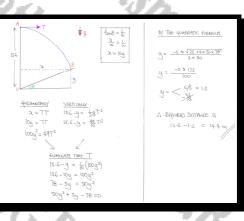

ADVANCS PROJECTILS

GENERAL PROJECTILES ASSINGUISCON I. Y.C.B. MARIASINANS.COM I.Y.C.B. MARIASIN

The figure above shows the cross section of a vertical tower OACD standing on a plane inclined at an angle θ to the horizontal, where $\tan \theta = 0.1$.


A particle is projected horizontally from A hitting the incline plane at the point B.

The journey of the particle is in a vertical plane containing O, A and B.

Given that |OA| = 15.6 m determine the vertical distance through which the particle falls as it travels from A to B.

You may assume that the only force acting on the particle is its weight.

14.4 m

Question 2 (***)

A particle is projected from a point A on level horizontal ground with speed of $U \text{ ms}^{-1}$ at an angle of elevation θ .

The particle moves through still air without any resistance, reaching a maximum height H above ground, before it first hits the ground at a point which is R m away from A.

a) Show clearly, in any order, that ...

i. ...
$$R = \frac{U^2 \sin 2\theta}{g}$$
.
ii. ... $H = \frac{U^2 \sin^2 \theta}{2g}$.

It is now given that the particle reaches a greatest height above the ground of 40 m, after travelling a horizontal distance of 60 m from A.

b) Determine in any order the value of U and the value of $\tan \theta$.

Jone Ucos B ta HA-9H (b) (H=40, R=6

=35

 $\tan \theta = \frac{4}{3}$

Question 3 (***)

A particle P is projected from the point A on level horizontal ground with a speed of 21 ms^{-1} at an angle θ to the horizontal. In the subsequent motion P is moving under gravity, without any air resistance.

The particle passes through the point B, t s later. The horizontal and vertical displacement of B from A are 12 m and 2 m, respectively.

a) By considering the horizontal component of the motion of P show

$t = \frac{4}{7} \sec \theta$.

b) By considering the vertical component of the motion of P show

$4\tan^2\theta - 30\tan\theta + 9 = 0.$

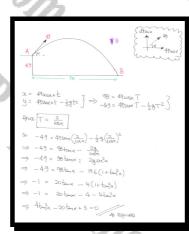
c) Determine, to three significant figures, the smallest possible flight time of P from A to B.

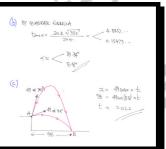
 $t \approx 0.599$

A H	* 21000 21 21000 21000 21000 21000 21000
(a) ↓ 4020000000000000000000000000000000000	$\begin{cases} \begin{cases} \forall \forall endett, ' & s = ut + \frac{1}{2} at^{2^{n}} \\ & 2^{n}(2as\theta) t + \frac{1}{2}(rs) t^{2} \\ & 2^{n}(2as\theta) t + \frac{1}{2}(rs) t^{2} \\ & \overline{2}(2as\theta) t + \frac{1}{2}(rs) t^{2} \\ & \overline{2}(1+bat) t^$
$ \begin{array}{c} (9) & \forall \left(\nabla \partial \partial \partial \partial \eta \right) \left(\nabla \partial \mu \partial \partial \eta \right) \left(\nabla \partial \mu \partial \partial \eta \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} - \frac{1}{3 N H} \right) \\ & \frac{1}{2 N H} \left(\frac{2}{3 N H} - \frac{1}{3 N H} \right) \\ & $	$\begin{array}{c} \mathcal{A}_{1}\\ \mathcal{B}_{2}\\ \mathcal{B}_{2}\\$

Question 4 (***)

In a golf driving range, a golf ball is struck with a speed of 49 ms⁻¹ at an angle of elevation α from a point A, which lies 4.9 m above level horizontal ground.


The ball first strikes the ground at the point B which lies at a horizontal distance of 98 m from A.


The ball is modelled as a particle moving under gravity, without any air resistance.

a) Show clearly that

$4\tan^2 a - 20\tan\alpha + 3 = 0.$

- **b**) Hence find, to three significant figures, the two possible values of α .
- c) Determine, to three significant figures, the smallest possible flight time of the ball from A to B.

 $t \approx 2.02$

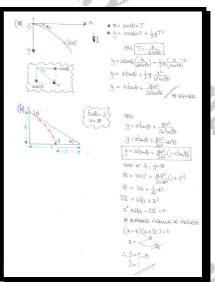
 $\alpha \approx 8.80^\circ, 78.34^\circ$

Question 5 (***+)

A particle is projected with speed $u \text{ ms}^{-1}$ at an angle θ below the horizontal, from a point *O* above level horizontal ground. The particle's horizontal and vertical distances from *O* at time *t* s after projection, are *x* m and *y* m, respectively. The particle is moving under gravity, without any air resistance.

a) Show clearly that

 $y = x \tan \theta$


A child is throwing a tennis ball from tower block aiming at a target on the ground.

The ball is thrown from a height of 18 m, with a speed of 28 ms^{-1} , aiming **directly** at the target which is at a horizontal distance of 9 m, from the foot of the block.

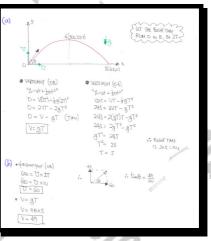
The tennis ball lands D m short of the target because of the effect of gravity.

b) Determine the value of D.

D=1

Question 6 (***+)

A fixed origin O is located on level horizontal ground and the vectors **i** and **j** are unit vectors pointing horizontally and vertically, respectively.


A mortar shell is fired from O with velocity $(U\mathbf{i}+V\mathbf{j})$ ms⁻¹, where U and V are positive constants. The shell lands on the enemy target which is located on the same level horizontal ground as O. The highest point on the path of the shell has position vector $(300\mathbf{i}+122.5\mathbf{j})$ m.

The shell is modelled as a particle moving freely under gravity.

a) Show that the time it takes the shell to hit the target is 10 s.

The shell was projected at an angle of elevation θ .

b) Determine the value of $\tan \theta$.

 $\tan \theta$

Question 7 (***)

A cannon fire a shell with a speed of $u \text{ ms}^{-1}$ at an angle of elevation θ from a point *O* on level horizontal ground. The shell has horizontal and vertical displacements of *x* m and *y* m from *O* at time *t* s. The shell is modelled as a particle moving under gravity, without any air resistance.

a) Show clearly that

$$y = x \tan \theta - \frac{gx^2}{2u^2} \left(1 + \tan^2 \theta\right).$$

The cannon is aimed at the gate of a fortress which is on a hill at a height of 150 m above the level of the cannon, and a horizontal distance d m from the cannon.

A shell is fired at 70 ms⁻¹ at an angle of elevation $\arctan 2$, which hits the gate of the fortress on its way **down**, with a speed $U \operatorname{ms}^{-1}$, T s after it was fired.

b) Determine in any order the value of d, the value of T and the value of U.

d = 300

 $T = \frac{30}{7}\sqrt{5} \approx 9.58$

 $U = 14\sqrt{10} \approx 44.27$

MHTLED B (BY fortefits)

+ 2040

To FIND IT METILD A (BY RESTLOAD IN WHEN t= 3915 Te-Brieu y= (using)+- +g+2 "s= ut + 2a+2" $V = 70 \times \frac{2}{\sqrt{5}} - 9 \times \frac{30}{7} \sqrt{5}$ $\frac{x}{\theta z \omega u} = f \quad \text{vert}$ V= 28NS- 42NS $\times \frac{x}{(3\pi m)} = \frac{1}{2} = \frac{x}{(3\pi m)} \times \frac{x}{(3\pi m)}$ $\tan \theta = \frac{1}{2}g \frac{\alpha^2}{u^2 \omega^2 \theta}$ mb - 922 sect U 4 = atomo - 022 (1+tango) = N (1445)2+(145)2 U = N1960 14 NTO (44.27 ms-1)

Question 8 (***+)

A footballer sees the goalkeeper off his line and kicks the ball from level horizontal ground with speed $U \text{ ms}^{-1}$, at an angle of elevation θ , where $\tan \theta = \frac{5}{12}$.

When the ball was kicked, it was at horizontal distance of 52.8 m from the goal line and perpendicular to it. Consequently a goal is scored as the ball passes just under the horizontal cross bar which stands 2.40 m in vertical height.

The ball is modelled as a particle moving freely under gravity, whose path lies in a vertical plane perpendicular to the goal line and the cross bar.

a) By considering the horizontal and vertical displacements of the ball, show clearly that U = 28.6.

The goalkeeper whose vertical reach is 3.211 m could not prevent the goal.

b) Given that the keeper jumped to save the goal when the ball was on its way down determine the distance of the goalkeeper from his goal line when he jumped for the ball.

h = 2.64 m

(a) (a) (b) (c) (101/2 RIN V RIN
$\begin{array}{c} : UTucoP = 3AB \\ U \times Z_{0} \int_{0}^{\infty} \frac{1}{2} \cos \theta \\ = 4VT = 2BB \\ = 4VT = 2BB \\ = 4VT = 2BB \\ = 3AH = 2BB \\ = 3AH = 2BB \\ = 3AH = 2BB \\ = 4BH $	

24

Question 9 (***+)

The point O lies at the bottom end of a fixed smooth plane, inclined at 30° to the horizontal. A positive y axis is defined up the line of greatest slope of the plane and a positive x axis is defined perpendicular to the y axis through O, as shown in the figure above.

