uas mans.com Created by T. Madas

asmaths.com

TRIGONOMETRIC TATIONS ASIRALISCORT T. Y.C.B. MARIASIRALISCORT T.Y.C.B. MARIASIRA

Question 1 (**)

Find the general solution of the trigonometric equation

$$\cos(4x-40)^\circ = -0.5$$
.

$$x = \begin{cases} (4 \pm 9n) 10^{\circ} \\ (7 \pm 9n) 10^{\circ} \end{cases} n = 0, 1, 2, 3, \dots$$

a.

Question 2 (**)

F.G.B.

I.C.B.

Find the general solution of the trigonometric equation

$$\sin\left(x + \frac{\pi}{3}\right) = \sqrt{3}$$

Y.C.P

$$x = \begin{cases} (11 \pm 12n)\frac{\pi}{6} \\ (1 \pm 4n)\frac{\pi}{2} \end{cases} \quad n = 0, 1, 2, 3, \dots$$

F.G.B.

11.202ST

1+

Created by T. Madas

Question 3 (**)

Find the general solution of the trigonometric equation

ŀ.C.B.

$$\sqrt{2}\cos\left(2x+\frac{\pi}{6}\right)=1.$$

$$x = \begin{cases} (1 \pm 24n) \frac{\pi}{24} \\ (19 \pm 24n) \frac{19\pi}{24} \end{cases} \quad n = 0, 1, 2, 3, \dots$$

COM

Question 4 (**)

I.C.B.

I.F.G.B

Find the general solution of the trigonometric equation

$$\sin(4x+10)^\circ = \sin 50^\circ$$

KCA

$$x = \begin{cases} (1 \pm 9n)10^{\circ} \\ (1 \pm 3n)30^{\circ} \end{cases} n = 0, 1, 2, 3, \dots$$

I.G.P.

Madasn

1

Created by T. Madas

Question 5 (**)

Find the general solution of the trigonometric equation

 $\cos(3x)^\circ = \cos 30^\circ.$

$x = (\pm 1 \pm 12n)10^{\circ}, \quad n = 0, 1, 2, 3, \dots$

Question 6 (**)

ŀC.B.

I.C.p

Find the general solution of the trigonometric equation

$\tan\left(x\!+\!\frac{\pi}{3}\right)=1.$

Y.C.P.

 $x = (11 \pm 12n)\frac{\pi}{12},$ n = 0, 1, 2, 3, .

K.C.F.

1+

Question 7 (**)

Find the general solution of the trigonometric equation

2

$$\tan\left(2x-\frac{\pi}{4}\right)=\sqrt{3}.$$

$$x = (7 \pm 12n)\frac{\pi}{24}, \quad n = 0, 1, 2, 3, \dots$$

Question 8 (**)

I.C.B.

I.F.G.B.

Find the general solution of the trigonometric equation

 $2\sin\left(2x-\frac{\pi}{2}\right) = \sqrt{3}$

 $\begin{cases} (5\pm 6n)\frac{\pi}{12} \\ (7\pm 6n)\frac{\pi}{12} \end{cases}$ $n = 0, 1, 2, 3, \dots$ *x* =

I.F.C.B.

1

m2112

Created by T. Madas

D

Question 9 (**)

Find the general solution of the trigonometric equation

.C.

$$\sqrt{2}\sin\left(\frac{x}{2}+\frac{\pi}{4}\right)=1.$$

$$x = \begin{cases} (0 \pm 4n)\pi\\ (1 \pm 4n)\pi \end{cases} n = 0, 1, 2, 3, \dots$$

Question 10 (**)

÷G.g.

