FURTHER DIFFERENTIATION PRACTICE

$$1. \quad y = \sinh 3x$$

$$2. \quad y = \cosh 4x$$

3.
$$y = 3 \tanh 2x$$

$$4. \quad y = 4\sinh\left(\frac{1}{2}x\right)$$

$$5. \quad y = 3\coth 2x$$

6.
$$y = 3 \sinh^2 x$$

7.
$$y = 4 \cosh^3 2x$$

8.
$$y = 4 \operatorname{sech} 2x$$

9.
$$y = 4 \tanh^4 x$$

10.
$$y = 5 \operatorname{cosech} 3x$$

$$11. \ y = x \sinh x$$

12.
$$y = x^3 \cosh x$$

$$13. \ y = e^x \sinh 2x$$

14.
$$y = 4e^{\cosh 2x}$$

15.
$$y = 3 \sinh^3 (3x^3)$$

$$16. y = \sin(\sinh x)$$

$$17. y = \cosh(\cos x)$$

18.
$$y = \frac{\sinh 2x}{x}$$

$$19. \ y = \frac{\ln\left(\cosh x\right)}{\sinh x}$$

$$20. \ y = \frac{\tanh x}{\sinh x}$$

21.
$$y = \cosh(e^x + x^2)$$

22.
$$y = \sinh(\ln(x^2 - 1))$$

$$23. \ y = \cosh x \coth x$$

24.
$$y = 2e^{3x} \tanh 2x$$

25.
$$y = \frac{\cosh x + \sinh x}{e^{-x}}$$

- 1. $y = \operatorname{arsinh} 2x$
- $2. \quad y = \operatorname{arsinh} x^2$
- $3. \quad y = \operatorname{arsinh}(\sin x)$
- 4. $y = \operatorname{arcosh} 4x$
- $5. \quad y = \operatorname{arcosh} \sqrt{x}$
- $6. \quad y = \operatorname{arcosh}(x+1)$
- 7. y = arsinh(2x+1)
- **8.** $y = \operatorname{artanh} (1 4x)$
- 9. $y = x \operatorname{arcosh} 2x$
- **10.** $y = (\operatorname{arsinh} x)^3$
- 11. $y = \operatorname{artanh}\left(\frac{1}{2}e^{x}\right)$
- 12. $y = \operatorname{artanh}\left(\frac{x+1}{x-1}\right)$

1.
$$y = \arcsin 3x$$

$$2. \quad y = \arcsin x^2$$

$$3. \quad y = \arctan 4x$$

$$4. \quad y = \arccos x^2$$

$$5. \quad y = \arctan \sqrt{x}$$

6.
$$y = \arcsin(2x+3)$$

7.
$$y = \arccos\left(\frac{2}{3}x\right)$$

$$8. \quad y = \arctan\left(\frac{4}{3}x\right)$$

9.
$$y = x \operatorname{arcosh} 2x$$

10.
$$y = 2(\arcsin x)^4$$

11.
$$y = \arctan\left(\frac{2}{x}\right)$$

$$12. \ y = \arcsin\left(e^{2x}\right)$$

13.
$$y = x^2 \arctan 2x$$

$$14. \ \ y = \arctan\left(\frac{x+1}{x-1}\right)$$

Question 4

Prove that:

1.
$$\frac{d}{dx} \left(\frac{\tanh x}{\operatorname{sech} x} \right) = \cosh x \quad (***)$$

2.
$$\frac{d}{dx}(\coth x \sinh x) = \sinh x \quad (***)$$

3.
$$\frac{d}{dx} \left(\frac{\cosh x - \sinh x}{e^x} \right) = -2e^{-2x}$$
 (***)

4.
$$\frac{d}{dx} \left(\frac{1 + \cosh x}{1 - \cosh x} \right) = \coth \left(\frac{1}{2} x \right) \operatorname{cosech}^2 \left(\frac{1}{2} x \right)$$
 (****)

5.
$$\frac{d}{dx} \left(2 \arctan \left(x + \sqrt{x^2 - 1} \right) \right) = \frac{1}{x\sqrt{x^2 - 1}}$$
 (****)