At particle P is projected along the plane with speed 24 ms⁻¹ in a direction parallel to the x axis, from the point with coordinates (0,5), relative to O.

P reaches the bottom of the plane at the point (X,0), with speed V, after time T.

Determine in any order the value of X, V and T.

5m

, $\approx 4.464^{\circ}$, $\approx 33960 \text{ m}$, $\approx 54' - 14''$

VAUS THE SPEED i = 24 (CONSTANT) tat = - + 9 × 15 Che ten = . 1 22+ 0 EQUATION'S OF NOTION IN IL & Q OW SE SIMPLIFIC , AS THE ACCEMENTION 5 ZANO IN OC & - gSIN30" IN Y V212+7 •ä • 3 = - ½g (v=+ at) • 9 = -1at. • y = 5- +g+2 (sod +id + 2a+2) THE COULS WHEN y=0 s- \$8t t = 120 T= = 1.43s THE VAWE OF X IS SMAN

Question 10 (***+)

A particle is projected from a point O on level horizontal ground with a speed of 34.3 ms⁻¹ at some angle of elevation.

The particle is moving freely under gravity, reaching a greatest height above the ground before it passes through the point P, 3 s after it was projected.

When the particle passes through P it has a speed of 14.7 ms⁻¹, at an angle ψ to the horizontal.

Show that $\psi = \arcsin\left(\frac{1}{9}\right)$, stating further whether this angle is above the horizontal or below the horizontal.

	IAREAM - LET THE AWAY OF AROUGHTON BE &	
y 🕇	*8	
/	P	
4-34-3	N.	
	J-Ney	
(e		
0	*a	
BY FOXERBAS, THUNG TH	E USUEL OF THE I AVIS AN THE ZERIO RUTHUTIAN	LINE
→ KE + BE =	KE + PE.	
= ± mat + 0 =		
$a^2 = v^2 + 2s$		
- 343 ² = 47 ² + 19	6h	
- 4= 49		
VERTICALLY WE HAVE	● \$= ut + fat	
4 = 3435400	======================================	
a = -8 = -98	⇒ 49 = 102.95MB - 441	
A = h = 49 t = 3	⇒ =9m2= <u>0</u> ⇒ =9m2= ⊂	
V = 7		
	→ 0 ≈ 04·79123°	
AND THE VELOOIN AT P	 v=u+at 	
	⇒ V: 3435m0-98x3	
	⇒ V=343×1-29.4	
	> V= 10 >0 CAROUT THE HEREONS	

543 SA 343	147 Sup 5 147
343000	14 Testy
OUND AT THE SECOND DIARRAM	
4.7.5mp = 4	•
Amp= +	
(or y= oncimity) (y = 63	38")
20 2	8
$\begin{aligned} & = 3\alpha \xi \psi = 1.75 \ \text{comp} \\ & = 3600 \ \text{comp} \\ & = 3700 \ \text{comp} \ \text{comp} \\ & = 3700 \ \text{comp} \ \text{comp} \\ & = 3700 \ \text{comp}$	
$\begin{split} & (-\infty)^{2} \psi = \frac{4}{3} - \frac{39}{39} \\ & (-\infty)^{2} \psi = \frac{4}{3} - (-\infty)^{2} \psi \\ & (-\infty)^{2} \psi = \frac{4}{3} - (-\infty)^{2} \psi \\ & (-\infty)^{2} \psi = \frac{4}{3} - (-\infty)^{2} \psi \\ & (-\infty)^{2} \psi = \frac{4}{3} - \frac{4}{39} \\ & (-\infty)^{2} \psi = \frac{4}{3} - \frac{39}{39} \\ & (-\infty)^{2} \psi = \frac{4}{3} - \frac{4}{39} \\ & (-\infty)^{2} \psi = \frac{4}{3} - \frac{4}{3} \\ & (-\infty)^{2} \psi = \frac{4}{3} \\ & (-\infty)^{2} \psi = \frac{4}{3} \\ & (-\infty)^{2} \psi $	NG SHOP IN FARME)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	NG Sub= \$ Part Alle
$\begin{split} & (-\infty)^{2} \psi = \frac{4}{3} - \frac{39}{39} \\ & (-\infty)^{2} \psi = \frac{4}{3} - (-\infty)^{2} \psi \\ & (-\infty)^{2} \psi = \frac{4}{3} - (-\infty)^{2} \psi \\ & (-\infty)^{2} \psi = \frac{4}{3} - (-\infty)^{2} \psi \\ & (-\infty)^{2} \psi = \frac{4}{3} - \frac{4}{39} \\ & (-\infty)^{2} \psi = \frac{4}{3} - \frac{39}{39} \\ & (-\infty)^{2} \psi = \frac{4}{3} - \frac{4}{39} \\ & (-\infty)^{2} \psi = \frac{4}{3} - \frac{4}{3} \\ & (-\infty)^{2} \psi = \frac{4}{3} \\ & (-\infty)^{2} \psi = \frac{4}{3} \\ & (-\infty)^{2} \psi $	NG 5565 ¹³ / ₂₁ Pare farme)

, proof

Question 11 (***+)

40tananan na tanan na t

The point O lies on level horizontal ground and the point A is at a horizontal distance d m away from O and at a height d m above the ground.

A particle is projected from O with speed 40 ms⁻¹ at an angle of elevation $\arctan\left(\frac{3}{4}\right)$.

At the same time another particle is projected from A with speed 20 ms⁻¹ at an angle of elevation $\arctan\left(\frac{4}{3}\right)$, as shown in the figure above.

The motion of the two particles takes place in the same vertical plane.

Assuming that there is no air resistance present, show that, if the two particles collide during their flights, then

d:h = 11:2.

, proof

WOODG AT THE DURGRAM BELIEW	SIMILARUS IN THE UKRICAL DIRECTION
28 	$\begin{array}{l} y_{1} = \left(\frac{4}{5} 5 5 4 6 7 + \frac{1}{2} 3 7^{2} \\ y_{2} = \frac{1}{2} + \left(20 5 4 6 \right) T - \frac{1}{2} 3 7^{2} \\ \end{array} = \frac{1}{2} + \left(20 5 4 6 \right) T - \frac{1}{2} 3 7^{2} \\ = \frac{1}{2} + 20 \times \frac{3}{2} T - \frac{1}{2} 3 7^{2} \end{array}$
	$g_1 = 2tT - \frac{1}{2}g^{T^2}$ $g_2 = b + 1bT - \frac{1}{2}g^{T^2}$ $\Rightarrow 2tT - \frac{1}{2}g^{T^2} = b + bT - \frac{1}{2}g^{T^2}$ $\Rightarrow 4 = 8T$
$\overline{x}_{4} = (4000 \text{ s}_{2}^{-1} \text{ T} = -400 \text{ s}_{2}^{-1} \text{ T} = 32\text{ T}$ $\overline{x}_{2} = d_{-} (2000 \text{ s}_{2}^{-1} \text{ T} = d_{-} 20^{-2} \frac{1}{2} \text{ T} = d_{-} 12\text{ T}$ P4 (000000 $\overline{x}_{1} = 32$ $32\text{ T} = d_{-} 12\text{ T}$ $d_{-} 44\text{ T}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $
0 - 441	te equieto

20

A

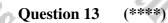
Question 12 (***+)

In this question take $g = 10 \text{ ms}^{-2}$.

Two particles, A and B, are projected from the same fixed point O, with the same speed $u \text{ ms}^{-1}$, at angles of elevation θ and 2θ respectively.

It is further given that ...

- ... B is projected $\frac{2}{3}$ s after A
- $\dots \tan \theta = \frac{3}{4}.$


If A and B collide in the subsequent motion determine the value of u.