Find the general solution of the trigonometric equation

 $\tan\!\left(\frac{\pi}{2}\!-\!3x\right)\!=\!\sqrt{3}\,.$

$$x = (1 \pm 6n) \frac{\pi}{18}, n = 0, 1, 2, 3, \dots$$

E.G.A

1+

Question 11 (**)

Find the general solution of the trigonometric equation

$$\tan^2(30-x)^\circ = \sqrt{3}$$

$$x = \begin{cases} (5 \pm 6n) 30^{\circ} \\ (1 \pm 2n) 90^{\circ} \end{cases} \quad n = 0, 1, 2, 3, \dots$$

Question 12 (**)

K.C.

Find in degrees the general solution of the trigonometric equation

 $2\cos\theta\tan\theta = \sqrt{3}$.

 $\theta = \begin{cases} (1 \pm 6n) 60^{\circ} \\ (1 \pm 3n) 120^{\circ} \end{cases} n = 0, 1, 2, 3, \dots$

2

Question 13 (**) Find in radians the general solution of the trigonometric equation

 $\cos 3\theta = \cos 2\theta.$

$$\theta = \pm \frac{2n\pi}{5}, \quad n = 0, 1, 2, 3, \dots$$

1+

Question 14 (**)

F.G.B.

I.C.p

Find **in radians** the general solution of the trigonometric equation

 $\sin 2x = \cos x \, .$

 $(1\pm 4n)\frac{\pi}{2}$ $n = 0, 1, 2, 3, \dots$ x = $(1\pm 4n)\frac{\pi}{6}$

F.C.P.

Question 15 (**)

Find in degrees the general solution of the trigonometric equation

 $\sin 2\theta + \cos \theta = 0.$

$$\theta = \begin{cases} (3 \pm 4n) 30^{\circ} \\ (3 \pm 4n) 90^{\circ} \end{cases} n = 0, 1, 2, 3, \dots$$

5

Question 16 (**) Find **in degrees** the general solution of the trigonometric equation

$$\cos 2\theta = \cos(\theta + 60)$$

 $\theta = \begin{cases} (1 \pm 6n) 60^{\circ} \\ (5 \pm 6n) 20^{\circ} \end{cases} n = 0, 1, 2, 3, \dots$

Question 17 (**) Solve in degrees the trigonometric equation

 $\tan 4x - \tan 2x = 0, \ 0 \le x < 360.$

x = 0°,90°,180°,270°

$\begin{cases} e_{4}(\pm - e_{4})_{2} = 0 \\ f_{11}(\pm \pm e_{12})_{1} \\ e_{12}(\pm e_{$	$\left\{ \begin{array}{c} h_{DW} & GQ & 0 \leq 3 < 3 \leq 5 \\ Q_1 + C^* \\ \lambda_2 = 6 \\ T_3 + 8 \xi_2^* \\ 2 \\ \gamma = 2 \xi_2^* \end{array} \right.$
$\left\langle \begin{array}{c} \sigma= \Delta \xi M \mathcal{Z} + \mathcal{Q} + \mathcal{Q} + \mathcal{Q} \\ \mathcal{L} \xi \mathcal{M} \mathcal{Q} - = \mathcal{L} \mathcal{M} \mathcal{Q} \\ \mathcal{L} \mathcal{L} + \mathcal{Q} + \mathcal{Q} + \mathcal{Q} \\ \mathcal{L} \mathcal{L} + \mathcal{Q} + \mathcal{Q} + \mathcal{Q} + \mathcal{Q} \\ \mathcal{L} + \mathcal{L} + \mathcal{Q} + \mathcal{Q} + \mathcal{Q} \\ \mathcal{L} + \mathcal{L} + \mathcal{Q} + \mathcal{Q} + \mathcal{Q} + \mathcal{Q} \\ \mathcal{L} + \mathcal{L} + \mathcal{L} + \mathcal{Q} + \mathcal{Q} + \mathcal{Q} \\ \mathcal{L} + \mathcal{L} + \mathcal{L} + \mathcal{L} + \mathcal{L} + \mathcal{L} + \mathcal{L} \\ \mathcal{L} + \mathcal{L} \\ \mathcal{L} + \mathcal{L} \\ \mathcal{L} + \mathcal{L} $	$\begin{pmatrix} \theta_{\Delta,z} \circ \Delta \pm 2\pi\eta \\ \partial_z = \eta \pm 2\pi\eta \\ \lambda \sim \Delta \pm \frac{\eta\eta}{4} \\ \lambda \sim 12 \pm \eta\eta \\ \lambda \sim \eta = \eta + \eta \\ \lambda \sim \eta \\ \lambda$
$\begin{cases} 5a = -3a \pm 2n\pi \\ 5a = \pi + 3a, \pm 2n\pi \\ h = o_1 + 2_3, \end{cases}$	in an of Mit