6.
$$\frac{d}{dx} \left(\arcsin \left(\frac{2x}{1+x^2} \right) \right) = -\frac{2}{1+x^2}$$
 (***)

7.
$$\frac{d}{dx} \left(\operatorname{artanh} \left(\frac{\cos x + 1}{\cos x - 1} \right) \right) = -\frac{1}{2} \tan x \quad (****)$$

1.
$$\frac{d}{dx}(\sinh 3x) = 3\cosh 3x$$

$$2. \quad \frac{d}{dx}(\cosh 4x) = 4\sinh 4x$$

3.
$$\frac{d}{dx}(3\tanh 2x) = 6\operatorname{sech}^2 2x$$

4.
$$\frac{d}{dx} \left(4 \sinh\left(\frac{1}{2}x\right) \right) = 2 \cosh\left(\frac{1}{2}x\right)$$

$$5. \quad \frac{d}{dx}(3\coth 2x) = -6\operatorname{cosech}^2 2x$$

6.
$$\frac{d}{dx}(3\sinh^2 x) = 6\sinh x \cosh x$$

7.
$$\frac{d}{dx} (4 \cosh^3 2x) = 24 \cosh^2 2x \sinh 2x$$

8.
$$\frac{d}{dx}(4 \operatorname{sech} 2x) = -8 \operatorname{sech} 2x \tanh 2x$$

9.
$$\frac{d}{dx} \left(4 \tanh^4 x \right) = 16 \tanh^3 x \operatorname{sech}^2 x$$

10.
$$\frac{d}{dx}$$
 (5 cosech 3x) = -15 cosech 3x coth 3x

11.
$$\frac{d}{dx}(x \sinh x) = \sinh x + x \cosh x$$

12.
$$\frac{d}{dx}(x^3\cosh x) = 3x^2\cosh x + x^3\sinh x$$

13.
$$\frac{d}{dx} \left(e^x \sinh 2x \right) = e^x \left(\sinh 2x + 2 \cosh 2x \right)$$

14.
$$\frac{d}{dx} (4 e^{\cosh 2x}) = 8 e^{\cosh 2x} \sinh 2x$$

15.
$$\frac{d}{dx} (3 \sinh^3 (3x^3)) = 81x^2 \sinh^2 (3x^3) \cosh (3x^3)$$

16.
$$\frac{d}{dx} (\sin(\sinh x)) = \cosh x \cos(\sinh x)$$

17.
$$\frac{d}{dx}(\cosh(\cos x)) = -\sin x \sinh(\cos x)$$

18.
$$\frac{d}{dx} \left(\frac{\sinh 2x}{x} \right) = \frac{2x \cosh 2x - \sinh 2x}{x^2}$$

19.
$$\frac{d}{dx} \left(\frac{\ln(\cosh x)}{\sinh x} \right) = \frac{\sinh^2 x - \cosh^2 x \ln(\cosh x)}{\cosh x \sinh^2 x}$$

20.
$$\frac{d}{dx} \left(\frac{\tanh x}{\sinh x} \right) = \frac{\sinh x \operatorname{sech}^2 x - \tanh x \cosh x}{\sinh^2 x} = \frac{\operatorname{sech}^2 x - 1}{\sinh x}$$

21.
$$\frac{d}{dx}\left(\cosh\left(e^x + x^2\right)\right) = \left(2x + e^x\right)\sinh\left(e^x + x^2\right)$$

22.
$$\frac{d}{dx} \left(\sinh \left(\ln \left(x^2 - 1 \right) \right) \right) = \frac{2x}{x^2 - 1} \cosh \left(\ln \left(x^2 - 1 \right) \right)$$

23.
$$\frac{d}{dx}(\cosh x \coth x) = \sinh x \coth x - \cosh x \operatorname{cosech}^2 x$$

24.
$$\frac{d}{dx}(2e^{3x}\tanh 2x) = 2e^{3x}(3\tanh 2x + 2\operatorname{sech}^2 2x)$$

$$25. \frac{d}{dx} \left(\frac{\cosh x + \sinh x}{e^{-x}} \right) = 2e^{2x}$$

$$1. \quad \frac{d}{dx}(\operatorname{arsinh} 2x) = \frac{2}{\sqrt{4x^2 + 1}}$$

2.
$$\frac{d}{dx} \left(\operatorname{arsinh} x^2 \right) = \frac{2x}{\sqrt{x^4 + 1}}$$