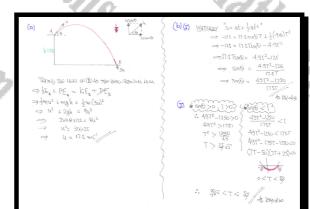
Participant and a second second		F 4
	 SARRY THE COLORAL PART MAY & SARRY THE COLORAL SARRY THE COLORAL PART MAY & SARRY THE SAN 2, 0 B THE A COLORAL THE A COLORAL PART THE SAN 2, 0 B JURANANA, AT THUS 5 4 7 5 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	ucoso (t- 3) ~ (ucos 20) t (t-3) aso = traso tuso - 3 aso = traso.	
	$t\omega_{2} = \frac{2}{3}$ $t(\omega_{2}\omega - \omega_{2}\omega) = \frac{2}{3}$	
	$t(ucb - (3ucb - 1)) = \frac{2}{3}$ $t[ucb + 1 - 2ucb] = \frac{2}{3}$ $t[\frac{4}{5} + 1 - 2(\frac{4}{5})] = \frac{2}{3}$	
	$5t = \frac{2}{3}$ $t = \frac{10}{3}$	
RETLOADY NOW :	$(u_{sin20})t - \frac{1}{2}gt^2 = (u_{sin0})(t - \frac{2}{3}) - \frac{1}{2}g(t - \frac{2}{3})^2$ $2d_{sin0}cos0 - \frac{1}{2}gt^2 = (t - \frac{2}{3})u_{sin0} - \frac{1}{2}g(t - \frac{2}{3})^2$	
	$\begin{array}{l} \frac{2}{\left \Gamma_{0}^{2}\Lambda\right } & -\frac{2}{200} = \frac{2}{8} \eta - \frac{3}{200} \\ 3\pi \kappa \frac{3}{6} \kappa \frac{3}{2} \kappa \frac{2}{1} + -\frac{7}{7} \kappa \ln \kappa \left(\frac{3}{6}\right)_{\pi} = \frac{8}{6} \pi \kappa \frac{3}{2} - \frac{7}{7} \kappa \ln \kappa \left(\frac{3}{6}\right)_{\pi} \\ 3\pi 8 \ln 4\pi \ln 4\pi \ln 4 \ln 4\pi - \pi 64 = 8 - 10 \end{array}$	
	$\frac{8}{3}u = 20$ $u = 12.5 \text{ Ws}^{-1}$	

u = 12.5

 $u\,\mathrm{ms}^{-1}$

125 m

ada asm asm


A particle P is projected with a speed of $u \text{ ms}^{-1}$ at an angle of elevation θ , from a point A which is 125 m above level horizontal ground. The particle is moving freely under gravity and first strikes the ground at a point B, as shown in the figure above.

It took T s for P to travel from A to B, and the speed of the particle at B is $3u \text{ ms}^-$

- **a**) Find the value of *u*.
- **b**) Show clearly that ...

i. ... $\sin\theta = \frac{49T^2 - 1250}{175T}$

ii. ... $\frac{25}{7}\sqrt{2} < T < \frac{50}{7}$.

u = 17.5

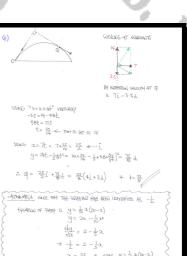
Question 14 (****)

Relative to a fixed origin O the unit vectors **i** and **j** are oriented horizontally and vertically upwards, respectively. The origin lies on level horizontal ground.

A particle is projected with velocity $(7\mathbf{i}+14\mathbf{j})$ ms⁻¹ from *O* and moves freely under gravity passing through the point *P* with position vector $(x\mathbf{i}+y\mathbf{j})$ m, in time *t* s.

a) Show clearly that

 $y = \frac{1}{10}x(20-x).$


The particle reaches a maximum height of H m above the ground and has a horizontal range of R m.

b) Find the values of R and H.

The point Q lies on the particle's trajectory so that its velocity at P is perpendicular to its projection velocity.

c) Show that the position vector of Q is $k(4\mathbf{i}+3\mathbf{j})$ m, where k is an exact constant to be found.

- 눈용 (큭)*

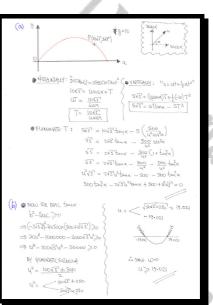
R = 20, H = 10

Question 15 (****)

In this question take $g = 10 \text{ ms}^{-2}$.

A projectile is fired from a fixed point O with speed $u \text{ ms}^{-1}$ at an angle of elevation α so that it passes through a point P.

Relative to a Cartesian coordinate system with origin at O the point P has coordinates $(10\sqrt{5}, 5\sqrt{5})$.

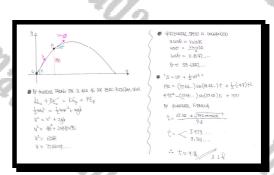

It is assumed that O and P lie in the same vertical plane, and the projectile can be modelled as a particle moving freely under gravity.

a) Show clearly that

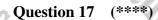
 $500\tan^2 \alpha - 2\sqrt{5}u^2 \tan \alpha + 500 + \sqrt{5}u^2 = 0.$

b) Hence determine the minimum value of u.

u ≥19.021...



Question 16 (****)


At time t = 0, a particle is projected from a point O on level horizontal ground in a non vertical direction.

At some time later the particle is passing through a point P with speed 48 ms⁻¹, at an angle of 35° above the horizontal.

Given that P is at a height of 190 m above the ground, determine the time when the particle is **again** at a height of 190 m above the ground

 $t \approx 9.744...s$

 $\sqrt{15ag}$

A projectile is fired from a fixed point O with speed $\sqrt{15ag}$ at an angle of elevation θ so that it passes through a point P. Relative to a Cartesian coordinate system with origin at O the point P has coordinates $(12a, \frac{12}{5}a)$.

It is assumed that O and P lie in the same vertical plane, and the projectile can be modelled as a particle moving freely under gravity.

Show clearly, that the respective minimum and maximum flight times of the projectile from O to P are

and

6*a*

proof

Question 18 (****)

A particle P is projected from a point O on level horizontal ground with speed 26 ms⁻¹, at an angle θ to the horizontal.

At the same time, another particle Q is projected horizontally with speed 10 ms⁻¹, from a point A, which lies 78.4 m vertically above O.

The motion of both particles takes place at the same vertical plane with both particles moving through still air without any resistance.

The particles hit the ground at the same time at two points which are d m apart.

- a) Calculate the value of d.
- **b**) Given instead that the particles collide before they reach the ground, determine by detailed calculations whether P is rising or falling immediately before the collision.

(b) FOR A LOUISION HERBORTAL SPEEDS MUT \$8
$$\begin{split} 0 &= \theta_{2m} \mathcal{K} \quad \mathcal{K} = \theta_{2m} \mathcal{K} \quad \mathcal{K} f^{*} \mathbf{0} \\ \frac{SI}{EI} &= \theta_{1} n_{\mathcal{E}} \quad \mathcal{K} = \theta_{2m} \mathcal{K} \quad \mathcal{K} f^{*} \mathbf{0} \end{split}$$
 $\begin{array}{l} \mathcal{Y}_{p} = \left(265 \text{M} \text{G}\right)^{T} - \frac{1}{2} \text{g} T^{2} \\ \mathcal{Y}_{q} = 76.4 - \frac{1}{2} \text{g} T^{2} \\ \end{array} \xrightarrow{q} \begin{array}{l} \mathcal{Y}_{p} = \mathcal{Y}_{q} \\ \mathcal{Y}_{q} = 76.4 - \frac{1}{2} \text{g} T^{2} \\ \end{array}$ P HORIZO => (265mb)T - 19T= 78-4-19T2 18.4 = 1/2(9.8)+ 1081 = 10 1081 = 40 lox4 $= \frac{12}{13}T = 78.4$ => 247 = 78.4 $= 7 = \frac{49}{15} \simeq 3.26$ · FINALY <u>UTERICITUS</u> FOR F $^{ij} V = u + a t^{ij}$ V= 265m0-9.0t $V = 26 \times \frac{12}{13} - \frac{49}{5} \times \frac{49}{15}$ 2401 (b~ 48.92" 26005 (48.42) × 4

 $d \approx 28.33...$

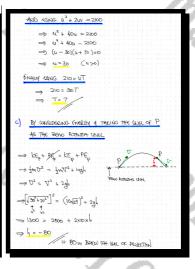
Question 19 (****)

Relative to a fixed origin O the unit vectors **i** and **j** are oriented horizontally and vertically upwards, respectively.

The gravitational acceleration constant g is taken to be $-10j \text{ ms}^{-2}$ in this question.

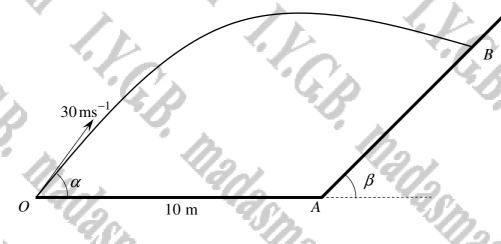
A particle is projected with velocity $(u\mathbf{i}+v\mathbf{j})\mathbf{ms}^{-1}$, where *u* and *v* are positive constants, from a point *P* with position vector 105 j m.

The particle moves freely under gravity passing through the point Q with position vector 210i m.


a) Show clearly that

 $u^2 + 2uv = 2100.$

b) Given that when t = 2 the particle is moving parallel to **i**, determine the time it takes the particle to travel from P to Q.


The particle passes through the point R with a speed of $10\sqrt{29}$ ms⁻¹.

c) Show R is 80 m below the level of P.

|u = 30, v = 20|, flight time = 7 s

A particle is projected from a point O on level horizontal ground with speed 30 ms⁻¹ at an angle of elevation α . The particle is freely moving under gravity, heading towards a plane, inclined at an angle β to the horizontal.

The foot, A, of this incline plane is located at a horizontal distance of 10 m from O, as shown in the figure above.

