C and describe the shear.

$$\underline{\det \mathbf{A} = -1}, \ \underline{y = \frac{1}{2}x}, \ \mathbf{B} = \begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -\frac{13}{5} & \frac{36}{5} \\ -\frac{9}{5} & \frac{23}{5} \end{pmatrix}$$

(a)	$ \begin{array}{c c} dr & b & c \\ - & b \\ -$
(b)	$\begin{pmatrix} -3 & 0 \\ -1 & 3 \end{pmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} = \begin{pmatrix} x \\ 3 \end{bmatrix} \implies -x + 3y = x \\ -x + 3y = x $
(•)	$ \begin{array}{c} \mbox{Solution} \ \mbo$
(J) 7 7 7 7 (J)	$ \begin{array}{l} A = & B_{C} \\ \vec{g} A = \vec{b} B_{C} \\ c = & \vec{b} A \\ C = & \frac{1}{1} \left\{ \begin{matrix} x & y \\ x & y \end{matrix} \right\} \begin{pmatrix} x & y \\ x & y \end{matrix} \\ (x & y \\ x & y \end{pmatrix} \begin{pmatrix} x & y \\ x & y \end{matrix} \\ (x & y \\ x & y \end{pmatrix} \begin{pmatrix} x & y \\ x & y \\ x & y \end{pmatrix} \begin{pmatrix} x & y \\ x & y \\ x & y \end{matrix} \\ S = & \frac{1}{2} \left\{ \begin{matrix} x & y \\ x & y \\ x & y \end{matrix} \right\} \begin{pmatrix} x & y \\ x & y \\ x & y \end{matrix} \\ (x & y \\ x & y \end{pmatrix} $

Question 23

A transformation T, maps the general point (x, y) onto the general point (X, Y), by

- a) Find the area scale factor of the transformation.
- b) Determine the equation of the line of invariant points under this transformation.

y = x + c,

c) Show that all the straight lines of the form

where c is a constant, are invariant lines under T.

- **d)** Hence state the name of T.
- e) Show that the acute angle formed by the straight line with equation y = -x and its the image under T is

 $\frac{3\pi}{4} - \arctan\left(\frac{5}{3}\right)$

 $\begin{array}{c} (x) = (x - 1) \\ (x$

SF=1, y=x, shear

Created by T. Madas EIGENVALUES & EIGENVECTORS TH I.Y.C.B. Madasmanna I.Y.C.B. Managa .G. I.V.C.B. Madasmalls.com I.V.C.B. Madasmalls.com I.V.C.B. Madasm

Question 1

P.C.P.

Find the eigenvalues and the corresponding eigenvectors of the following 2×2 matrix.

Sec. 1		100
$A_{\epsilon} \begin{pmatrix} 7 & \zeta \\ 6 & 2 \end{pmatrix}$	\$ #1F. 3=-2.	7x + 6y = -2x 6x + 2y = -2y 6x + 2y = -2y $\Rightarrow 6x + 6y = 0$
$\left \begin{array}{c} 7 - \lambda & 6 \\ 6 & 2 - \lambda \end{array} \right = 0$	}	$\therefore y = -\frac{3}{2}x \therefore \begin{pmatrix} 1 \\ -\frac{3}{2} \\ 2 \end{pmatrix} \sim \begin{pmatrix} 2 \\ -3 \end{pmatrix}$
$ \begin{array}{c} \Rightarrow (7 \cdot \lambda)(2 \cdot \lambda) - 36 = 0 \\ \Rightarrow (1 + -7\lambda - 2\lambda + \lambda^2 - 36 = 0 \\ \Rightarrow \lambda^2 - 9\lambda - 22 = 0 \\ \Rightarrow (\lambda - 1)(\lambda + 2) = 0 \end{array} $	} ● 1€ 3=[1	$\begin{array}{c} 7x+Cy=11x\\ Gx+2y=11y\\ \Rightarrow G_{2}=yy\\ \hline \\ \cdot y=\frac{2}{3}x \leftarrow \begin{pmatrix} 1\\ \frac{3}{2} \end{pmatrix} \cap \begin{pmatrix} 3\\ 2 \end{pmatrix} \end{pmatrix}$
A= -2	1	

 $\lambda = 8$,

 $\mathbf{u} = \beta$

3

2)

Question 2

Find the eigenvalues and the corresponding eigenvectors of the following 2×2 matrix.