Question 18 (**)

12112

N.G.B. Madasm

00

I.F.G.B.

0

Find the general solution of the following trigonometric equation

Madas,

 $\tan 2x + \tan 4x = 0,$

Com

 $x = \pm \frac{1}{6} n\pi, \ n \in \mathbb{N}$

I.G.B.

21/18

I.F.G.B.

11₂₀₂51

23

3

1+

.

113d3sm3113

Madasn,

COM

where x is measured in radians.

Smaths.

Created by T. Madas

COM

, F.G.B.

Question 19 (***)

Show that if x is measured in radians, the general solution of

$$6\tan^2 x = 1 + 4\sin^2 x$$

is given by

I.C.P.

I.F.G.p

$$x = \frac{1}{6}\pi f(n),$$

where f(n) is an integer function to be found.

	· .	
3	12.	
20	- 420	
$\int f(n)$	$x) = 6n \pm (-1)^n$	

¥.G.B.

COM

10.15

ZHURROD BUFF PHURZ OCUI JUNFBTIUZZ	
6 tanza = 14 danza	
658/2 - 1 + 452/2	
$6suit_{1} = 0st_{1}(1+4suit_{2})$	
6.543 = (I-SA3)(I+4SA3)	
65192 = 1 + 45192 - 5192 - 451492	
$4s_{N}t_{\Sigma} + 3s_{N}s_{-1} = 0$	
PAODOLIZANO 45 4 QUADRATIC IN SHIT	
(4943-1) (SUN3. +1)=0	
Suita = 14	
SWA - < K	
SETTING OF THE GENERAL SOUTTION	
$\frac{\pi}{2} = = \left(\frac{t}{2}\right) \operatorname{metric}$ $\frac{\pi}{2} = \left(\frac{t}{2}\right) \operatorname{metric}$	

∓=(£) nizm	$CRAM \left(-\frac{1}{2}\right) = -\frac{1}{6}$
1= 11开+ (-1)売 1= 11开+ (-1)売	ス= りま+ (-1) [*] (-茶) スニッホー(-1) [*] 茶 スニ茶「(=1-(-1) [*] 茶

2	J= 岳[eu=(-1),]
	H - f(G) = G1 E (-1)

I.C.P.

Madasn

Created by T. Madas

COM

Question 20 (***)

Show that if x is measured in radians, the general solution of

 $\sin 2x = 1 + \cos 2x \,$

is given by

F.G.B.

I.C.B.

$$x = \frac{1}{8}\pi f(n),$$

where f(n) is an integer function to be found.

COM

NOTING THAT GEETSE = SMT/4 = 1/2	
======================================	
\implies Sin2a - los2a = 1 $\implies \Rightarrow$ Sin2a - \Rightarrow los2a = 1	
= 12 Internet in 21	
$\implies Zin(Sr-\frac{1}{2}) = \frac{1}{12}$	(Sm(A B)= SinAcceB-acAsinB}
COTTUDE HIT 90 JUITTE	
$\Im x - \frac{\pi}{4} = n\pi + C - \eta \frac{\pi}{4}$	$\frac{T}{4} = \left(\frac{1}{2Y}\right) m2310$
$2\lambda \sim \frac{11}{4} + \pi\pi + Ci)^{2}\frac{11}{4}$	
$2\lambda = \frac{\pi}{4} \left[1 + 4n + G_1 \right]^n$	
$a = \frac{1}{10} \left[4h+1 + (-1)^{4} \right]$	1
4	$(1+ +(1+))^{n}$