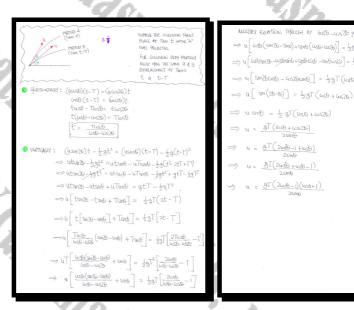
The particle strikes the incline plane at the point B, so that AB is a line of greatest slope in the same vertical plane which contains O.

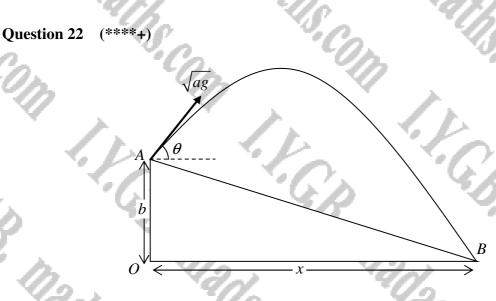
Determine the distance AB, given further that $\alpha = \arctan \frac{3}{4}$ and $\beta = \arctan \frac{4}{3}$

	V/A
	$ AB = \frac{-1550 + 400\sqrt{21}}{21} \approx 13.48 \text{ m}$
STRETUL DUTIL & DOTAILED SUMPRIM.	$= -2\omega + 12d = 480\left(\frac{-30 + 10[31]}{-3}\right).$
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T ²
exerce To findo (He Fund (Inte Find) - 200 + (名称「- 劉丁) = (80T - 200 + (名称「- 劉丁 ² = 480T - 400 + 500 - 161T ² = 460T - 30 = 147T ² + 420T - 400 - 0 = 147T ² + 420T - 400	
<u>αλησείτης fotunit & landshir the highthe source</u> <u>T_n -420 ± 1 411(50)'</u> = -420± 140(51)' = -3 274 274 .: T _n -20	o <u>+</u> 104일7 Э

(****) **Question 21**

Two particles are projected from the same fixed point, with the same speed u, at angles of elevation θ and 2θ .


If the particles collide in the subsequent motion show that


 $u = \frac{gT(2\cos\theta - 1)(\cos\theta + 1)}{2\sin\theta}$

where T is the time delay between the projection of the two particles.

 $-\theta_{203}$ - θ_{123} $T_{22} = [(\theta_{123} - \theta_{203}) \theta_{m} e_{+}(\theta_{m} e_{-} - \theta_{5} m_{e}) \theta_{m}$ $\left[\Theta_{200} + \Theta_{200} \right] = \left[\Theta_{200} \Theta_{100} - \Theta_{200} \Theta_{100} + \Theta_{100} \Theta_{200} - \Theta_{200} \right]$ $SM20Card = Costonal = \frac{1}{2}gT(costo = Cos$

A particle is projected from a point *B* down an incline plane with a speed of \sqrt{ag} , where *a* is a positive constant, at an angle of elevation θ .

The particle is moving freely under gravity and first strikes the ground at a point B. The point O lies vertically below A and at the same horizontal level as B, as shown in the figure above. The plane has constant inclination and the particle moves in a vertical plane which contains the angle of greatest slope of the plane.

a) Show that

$$x^2 \tan^2 \theta - 2ax \tan \theta + x^2 - 2ab = 0,$$

where OA = b and |OB| = x.

b) Hence show that the maximum value of x and the corresponding angle of projection θ satisfy

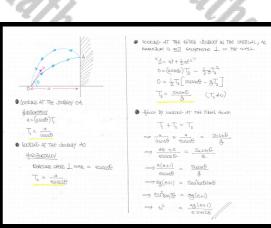
а $x = \sqrt{a(a+2b)}$ and $\tan \theta =$ a+2b

540 V +(usino)T- ±gT 4=b Diff wet 0 $\frac{x}{\theta_{200,0}} = T$ $+ (USIMO) \left(\frac{\chi}{UOSO} \right) - \frac{1}{20} \left(\frac{\chi}{UNO} \right)^2$ + atayo - 1- Azz sect BR MINIMAN OG - 322 ton 0

 $\begin{aligned} & \int_{2\pi}^{\pi} (\nabla - 2AAAA + a_{A}^{2} - 2Aa^{2} = 0) \\ & g^{2} \int_{2\pi}^{\pi} (\nabla - 2AaA + a_{A}^{2} - 2Aa^{2} = 0) \\ & g^{2} \int_{2\pi}^{\pi} (2aA - a_{A}^{2} + a_{A}^{2} - 2Aaa + 0) \\ & g^{2} \int_{2\pi}^{\pi} (2aAa + a_{A}^{2} + a_{A}^{2} - 2Aaa + 0) \\ & \int_{2\pi}^{\pi} (2aAa + a_{A}^{2} + a_{A}^{2} - 2Aa + a_{A}^{2} - 2Aaa + 0) \\ & \int_{2\pi}^{\pi} (2aAa + a_{A}^{2} + a_{A}^{2} - 2Aaa + a_{A}^{2} - 2Aaa + a_{A}^{2} - 2Aaaa + a_{A}^{2} + a_{A}^{2$

· 20(+ tank 2ab + a

proof

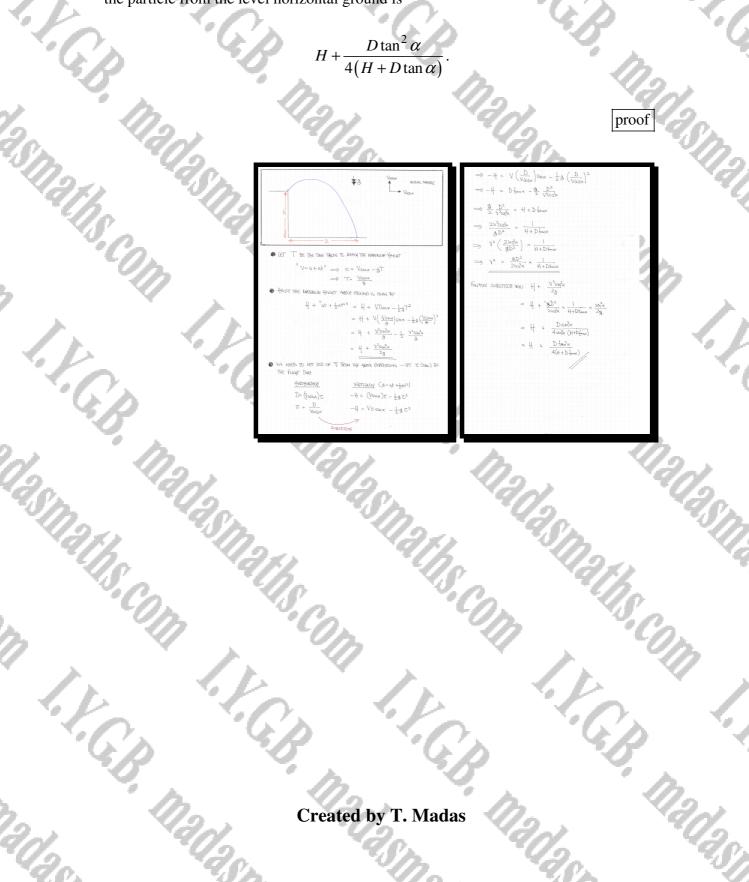

Question 23 (****+)

A particle is projected from a point O on level horizontal ground with speed u at an angle θ above the horizontal, towards a smooth vertical wall which is at a horizontal distance a from the point of projection.

The particle moves in a vertical plane perpendicular to the wall and hits the wall before it hits the ground. On impact with the wall the particle rebounds and first strikes the ground at O.

Given that e is the coefficient of restitution, show that

 $u^2 = \frac{ag(e+1)}{e\sin 2\theta}.$



proof

Question 24 (*****)

A particle is projected at an angle α above the horizontal, from a vertical cliff face of height *H* above level horizontal ground. It first hits the ground at a horizontal distance *D*, from the bottom of the cliff edge.

Assuming that air resistance can be ignored, show that the greatest height achieved by the particle from the level horizontal ground is

Question 25 (*****)

A tennis player standing on a level horizontal court serves the ball from a height of 2.25 m above the court. The ball reaches a maximum height of 2.4 m above the court and first hits the court at a horizontal distance of 20 m from the point where the player served the ball. The ball rises for T_1 s and falls for T_2 s.

The ball is modelled as a particle moving through still air without any resistance.

 $\frac{T_2}{T_1} = 4.$

- a) Show clearly that
- b) Determine the magnitude and direction of the velocity of the ball ...
 - i. ... when it was first served.
 - **ii.** ... as it lands on the court.