 $\mathbf{C} = \begin{pmatrix} 7 & 3 \\ 3 & -1 \end{pmatrix}$

 $\lambda = -2.$

 $\mathbf{u} = \alpha$

3
Question 3

Question 4

Determine the eigenvalues and the corresponding equations of invariant lines of the following 2×2 matrix.

 $\mathbf{B} = \begin{pmatrix} 4 & -5 \\ 6 & -9 \end{pmatrix}$

Question 5

Find the eigenvalues and the corresponding eigenvectors of the following 2×2 matrix.

Created by T. Madas

$$\begin{array}{c} (4444446474, (2444162)) \\ \Rightarrow \left| C - AI \right| = 0 \\ \Rightarrow \left| 2 - AI \right| = 0$$

 $\lambda = 4$, $\mathbf{u} = \beta$

envectors of the following 2

 $B = \begin{pmatrix} 4 & -s \\ 6 & -9 \end{pmatrix}$

 $\mathbf{C} = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}.$

 $\lambda = 1$, $\mathbf{u} = \alpha$

Question 6

C.B.

The 3×3 matrix **A** is given below.

$$\mathbf{A} = \begin{pmatrix} -4 & -4 & 4 \\ -1 & 0 & 1 \\ -7 & -6 & 7 \end{pmatrix}.$$

Given that I is the 3×3 identity matrix, determine the values of the constant λ , so that $\mathbf{A} + \lambda \mathbf{I}$ is singular.

24.

Question 7

Question 8

Question 9

Question 10

Question 11

R,

The 3×3 matrix **A** is given below.

$$\mathbf{A} = \begin{pmatrix} 2 & -5 & 0 \\ -5 & -1 & 3 \\ 0 & 3 & -6 \end{pmatrix}$$

Since A is symmetric, determine an orthogonal 3×3 matrix P and a diagonal 3×3 matrix **D** such that $\mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P} = \mathbf{D}$.

Question 12

The 3×3 matrix **A** is given below.

1

2

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 5 & 4 \\ 4 & 4 & 3 \end{pmatrix}.$$

a) Verify that $\begin{vmatrix} 2 \end{vmatrix}$ is an eigenvector of A and state the corresponding eigenvalue.

b) Show that -3 is an eigenvalue of **A** and find the corresponding eigenvector.

	(2)	120-	1210
c)	Given further that -2	is another eigenvector of A	, find the 3×3 matrices P
		-4.0	

and **D** such that

 $\mathbf{D} = \mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P}$

ſ	(2)) (9	0	0)	(1	2	2
$\lambda = 9$,	$\begin{vmatrix} 1 \\ -2 \end{vmatrix}$,	$\mathbf{D} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	-3 ⊾0	$\begin{bmatrix} 0\\3 \end{bmatrix}$,	$\mathbf{P} = \frac{1}{3} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	$\frac{1}{-2}$	-2 1
	(-)	L	<u>6</u> -	-)		f F	- /

$ \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{c}$	$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 5 & 4 \\ 4 & 4 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -\zeta \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -\zeta \\ -\zeta \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -\zeta \\ 1 \end{pmatrix}$
(b) 1+3 0 4 4 0 4	NORMMUSE Elifautorals
$\begin{vmatrix} 0 & 2+3 & 4 \\ 4 & 4 & 3+3 \end{vmatrix} = \begin{vmatrix} 0 & 8 & 4 \\ 4 & 4 & 6 \end{vmatrix}$	$\begin{pmatrix} 2i_3\\ 2i'_3 \end{pmatrix}$ $\begin{pmatrix} y_3\\ 3i_3 \end{pmatrix}$ $\begin{pmatrix} -4i_2\\ y_3 \end{pmatrix}$
$C_{1}(-1)$ $\begin{pmatrix} 4 & 0 & 0 \\ 0 & 8 & 4 \\ 4 & 4 & 2 \end{pmatrix}$ = $\begin{pmatrix} 4 & 8 & 4 \\ 4 & 2 \end{pmatrix}$	$b = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} & \frac{7}{2} \\ \frac{3}{2} & \frac{7}{2} & -\frac{7}{2} \\ \frac{3}{2} & -\frac{7}{2} $
= 4(16-16)=0 ** Eliminant	$\mathbb{D} = \begin{pmatrix} q & \circ & \circ \\ \circ & \neg 3 & \circ \end{pmatrix}$
14 42=-30, 402=-42; Sy+42=-30, 402=-42; Sy+42=-3y 14 42=-8y	(003)
(1+4y+32=-3) Tel 2=-2 (-2) (2)	
J-Z* (Z/ ~ (1)	