ŀ.C.p

1720257

Created by T. Madas

Question 21 (***) Find in radians the general solution of the trigonometric equation

 $\cos 3x + \cos x = 0.$

$$x = \begin{cases} (1 \pm 2n)\frac{\pi}{4} \\ (1 \pm 2n)\frac{\pi}{2} \end{cases} n = 0, 1, 2, 3, \dots$$

2011

1.G.5.

1+

Com

Inadası

I.F.G.B.

Question 22 (***)

I.V.G.B

. Y.G.

Find **in degrees** the general solution of the trigonometric equation

$$\sqrt{3}\sin\theta - \cos\theta = \sqrt{2}$$

K.G.B.

27

 $\theta = \begin{cases} (5 \pm 24n) 15^{\circ} \\ (11 \pm 24n) 15^{\circ} \end{cases} n = 0, 1, 2, 3, \dots$

Created by T. Madas

Question 23 (***)

Find in radians the general solution of the trigonometric equation

$$\sqrt{3}\sin\left(x-\frac{\pi}{6}\right) = \sin x$$

$$x = (1 \pm 3n) \frac{\pi}{3}, n = 0, 1, 2, 3, ...$$

Question 24 (***)

.K.C.

Find in degrees the general solution of the trigonometric equation

 $\sin 2\theta - \tan \theta = 0.$

 $\theta = \begin{cases} (1 \pm 4n) 45^{\circ} \\ (3 \pm 4n) 45^{\circ} \end{cases} \quad n = 0, 1, 2, 3, \dots$

2

Question 25 (***)

Find in degrees the general solution of the trigonometric equation

$$\sin\theta + \cos\theta = \frac{1}{\sqrt{2}}$$

$$\theta = \begin{cases} (7 \pm 24n) 15^{\circ} \\ (13 \pm 24n) 15^{\circ} \end{cases} \quad n = 0, 1, 2, 3, \dots$$

Question 26 (***)

Find **in radians** the general solution of the trigonometric equation

 $\cos 2x + 1 = \sin 2x \, .$

 $(1\pm 4n)\frac{\pi}{4}$ n = 0, 1, 2, 3, .π $(1\pm 2n)$

Question 27

Find, in radians, the general solution of the trigonometric equation

 $\sin 5x + \sin 3x = 0.$

Question 28 (***) (non calculator)

Find the general solution of the trigonometric equation

 $\sin(y-30) = \sin(y-45).$

Question 30 (***) (non calculator)

Find the general solution of the trigonometric equation

 $\sin(\theta - 20) = \sin(\theta + 60), \quad 0 \le \theta < 360^{\circ}.$

$$\theta = 70^{\circ} \pm 180^{\circ}n, \quad n = 0, 1, 2, 3, \dots$$

Question 31 (***) (non calculator) Find the general solution of the trigonometric equation

E.

I.C.

 $\cos(\psi - 36) = \cos(\psi - 72), \ 0 \le \psi < 360^{\circ}.$

 $\psi = 54^{\circ} \pm 180^{\circ}n, \quad n = 0, 1, 2, 3, \dots$

 $(\psi - 5C) = cos(\psi - 72)$ $\psi - 5C = \psi - 72 \pm 3CCM$ $\psi - 5C = 72 - \psi \pm 3CCM$ $\psi - 5C = 72 - \psi \pm 3CCM$ (nuccasput) $2\psi = 108 \pm 3CCM$ $\psi = 54 \pm 18CM$

E,

Question 32 (***+) (non calculator)

Find the general solution of the trigonometric equation

 $\sin(y-48) = \cos(y+12), \ 0 \le y < 360^{\circ}.$