 $U \approx 22.926... \text{ ms}^{-1}, \tan \alpha = \frac{3}{40}, \ \alpha \approx 4.289^{\circ}...$

 $V \approx 23.8685... \text{ ms}^{-1}, \tan \beta = \frac{3}{10}, \beta \approx 16.699^{\circ}...$

(a) $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} $ $ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array}\\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $	$\begin{array}{c} \text{DDD} & \text{APAFEAUS} \\ (1500 \text{ M} + \frac{\pi}{24} \text{ GeV}) = \frac{15}{20} & \text{How}(\text{F} = 20 = 0 \text{ Galar} \times \frac{\pi}{24} \text{ GeV}) \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{15}{20} & \text{U} = \frac{20 \times 116}{3000} \text{ M} \text{ Galar} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{15}{20} & \text{U} = \frac{20 \times 116}{3000} \text{ M} \text{ Galar} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{20 \times 116}{3000} \text{ M} \text{ Galar} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{20 \times 116}{3000} \text{ M} \text{ Galar} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{20 \times 116}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{20 \times 116}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{20 \times 116}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{20 \times 116}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ GeV} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ M} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ GeV} \\ (1500 \text{ M} \times \frac{\pi}{24} \text{ GeV}) = \frac{1000}{3000} \text{ GeV} \\ (1500 \text{ GeV}) = \frac{1000}{3000} $
$ \begin{array}{c} & \frac{T_{1}}{T_{1}} = \underbrace{1}_{1} & \underbrace{1}_{1} & \underbrace{1}_{2} & \underbrace{1}_$	$V \simeq 6 835.$ $V \simeq 6 835.$ $V \simeq 6 835.$ $V \simeq 7 4104 \cdot \frac{128}{10}$ $V \simeq 23.87 \text{ way}$ $U \simeq 23.87 \text{ way}$

Question 26 (****)

A particle P is projected from a fixed point O with speed v and at an angle of elevation θ° .

It passes through a point Q which is at a horizontal distance a from O, and a vertical distance h below the level of O.

P is then projected from O with speed v at an angle of depression $(90-\theta)^{\circ}$ and passes through Q again.

a) Show that

 $a^2 + ag \cot(2\theta) = 0$

b) Deduce that

 $h + a \tan(2\theta) = 0$

proof

	Гино4-Энт НЭОСОЙТ 22A9 23190513345497 H "Walloo" Энт са Эштанэя (~
0 Top	PHOLEGEORY AT MODE OF EVENATION O
	= (Vas0)t
_h -	= (Vsm9)t - 129t2
Siųj	Welly Foll ANSUL OF DEPRESSION (90-0)
	(Vam0)T
ha	(Vace)T + 5872
2) WANAULATE GADY PANE SEPARATELY &	Y EUMINATTING THE TIMES
$\hat{T} = \frac{\alpha}{V \cos \theta}$	T= a Bmzv
$-\frac{1}{2} = \left(\sqrt{Sm}\theta \right) \left(\frac{\alpha}{\sqrt{\cos\theta}} \right) = \frac{1}{2} \cdot g \left(\frac{\alpha^2}{\sqrt{2} \cos^2 \theta} \right)$	$\left(\frac{\leq \mu}{\partial S_{M2} \leq v}\right) \otimes \frac{1}{\leq} + \frac{\mu}{\partial m_2 v} (\partial 2 \omega V) = 1$
$-h = a \tan \theta - \frac{\theta a^2}{2v^2} \operatorname{sec}^2 \theta$	$h_{\eta} = \alpha_{col} + \frac{\partial \alpha^2}{2 \sqrt{2}} \cos^2 \theta$
$-b = \alpha \tan \theta - \frac{\theta \alpha_2}{2\nu_2} (1 + \tan^2 \theta)$	$h = a \omega d\theta + \frac{\theta a^2}{2v^2} (1 + \omega d^2 \theta)$
GUMINATE	L
$\Rightarrow a abb + \frac{Aa^2}{2y^2}(1+abb) =$	<u>Aq2</u> (1+ taip) - a tairt
⇒ zavzate - ga"(1+atzo) =	= ga2CI+tango) - 2av2tano
= 2dv2 (wt0+tan0) + gat ((1+6+20-1-tailo) =0
$\Rightarrow 2v^2(\omega t \theta + \delta u \theta) + ag$	(who - tongo) =0

(ater tang) + ag (ate

$\Rightarrow 2r^2 + ag(cotb - band) = 0$
$\Rightarrow 2v^2 + ag\left(\frac{1}{2u_10} - buoge \right) = 0$
$\implies 2\eta^2 + ag\left(\frac{1-ba_1^2\theta}{ba_1\theta}\right) = 0$
$\Rightarrow \sqrt{2^2 + 2\log\left(\frac{1 - \tan^2\theta}{2\tan\theta}\right)} = 0$
$\implies V^2 + \log\left(\frac{1}{4a_12\theta}\right) = 0$
\Rightarrow $V^2 + ay at 20 = 0$
NOW -h = atmit - 3a2 (1+ tay28) From energies
$-h = a \tan \theta - \frac{2a^2}{2(-ag \operatorname{cottle})} (1+\operatorname{buils})$
$0 = h + a \tan \theta + \frac{2d^2(1 + \tan(\theta))}{2ag. \cot 2\theta}$
$O = h + a \left[\tan \theta + \frac{1}{2} (1 + \tan \theta) \tan 2\theta \right]$
$0 = h + a \left[t_{buy} \theta + \frac{1}{2} C (t_{buy}^2 \theta) \left(\frac{2 t_{buy} \theta}{(t - t_{buy}^2 \theta)} \right) \right]$
$O = h + a \left[\operatorname{den} \theta + \frac{(1 + \operatorname{bar}^2 \theta) \operatorname{fau} \theta}{1 - \operatorname{bar}^2 \theta} \right].$
$0 = h + \alpha \left[\frac{\tan \theta (1 - \tan \theta) + C (1 + \tan \theta) \tan \theta}{1 - \tan^2 \theta} \right]$

+ twi0 + build]

PROJECTILES CLINE PLANES ASSINGUS INCOM I. Y. C.B. MARASINGUS COM I.Y. C.B. MARASING

Question 1 (***)

The point A lies on a smooth plane which is inclined at an angle α to the horizontal, where $\tan \alpha = \frac{5}{12}$.

A particle is projected from A, up a line of greatest slope of the plane, with a speed of 24.5 ms⁻¹ at an angle of elevation $\alpha + \theta$, where $\tan \theta = \frac{3}{4}$.

The particle is moving freely under gravity and first hits the plane at B.

Given that the coefficient of restitution between the plane and the particle is $\frac{1}{2}\sqrt{3}$ show that the particle first rebounds from *B* with a speed of 14.7 ms⁻¹.

ith A DIAFRAM $\alpha = \frac{12}{12}$ 6m 0 - 3 · y = utsmo-1gta SING- 3 $\cos \Theta = \frac{4}{5}$ (.t+0)

WE FIND THE COMPONENTS OF THE VECCONY PARALLE = u costo - atsina J = 245x 4 - 9.8x 1/2x 1/2 å = 7.35 a = usma - a + wsw g = 24.5×3 - 9.8×12 × 12 ⇒ ý = -147 . THE SPEEDS AFTIR THE IMPAC a= 7.35 (UNCHANGED) elg = 12×147 = 73513 Finally the rescons spec unit be STED =) (7.35)2+ (7.3542) = 7.35 \ 12 + 152

proof

Question 2 (***+)

The figure above shows a particle projected from a point O on a plane inclined at an angle θ to the horizontal. The particle is projected down the plane with speed u, at an angle α to a line of greatest slope of the plane.

The particle lands for the first time at the point P, in time T.

α

The gravitational acceleration g is assumed constant and air resistance is ignored.

- a) Determine an expression connecting u, θ, α and T.
- **b**) Hence show that

 $|OP| = \frac{2u^2}{g\cos^2\theta} \left[\sin\alpha\cos(\alpha-\theta)\right]$

 $2u\sin\alpha = gT\cos\theta$

(t+a) and

Question 3 (***+)

The point O lies on a plane which is inclined at an angle of 30° to the horizontal.

A particle is projected from O, up a line of greatest slope of the plane, with a speed of $U \text{ ms}^{-1}$, at an angle ψ to the plane.

The particle first strikes the plane at **right angles**, at the point A.

The gravitational acceleration g is assumed constant and air resistance is ignored.

a) Determine the value of $\tan \psi$.

b) Given further that |OA| = 35 m, determine the value of U

1	
STARTING WITH A DIAGRAM	
*∂	P 22
U D	38
1 2	· · · · · · · · · · · · · · · · · · ·
Kur an	
	the law has success
OCUMUS SOUL POATTONS IN POUPDUEDO	
$g_{\pm}^2 = -g_{EM2}g_{\pm} = -g_{\pm}g_{\pm}$	y = - georgo = - 728
i = Veren - 2gt	ig = Veny - Egt
a = Utwey - \$9+2	y = Utsmy - 18 gtz
0W "AT 21547 420165" → 2=0 W Y=0	hv g=0 i=Tcoop - Lat
Utsny - Sot=0	$0 = U(asp - \frac{1}{2g}\left(\frac{4U_{SMV}}{\sqrt{3}g}\right)$
$\nabla SIM \psi = \frac{\sqrt{3}}{4}gt = 0 (t\neq 0)$	
t = WUSAND (FUGHT TINE)	$0 = U_{cose} + \frac{2U_{SM}\psi}{V_{S}}$
	$0 = \cos \psi - \frac{2 \sin \psi}{\sqrt{3}} (\nabla \neq o)$
	20my = NBCosty
	trup = ste
	$\left(Supper = \sqrt{\frac{3}{2}} \right) (\cos \varphi = \frac{2}{\sqrt{2}})$
	(SAV= 13; carp= 27) 10= 40.70