Question 13

The 3×3 matrix **A** is given below.

$$\mathbf{A} = \begin{pmatrix} 4 & -1 & 1 \\ -1 & 6 & -1 \\ 1 & -1 & 4 \end{pmatrix}$$

- a) Show that $\lambda = 7$ is an eigenvalue of A and find the other two eigenvalues.
- **b**) Find the eigenvector associated with the eigenvalue $\lambda = 7$.

The other two eigenvectors of A are

 $\mathbf{u} = \mathbf{i} - \mathbf{k}$ and $\mathbf{v} = \mathbf{i} + \mathbf{j} + \mathbf{k}$,

where the eigenvalue of \mathbf{v} is greater than the eigenvalue of \mathbf{u} .

- c) Find a 3×3 matrix **P** and a diagonal 3×3 matrix **D** such that $\mathbf{D} = \mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P}$.
- d) Show that **P** is an orthogonal matrix.

Question 14

The 2×2 matrix **A** is given below.

A straight line with equation y = mx, where *m* is a constant, remains invariant under the transformation represented by **A**.

 $\mathbf{A} = \begin{pmatrix} 7 & 6 \\ 6 & 2 \end{pmatrix}.$

a) Show that

5

 $7 + 6m = \lambda$ $6 + 2m = \lambda m$

where λ is a constant.

b) Hence find the two possible equations of this straight line.

29

$\begin{pmatrix} 7 & 6 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} \chi \\ W \chi \end{pmatrix} = \begin{pmatrix} X \\ W \chi \end{pmatrix} \Rightarrow$	6)	Europh of By Durshal
$\begin{pmatrix} 7 & 6 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} \alpha \\ m_2 \end{pmatrix} = \lambda \begin{pmatrix} \alpha \\ m_2 \end{pmatrix} =$		$\frac{1}{6+2m} = \frac{1}{2m} \Rightarrow$ $7m + 6m^2 = 6 + 2m \Rightarrow$
Ta+6wa= Aa } ⇒		$\begin{array}{l} Gw_1^2 + Sw_1 - G = 0 \implies \\ (3w_1 - 2)(2w_1 + 3) = 0 \implies \end{array}$
7+64=A 6+24= Au		m= <2/3
45 Equatro		· y= = = x or y= - = x

Question 15

The 3×3 matrix **C** represents a geometric transformation $T : \mathbb{R}^3 \mapsto \mathbb{R}^3$.

$$\mathbf{C} = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

a) Find the eigenvalues and the corresponding eigenvectors of C.

b) Describe the geometrical significance of the eigenvectors of C in relation to T.

 $\lambda = 1, \quad \alpha \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \quad \lambda = 4, \quad \beta \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \gamma \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$

 $\lambda = 1 \Leftrightarrow$ invariant line of points through the origin

 $\lambda = 4 \Leftrightarrow$ invariant plane through the origin

 $\chi \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \chi \begin{pmatrix} -1 \\ -2 \end{pmatrix}$

Question 16

The 2×2 matrix **A** is defined in terms of a constant k.

$\mathbf{A} = \begin{pmatrix} 2 & 7 \\ 4 & k \end{pmatrix}$

- a) Given that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A, find ...
 - i. ... the corresponding eigenvalue to the eigenvector.
 - **ii.** ... the value of k
- b) Find another eigenvector and the corresponding eigenvalue of A.

It is further given that A can be written as $A = PDP^{-1}$, where D is a 2×2 diagonal matrix and P is another 2×2 matrix.

- c) Write down possible forms for the matrices **D** and **P**.
- **d**) Hence show clearly that

 $\mathbf{A}^7 = \begin{pmatrix} 1739180 & 3043789 \\ 1739308 & 3043661 \end{pmatrix}$

$$\begin{bmatrix} \lambda = 9 \end{bmatrix}, \begin{bmatrix} k = 5 \end{bmatrix}, \begin{bmatrix} \lambda = -2, \mathbf{u} = \begin{pmatrix} 7 \\ -4 \end{bmatrix}, \begin{bmatrix} \mathbf{D} = \begin{pmatrix} 9 & 0 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} \mathbf{P} = \mathbf{v} \\ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{bmatrix}$$

Question 17

The 3×3 matrix **A** is given below.