3.
$$\frac{d}{dx} \left(\operatorname{arsinh} \left(\sin x \right) \right) = \frac{\cos x}{\sqrt{\sin^2 x + 1}}$$

4.
$$\frac{d}{dx}(\operatorname{arcosh} 4x) = \frac{4}{\sqrt{16x^2 - 1}}$$

5.
$$\frac{d}{dx} \left(\operatorname{arcosh} \sqrt{x} \right) = \frac{1}{2\sqrt{x^2 - x}}$$

6.
$$\frac{d}{dx}(\operatorname{arcosh}(x+1)) = \frac{1}{\sqrt{x^2 + 2x}}$$

7.
$$\frac{d}{dx} \left(\operatorname{arsinh} \left(2x + 1 \right) \right) = \frac{2}{\sqrt{4x^2 + 4x + 2}}$$

8.
$$\frac{d}{dx} \left(\operatorname{artanh} \left(1 - 4x \right) \right) = \frac{1}{4x^2 - 2x}$$

9.
$$\frac{d}{dx}(x\operatorname{arcosh} 2x) = \operatorname{arcosh} 2x + \frac{2x}{\sqrt{4x^2 - 1}}$$

10.
$$\frac{d}{dx} \left(\left(\operatorname{arsinh} x \right)^3 \right) = \frac{3 \left(\operatorname{arsinh} x \right)^2}{\sqrt{x^2 + 1}}$$

11.
$$\frac{d}{dx}$$
 $\left(\operatorname{artanh} \left(\frac{1}{2} e^x \right) \right) = \frac{2 e^x}{4 - e^{2x}}$

12.
$$\frac{d}{dx} \left(\operatorname{artanh} \left(\frac{\cos x + 1}{\cos x - 1} \right) \right) = -\frac{1}{2} \tan x$$

1.
$$\frac{d}{dx}(\arcsin 3x) = \frac{3}{\sqrt{1-9x^2}}$$

2.
$$\frac{d}{dx}(\arcsin x^2) = \frac{2x}{\sqrt{1-x^4}}$$

3.
$$\frac{d}{dx}(\arctan 4x) = \frac{4}{16x^2 + 1}$$

4.
$$\frac{d}{dx}\left(\arccos x^2\right) = -\frac{2x}{\sqrt{1-x^4}}$$

5.
$$\frac{d}{dx} \left(\arctan \sqrt{x} \right) = \frac{1}{2\sqrt{x} (x+1)}$$

6.
$$\frac{d}{dx}(\arcsin(2x+3)) = \frac{1}{\sqrt{-x^2 - 3x - 2}}$$

7.
$$\frac{d}{dx}\left(\arccos\left(\frac{2}{3}x\right)\right) = -\frac{2}{\sqrt{9-4x^2}}$$

8.
$$\frac{d}{dx} \left(\arctan\left(\frac{4}{3}x\right) \right) = \frac{12}{16x^2 + 9}$$

9.
$$\frac{d}{dx}(x\arccos 2x) = \arccos 2x - \frac{2x}{\sqrt{1-4x^2}}$$

10.
$$\frac{d}{dx} \left(2(\arcsin x)^4 \right) = \frac{8(\arcsin x)^3}{\sqrt{1-x^2}}$$

11.
$$\frac{d}{dx} \left(\arctan\left(\frac{2}{x}\right) \right) = -\frac{2}{x^2 + 4}$$

12.
$$\frac{d}{dx}\left(\arcsin\left(e^{2x}\right)\right) = \frac{2e^{2x}}{\sqrt{1-e^{4x}}}$$

13.
$$\frac{d}{dx}(x^2 \arctan 2x) = 2x \arctan 2x + \frac{2x^2}{4x^2 + 1}$$

14.
$$\frac{d}{dx} \left(\arctan \left(\frac{x+1}{x-1} \right) \right) = -\frac{1}{x^2 + 1}$$