	NSB-	
-	a= Utway - 48t2	
\Rightarrow	$3S = U \left(\frac{4U \text{SMW}}{\sqrt{3} \text{R}}\right) (ds\psi - \frac{1}{48} \left(\frac{4U \text{SMW}}{\sqrt{3} \text{R}}\right)^2$	
	$3S = \frac{4\overline{D}^2 \text{SMP(AQU)}}{\sqrt{s}^2 g} - \frac{4\overline{D}^2 \text{SMP(AQU)}}{\frac{1}{2} g}$	
	3553 g = 40= (sinploay - 5113 4:× 33)	
⇒	$35\sqrt{3}_{q} = 40^{2} \left[\sqrt{\frac{3}{7}} \times \frac{2}{\sqrt{7}} - \left(\sqrt{\frac{3}{7}}\right)^{2} \times \frac{\sqrt{3}}{3} \right]$	
Ð	$35\sqrt{3}g = 40^{2} \left[\frac{2}{7}\sqrt{3} - \frac{1}{7}\sqrt{3} \right]$	
1	$35\sqrt{2}g = 4U^2 \times \frac{1}{7}\sqrt{2}$	
3	35g = 402	
=	$\nabla^2 = 600.25$	
=	U = 24.5 ms-1	
	1	

 $\tan \psi = \frac{1}{2}\sqrt{3}$, $U = \frac{49}{2} = 24.5 \text{ ms}^{-1}$

NOW LOAL= 2 = 35 WHEN t= 400

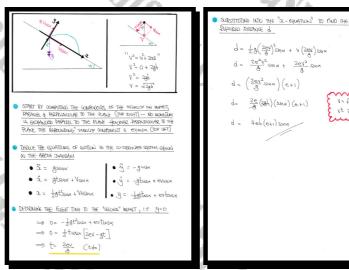
Question 4 (****)

The figure above shows the path of a particle, released from rest, from a height habove a smooth plane, inclined at an angle α to the horizontal.

n

proof

 $d = \frac{1}{2}g\left(\frac{2eV}{\theta}\right)^2 Sh\alpha + V\left(\frac{2eV}{\theta}\right)Sh\alpha}$ $d = \frac{2e^2v^2}{8}sma + \frac{2ev^2}{8}sma$ $d = \left(\frac{2ev^2}{A}Sin\alpha}\right)\left(e+1\right)$ 2e (2) (SM&) (e+1) 4eh(e+1)sin


The particle strikes the plane at the point A, and rebounds striking the plane for the second time at the point B.

The coefficient of restitution between the plane and the particle is e.

The gravitational acceleration g is assumed constant and air resistance is ignored.

Given that |AB| = d, show that

 $d = 4eh(e+1)\sin\alpha.$

Question 5 (****)

The point O lies on a plane which is inclined at an angle θ to the horizontal.

A particle is projected from O, up a line of greatest slope of the plane, with speed of V at an angle of elevation α , along a line of greatest slope of the plane.

The gravitational acceleration g is assumed constant and air resistance is ignored.

The particle lands at a point P on the plane, at time T after projection.

a) Find an expression for T in terms of V, g, θ , and α , and hence show that

$$|OP| = \frac{2V^2 \sin(\alpha - \theta) \cos \alpha}{g \cos^2 \theta}$$

The value of α can vary so that |OP| is greatest.

b) Express α in terms of θ when |OP| is greatest.

c) Show further that greatest value of |OP| is

 $\overline{g(1+\sin\theta)}$

 $2V\sin(\alpha-\theta)$

 $g\cos\theta$

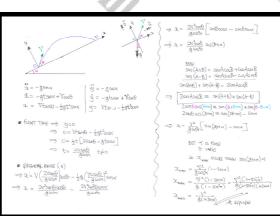
 $\alpha = \frac{1}{4}(2\theta + \pi)$

,2

 $\frac{J^2}{\cos^2\theta} \left[1 - \sin^2\theta \right] = \frac{V^2 \left(1 - \sin^2\theta \right)}{g \left(1 - \sin^2\theta \right)}$

Question 6 (****)

The point O lies on a plane which is inclined at an angle α to the horizontal.


A particle is projected from O, up the line of greatest slope of the plane, with speed of V at an angle θ to the line of greatest slope of the plane.

Show that the maximum range of the particle up the plane is

$\frac{V^2}{g(1+\sin\alpha)}$

where g is the gravitational acceleration, assumed constant.

Air resistance is ignored in this question.

proof

Question 7 (****)

The point O lies on the foot of a fixed plane which is inclined at an angle of 45° to the horizontal. A particle is projected from O, up the line of greatest slope of the plane, with speed of u.

The gravitational acceleration g is assumed constant and air resistance is ignored.

Given that the particle achieves the greatest range up the plane, determine the angle of projection.

, 22.5° to the pla	ane or 67.5° to the horizontal
Nan I	da i
the states	$\begin{array}{rcl} & \Rightarrow & z = \frac{2i\Omega_{+}a^{2}}{3} \left[\sin \theta \log \theta - \sin^{2}\theta \right] \\ \Rightarrow & z = \frac{2i\Omega_{+}a^{2}}{3} \left[\pm \sin 2\theta - \left(\pm \pm \pm \cos 2\theta \right) \right] \\ \Rightarrow & z = \frac{2i\Omega_{+}a^{2}}{3} \left[\pm \sin 2\theta + \frac{1}{2} \left(\sin 2\theta - \pm \pm \right) \right] \\ \Rightarrow & z = \frac{i\Omega_{+}a^{2}}{3} \left[-\sin 2\theta + \cos 2\theta - 1 \right] \end{array}$
<u>BETMINE BUATIONS BE DREAGENINES & VELOCINIE IN 2 8 3</u> BY SUCCEINE INTEGRATIONS	MANIPULATE THE TRUGNIOUETRIC EXTRESSON DIRETTU CR BY THE "R-TRANSFORMATION" WETHER
$ \begin{array}{cccc} \rightarrow \widetilde{u} &= -g_{avalut}^{avalut} & \rightarrow \widetilde{u} &= -g_{avalut}^{avalut} \\ \rightarrow \widetilde{u} &= -g_{avalut}^{avalut} & \rightarrow \widetilde{u} &= -g_{avalut}^{avalut} \\ \rightarrow \widetilde{u} &= -g_{avalut}^{avalut} & \rightarrow \widetilde{u} &= -g_{avalut}^{avalut} \\ \rightarrow \widetilde{u} &= utos 0 + 4v_{a} t^{2s} \\ \hline t_{vol} &= utos 0 + utos 0 \\ \hline t_{vol} &= utos 0 \\ \hline t_{vol} &= $	$ \Rightarrow 2 = \frac{\sqrt{2}}{3} \frac{1}{\sqrt{2}} x_{1} \sqrt{2} \times \left[\frac{1}{\sqrt{2}} \sin(2\theta + \frac{1}{\sqrt{2}} \int dx^{2} \theta - \frac{1}{\sqrt{2}} \right] $ $ \Rightarrow 2 = \frac{2x^{2}}{3} \left[\cos(2\theta + 4x) - \sin(4x \cos 2\theta - \frac{1}{\sqrt{2}} \right] $ $ \Rightarrow 2 = \frac{2x^{2}}{3} \left[\cos(2\theta + 4x) - \frac{1}{\sqrt{2}} \right] $
NEXT FIND THE FLUGHT TIME BY SOLVING A=0	To WARINIZE & , WE REPORE
\Rightarrow utsmb - $\frac{1}{2}\sqrt{2}gt^2 = 0$	\Rightarrow Sin (20+45) = 1
$ \Rightarrow t [u_{1000} - i_{24} t] = 0 $ $ \Rightarrow t_{*} \qquad \bigvee (v_{100} t_{10}) $ $ \frac{v_{100} t_{10}}{v_{124}^{2}} = \frac{2i_{100} t_{10}}{3} $	→ 2∂+45 = 90 → 2∂-≤5 → ∂=225
Next we find the phase of the panel (2), using the furt time $\Rightarrow \alpha \approx u(\frac{2(2u_{\text{SUB}}B)}{2}) \cos \theta - \frac{1}{2} 4\pi \frac{\alpha}{3} (\frac{2(2u_{\text{SUB}}B)}{3})^2$	- Pholetion Anvier is 22.5° to the future OR
$\frac{\partial \sin^2 \omega \sin 2\omega}{8} = \frac{\partial \tan \partial m e^2 \omega \sin 2\omega}{8} = \frac{\omega}{8}$	ST ST TO THE HALLANDAL
7 7.13	510

Question 8 (****)

The point O lies on a plane which is inclined at an angle of 30° to the horizontal.

A particle is projected from O, up a line of greatest slope of the plane, with speed of $V \text{ ms}^{-1}$ at an angle of elevation $(30+\alpha)^{\circ}$.

The gravitational acceleration g is assumed constant and air resistance is ignored.

The particle first hits the plane at right angles at a point P, 16 s after projection.

Determine the exact value of $\tan \alpha$ and the distance *OP*.