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 3 & -3 & 1 \\ 3 & -5 & 3 \end{pmatrix}.$$

a) Given that $\mathbf{u} = \begin{vmatrix} 1 \end{vmatrix}$ is an eigenvector of **A**, find the corresponding eigenvalue.

b) Given that $\lambda = -2$ is an eigenvalue of **A**, find a corresponding eigenvector **v**.

The vector \mathbf{w} is defined as $\mathbf{w} = \mathbf{u} + \mathbf{v}$.

2

c) Determine the vector $\mathbf{A}^{7}\mathbf{w}$.

= 2 ,	$\mathbf{v} = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \mathbf{A}^{7}\mathbf{w} = \begin{pmatrix} 128\\0\\128 \end{pmatrix}$	2
۵	$\begin{pmatrix} 1 & -1 & 1 \\ 3 & -5 & 1 \\ 3 & -5 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \\ 2 \\ 4 \end{pmatrix} \qquad \therefore \qquad 3 = 2.$	
io)	$\begin{array}{c} x-y+2=-2x\\ 3x_{-}3y+z=-2y\\ 3x_{-}y+3z=-2z \end{array} \xrightarrow{\begin{array}{c} 3x_{-}y+2=0\\ 3x_{-}-y+3z=0\\ 3x_{-}-y+3z=0 \end{array}} \xrightarrow{\begin{array}{c} 3x_{-}y+z=0\\ 3x_{-}-y+zz=0 \end{array}$	
	$s = y \iff s + x \varepsilon = y \iff s + x \varepsilon = y $	20
	$\mathcal{I}_{\mathcal{I}} = \underbrace{\bigvee}_{i=1}^{O} \left(\underbrace{\bigcup}_{i=1}^{O} \right)$	1
6)	$\underline{A} \underline{w} = \underline{A} \left(\underline{u}, \underline{v} \right) = \underline{A}^{T} \underline{u} + \underline{A}^{T} \underline{v}$	4
	$= \underline{A}^{6} \left[\underline{A} \underline{u} + \underline{A} \underline{v} \right] = \underline{A}^{6} \left[2\underline{u} - 2\underline{v} \right]$	
	$= \underline{A}^{s} \left[\underline{A} 2\underline{u} - \underline{A} 2\underline{v} \right] = \underline{A}^{s} \left[4\underline{u} + 4\underline{v} \right]$	
	$= A \left[A 4\underline{u} + A 4\underline{v} \right] = A \left[8\underline{u} - 8\underline{v} \right]$	
	$= A \left[\frac{4}{2} \frac{x^{5}}{2u} + \frac{4}{2} (\frac{x^{5}}{2}) \right] = A \left[\frac{x^{6}}{2u} + (-x^{6}) \frac{x^{5}}{2} \right]$	
12	$= 2^{T}\underline{u} + (-2)^{T}\underline{v} = 128 \begin{pmatrix} 1\\2\\2 \end{pmatrix} - 128 \begin{pmatrix} 0\\2\\2 \end{pmatrix}$	
	$= \begin{pmatrix} 128\\ 128\\ 256 \end{pmatrix} \rightarrow \begin{pmatrix} 0\\ 128\\ 128 \end{pmatrix} = \begin{pmatrix} 127\\ 0\\ 128 \end{pmatrix}$	

Question 18

The 2×2 matrix **C** is defined as

$$C = \begin{pmatrix} a & b+a \\ b-a & -a \end{pmatrix},$$

where a and b are constants.

- a) Determine the eigenvalues of C and their corresponding eigenvectors, giving the answers in terms of a and b where appropriate.
- It is further given that $C = PDP^{-1}$, where **D** is a diagonal matrix and **P** is another 2×2 matrix.
 - **b**) Write down the possible form of **D** and the possible form of **P** and hence show that

 $C^9 = b^8 C$.

$$\lambda_{1} = b, \quad \mathbf{u} = \begin{pmatrix} 1 \\ b-a \\ b+a \end{pmatrix} \text{ or } \quad \mathbf{u} = \begin{pmatrix} b+a \\ b-a \end{pmatrix}, \quad \lambda = -b, \quad \mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} b & 0 \\ 0 & -b \end{pmatrix}$$