\$8 at=+Vtuse 6 6 fay x= 13 Sha = 13 $50.5 \propto = \frac{2}{\sqrt{2}}$ IN AN OBLUQUE GARTE I ZONOTTHURS STITHUR - 13-9 V3gt + VSm Vtsina - V3 gt 2 4V= 10gv7 V= 317 NAIN - Fat $\alpha = -\frac{1}{4}g(16)^2 + (4g(7))x16 \times \frac{2}{\sqrt{7}}$ (t#o a = - 64g + 128g x = .64 g a= 627.2 -128(4VSIMA)

 $\tan \alpha = \frac{1}{2}$

 $\sqrt{3}$

, ||OP| = 64g = 627.2

WSW00 V3g

Question 9 (****)

The point O lies on a plane which is inclined at an angle of $\frac{1}{6}\pi$ to the horizontal.

A particle is projected from O, up a line of greatest slope of the plane, with speed of $U \text{ ms}^{-1}$ at an angle of elevation $\theta + \frac{1}{6}\pi$.

The gravitational acceleration g is assumed constant and air resistance is ignored.

The particle first hits the plane when it is moving horizontally.

Determine the exact value of $\tan \theta$.

 $\tan \theta = \frac{1}{5}\sqrt{3}$

2

**	N N N N N N N N N N N N N N N N N N N
@ BESOWING frong of PORPHIDICULAR TO T	RHE FUNK
$ \begin{split} \vec{x} &= -g \sin \vec{y} = -\frac{1}{2}g \\ \vec{z} &= -\frac{1}{2}g + V \cos \theta \\ \vec{z} &= 0 \text{ there } T \text{ the } g \text{ the } \\ \vec{z} &= 0 \text{ there } T \text{ the } g \text{ the } \\ \vec{z} &= 0 \text{ there } T \text{ the } g \text{ the } \\ \vec{z} &= 0 \text{ the } 0 - \frac{1}{2}g \text{ the } \\ \vec{z} &= 0 - \frac{1}{2}g \text{ the } \\ \vec{z} &= \frac{4 \nabla \sin \theta}{\sqrt{z}} - \frac{1}{2}g \frac{1}{2} \text{ the } \\ \hline \vec{z} &= \frac{4 \nabla \sin \theta}{\sqrt{z}} \text{ the } \\ \end{split} $	y = -80x₩ = - ¥3 y = -80x₩ = -¥3t y = 0tan0 - ¥3t = 0
MOUNT KORANIN ON MPAT	$THS \frac{\underline{\left[\underline{A}\right]}}{\underline{A}} = \frac{1}{4m} \frac{1}{\underline{B}}$ $\frac{\underline{\left[\underline{A}\right]}}{\underline{A}} = \frac{1}{\sqrt{2}}$

1 t= 402mb	
= Uw8 - 128 (400	$(\underline{\theta}) = 0 \omega 0 = - \frac{2\omega 0}{13}$
Usmb - 23 (40sm	$Q_{MZ}O_{-} = Q_{MZ}O_{-} - Q_{MZ}O_{-} = \left(\frac{\theta_{1}}{2}\right)$
ituy	
$\frac{ \dot{y} }{\dot{x}} = \frac{1}{\sqrt{3}} \implies$	$\frac{1}{\frac{1}{\sqrt{2}}} = \frac{\theta_{\text{min}}}{\frac{\theta_{\text{min}}}{\sqrt{2}}} = \frac{1}{\sqrt{2}}$
-	$\frac{1}{\tilde{z}\gamma} = \frac{\theta_{m2}}{\frac{\theta_{m2} - 2 z_{m}}{\tilde{z}\gamma}} = \frac{\theta_{m2}}{\theta_{20}}$
	$\frac{t_{un\theta}}{1-\frac{2}{13}t_{un\theta}}=\frac{1}{\sqrt{3}}$
-	NStant = 1 - 2 hang
->	5 Jan 8 = 13
-	fm0 = 515

Question 10 (****)

A particle is projected with speed U, from a point O on a plane which is inclined at an angle $\frac{1}{6}\pi$ to the horizontal.

The particle is projected up the plane at an angle θ to the plane and moves in a vertical plane which contains a line of greatest slope to the plane. When the particle first strikes the plane at the point A, it is moving at right angles to the plane.

The gravitational acceleration g is assumed constant and air resistance is ignored.

Show that $|OA| = \frac{4U^2}{7g}$.

$$\begin{split} \ddot{\mathcal{Y}} &= -g\cos{\psi} = -\frac{1}{2}\sqrt{sg}, \\ \dot{\mathcal{Y}} &= -\frac{1}{2}\sqrt{sg}t + Osm0 \end{split}$$
-1-8 -tati Utwst - Lat2 y = Utsino - frigt2 0 - viat

	Whut we and althout THE RAWOR	
	stef - Geold at +	
	$\mathcal{P} = \mathcal{U}\left(\frac{40 \text{sm}\theta}{\sqrt{3}\theta}\right) \cos \theta - \frac{1}{4} \theta \left(\frac{40 \text{sm}\theta}{\sqrt{3}\theta}\right)^2$	
	$\Rightarrow 2 = \frac{40^2}{15^2 g} \sin \theta \cos \theta - \frac{1}{40} \frac{160^2 \sin^2 \theta}{3g^2}$	
	$\theta = \frac{40^2}{73^2 + 3m} \text{Sim} \Theta - \frac{40^2}{2} \text{Sim}^2 \Theta$	
	NOW tom B= NS	
	S S	
	+Htwice-	
	$\sin \theta \approx \frac{\sqrt{s}}{\sqrt{\gamma}}$	
	$\cos\theta = \frac{2}{\sqrt{7}}$	
-	$\Delta \mathcal{L} = \frac{417^2}{\mathcal{M}_g} \frac{45^2}{47} \frac{2}{\sqrt{7}} - \frac{417^2}{b_g} \left(\frac{3}{7}\right)$	
-	$i = \frac{8\sigma^2}{7g} - \frac{4\sigma^2}{7g}$	
-	$a = \frac{\mu v^2}{7g}$	
	As REPURAD	

proof

Question 11 (****)

A particle is projected from a point O on a smooth plane inclined at an angle α to the horizontal.

The particle is projected up the plane with speed u, at an angle β to the plane, and moves in a vertical plane which contains a line of greatest slope of the plane.

The particle first hits the plane at the point A and rebounds in a vertical direction.

The gravitational acceleration g is assumed constant and air resistance is ignored.

If the coefficient of restitution between the particle and the plane is e, show that

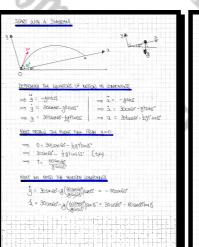
 $\cot\alpha \cot\beta = e+2.$

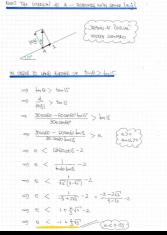
proof

Question 12 (****+)

The point O lies on a plane which is inclined at an angle of 15° to the horizontal.

A particle is projected from O, up a line of greatest slope of the plane, with speed of 30 ms^{-1} at an angle of 75° to the horizontal.


The particle first strikes the plane at the point A.


When the particle strikes the plane it rebounds and strikes the plane again at the point B, where B is further up the plane than A.

The gravitational acceleration g is assumed constant and air resistance is ignored.

The coefficient of restitution between the particle and the plane is e

Given further that $\tan 15^\circ = 2 - \sqrt{3}$, show that $e < -1 + \frac{2}{3}\sqrt{3}$.

proof

Question 13 (****+)

The point O lies on a plane which is inclined at an angle of 30° to the horizontal.

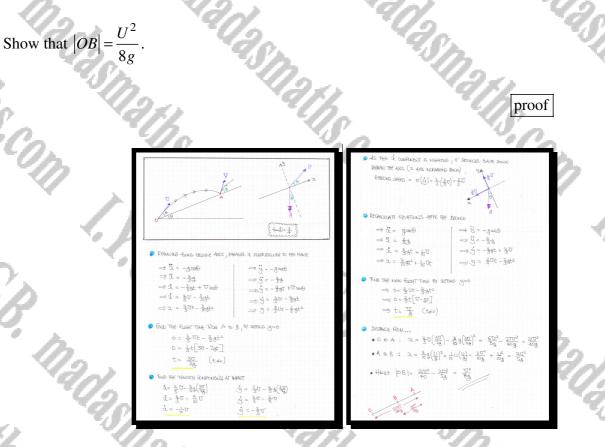
A particle is projected from O, up a line of greatest slope of the plane, with speed of $V \text{ ms}^{-1}$ at an angle θ to the plane.

The gravitational acceleration g is assumed constant and air resistance is ignored.

Show that as θ varies the greatest range of the particle up the plane is achieved when the direction of V bisects the angle between the plane and the upward vertical.

proof

 $\alpha = \frac{4\sqrt{2} \sin \theta}{8} \left[\frac{\sqrt{3}}{3} \cos \theta - \frac{1}{3} \sin \theta \right]$ $\frac{4V_{SM}\Theta}{3a}$ $\left(\sqrt{3}\cos\Theta - \sin\Theta\right)$ $\left[\underline{\partial} m \partial_{\underline{x}} \frac{1}{2} - \partial_{\underline{a}} \frac{1}{2} \frac{1}{2} \int \frac{\partial}{\partial t} \frac{\partial}{\partial t}$ $\left[\circ 66mz \Theta mz - \circ 65z 00 \Theta z 0 \right] \frac{\Theta mz^2 \sqrt{\Theta_{-}}}{\sigma 6} =$ andiz 24-21 $\frac{\Theta V^2 \text{Sm}\Theta}{3 a} \quad \cos(\Theta + 30)$ • St. = -gs:m30° = -129 • $\overset{\circ}{\underline{U}} = -\frac{g}{2}\cos^2\theta = -\frac{\sqrt{2}}{2}g$ $\theta_{200}V + tg_{\pm}^{\perp} - = \dot{x}$ $\boldsymbol{\Theta}_{M2} V + \boldsymbol{\psi}_{S} = -\frac{\sqrt{s}}{2} \boldsymbol{g} \boldsymbol{\psi} + V_{SM} \boldsymbol{\Theta}$ • a = - 1 st2 + Vtoost $\Im M \left[(\theta + 30) + \Theta \right] = SM (\theta + 30) (05 + \theta) + (05 + \theta) M^2$ $\mathfrak{G} = - \frac{\sqrt{3}}{4} \mathfrak{g} t^2 + V t_{SM} \mathfrak{G}$ $\Theta_{m2}(_{0E+B})_{2O3} - \Theta_{2O3}(_{0E+B})_{M2} = \left[\Theta_{-}(_{0E+B}) \right]_{M2}$ FUCHE TIME BY S ZAt2 + VtsmB =0 \implies Sm (20+30) - sin 30 = 2 sin $\theta \cos(\theta + 30)$ $\implies \frac{1}{2}Sm(2\theta+30) - \frac{1}{4} = sm\theta \cos(\theta+30)$ t= AVSMO ++0 LE VI VOZZINAS THE GARDESON IN J. $x = \frac{8V^2}{3a} \left(\frac{1}{2} \sin(643c) - \frac{1}{4} \right)$ NO THE FRANK IS GUNN BY $\Rightarrow x = \frac{2V^2}{3a} \left[\sin(2\theta + 3\theta) - 1 \right]$ $= 32 = -\frac{1}{4} \frac{9}{9} \left[\frac{4 \sqrt{3m}}{8\sqrt{3}} \right]^2 + \sqrt{\frac{4 \sqrt{3m}}{8\sqrt{3}}} \cos \theta$ $= \frac{1}{49} \left[\frac{16\sqrt{2} \sin^2\theta}{g^2 \times 3} + \frac{4\sqrt{2}\cos\theta}{\sqrt{3}^3 g} \right]$ SIN(294-30)=1 20+30 = 90 4v20s0sm0 θ= 60° $\frac{1}{\alpha} \frac{1}{\alpha} \frac{1}$ AS ELEVIEN


Question 14 (****+)

The point O lies on a plane which is inclined at an angle θ to the horizontal.

A particle is projected from O, up a line of greatest slope of the plane, with speed of $U \text{ ms}^{-1}$ at an angle θ to the plane. When the particle hits the plane it rebounds with speed $V \text{ ms}^{-1}$. After rebounding the particle first hits the plane at the point B.

The coefficient of restitution between the particle and the plane is $\frac{2}{3}$.

The gravitational acceleration g is assumed constant and air resistance is ignored.

Question 15 (****+)

The point O lies on a plane which is inclined at an angle of 45° to the horizontal.

A particle is projected from O, up a line of greatest slope of the plane, with speed of $U \text{ ms}^{-1}$ at an angle θ to the plane. When the particle hits the plane it rebounds with speed $V \text{ ms}^{-1}$.

The coefficient of restitution between the article and the plane is $\frac{1}{3}$.

Given further that at the instant when the particle first hits the plane it travels in a horizontal direction show that $V = \frac{1}{2}U$.

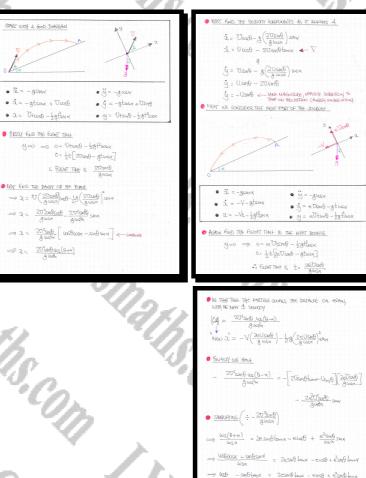
The gravitational acceleration g is assumed constant and air resistance is ignored.

_	S.A.	· Co
5		
	• ET THE EXPANSE OF MOTION ID THE EXPANSION $\begin{split} \vec{x} &= -gents & \vec{y} &= -gents \\ \vec{x} &= -gents & \vec{y} &= -gents \\ \vec{x} &= -gent & \vec{y} &= -gents \\ \vec{y} &= -gent & \vec{y} &= -gents \\ \vec{y} &= -gent & \vec{y} &= -gent \\ \vec{y} &= -gent & \vec{y} &= -gent \\ \vec{y} &= -gent & \vec{y} &= -gent \\ \vec$	• This for the last find The Persential Andre- $= 0' \log_{\theta} - \frac{1}{2} \sqrt{n^2 t} + 0 \sin \theta - \frac{1}{2} \sqrt{n^2 t} + c$ $= 0' \log_{\theta} - \frac{1}{2} \sqrt{n^2 t} + c$ $= 0' \cos \theta + U \sin \theta - \frac{1}{2} \sqrt{n^2 t} + c$ $= 0' U \cos \theta + U \sin \theta - \frac{1}{2} \sqrt{n^2 t} + c$ $= 0' U \cos \theta + U \sin \theta - \frac{1}{2} \sqrt{n^2 t} + c$ $= 0' U \cos \theta + U \sin \theta - \frac{1}{2} \sqrt{n^2 t} + \frac{1}{2} n^$
0		
5		$\int_{-\infty}^{\infty} \left(\frac{\partial u_{a}}{\partial u_{a}} \nabla S - \frac{\partial u_{a}}{\partial u_{a}} \nabla S + $
	· Kon	·Cp

proof

Question 16 (*****)

A particle is projected from a point O on a smooth plane inclined at an angle α to the horizontal.


The particle is projected up the plane with speed U, at an angle θ to the plane, and moves in a vertical plane which contains a line of greatest slope of the plane.

The particle first hits the plane at the point A, rebounds and next hits the plane at O.

The gravitational acceleration g is assumed constant and air resistance is ignored.

If the coefficient of restitution between the particle and the plane is e, show that

 $\cot\theta = (1+e)\tan\alpha.$

-> man - sino bula - ccanio hava - cuso + ccano fana -> man - sino bula - ccanio hava - cuso + ccano fana

proof

- $= \cos \theta(e+1) = \sin \theta \tan (e^{2}+2e+1)$ $= \sin \theta \tan (e+1)^{2}$
- =) lato = (ite) tana
- AS REPUIRED

Question 17 (*****)

The point O lies on a plane inclined at an angle θ to the horizontal.

A particle is projected from O, with speed u up and in a direction up the plane, at an angle α to the horizontal.

The particle first strikes the incline plane at the point A.

The motion of the particle takes place in a vertical plane which contains a line of greatest slope of the incline plane.

The gravitational acceleration g is assumed constant and air resistance is ignored.

Given that the particle is travelling horizontally as it strikes A, show that

 $\tan \alpha = 2 \tan \theta \, .$

proof

35112-	-43SM2+7	Created by T. Madas	anger a	SIDARS "
I.V.C.B		• STRETING WON THE GUAL DARGHM • STRETING WON THE GUAL DARGHM • DEUX FORATOUS OF WOTCH WITH AND • DEUX FORATOUS OF WOTCH WITH AND • DEUX FORATOUS OF WOTCH WITH AND • $\vec{x} = -gxm\theta$ • $\vec{y} = -gxe\theta$ • \vec	$\begin{array}{c} (4.1) \\ \hline (4.1) \hline \hline (4.1) \\ \hline (4.1) \hline \hline$	
		$\begin{aligned} & = \underbrace{\tilde{x}}_{000} \left[(\omega_{10} - s_{000} + \omega_{000}) + (\omega_{000} + \omega_{000}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} - \omega_{10}) + (\omega_{10} - \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} - \omega_{10}) + (\omega_{10} - \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} - \omega_{10}) + (\omega_{10} - \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} - \omega_{10}) + (\omega_{10} - \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} - \omega_{10}) + (\omega_{10} - \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} - \omega_{10}) + (\omega_{10} - \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} - \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{10} + \omega_{10}) \right] \\ & = \underbrace{\tilde{y}}_{000} \left[(\omega_{10} + \omega_{10}) + (\omega_{$	METHOD B - BI LOOKANG & THE X-Y AVES LOOKING AT THE X & Y ARE AND THE MOTION OF THE PARTULE IN THAT TRAVE	
1. Y.C. Madas	B. Madasn	Created by T. Madas	nadasn	nadasmo