93 EXAM STIONS STISS das Comination of the second sec 93 EXAINI QUESTIONS ON VVERSE >. JEST, INVER, INVER, IGONOME, CFUNCTIONS QUESTIONS ~ INVERSE TRIGONOMETRI TRIGONOMETRI The management of the manageme UN INAMASINANISCOM INCOM INCOM

A CONTRACTOR OF A CONTRACT OF STRATISCOM C. C. Madasmanna C. M. C. B. Madasmanna C. M. C. B. Madasmanna C. M. C. B. Madasmanna C. C. B. Madasma

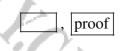
Question 1 (**+)

Solve the following trigonometric equation

K.C.

 $\pi + 3\arccos(x+1) = 0.$

T+ 3arrus(x+1)=0	
⇒ Barcos(201) = -TT	5 = 2+1= 12
⇒ orbros(x+1) = -∓	$a = -\frac{1}{2}$
$\Rightarrow \cos\left[\arccos(x+1)\right] = \cos\left(\frac{\pi}{3}\right)$	


Question 2 (***)

E,

It is given that $\arcsin x = \arccos y$.

Show, by a clear method, that

 $x^2 + y^2 = 1.$

• $\operatorname{arcosy}_{z} = \operatorname{arcosy}_{z} = \theta$ $\begin{cases} \operatorname{arcosy}_{z} = \theta \\ \operatorname{arcosy}_{z} = \theta \\ \end{array} \end{cases} \xrightarrow{\leq} = \left\{ \begin{array}{c} \Theta = \varphi \\ \Theta = \varphi \\ \Theta = \varphi \\ \end{array} \right\} \xrightarrow{\leq} = \left\{ \begin{array}{c} \Theta = \varphi \\ \Theta = \varphi \\ \Theta = \varphi \\ \end{array} \right\} \xrightarrow{\leq} = \left\{ \begin{array}{c} \Theta = \varphi \\ \Theta = \varphi \\ \Theta = \varphi \\ \end{array} \right\} \xrightarrow{\leq} = \left\{ \begin{array}{c} \Theta = \varphi \\ \Theta = \varphi \\ \Theta = \varphi \\ \end{array} \right\}$

Question 3 (***) Solve the following trigonometric equation

 $3 \operatorname{arccot} \left(x - \sqrt{3} \right) - \pi = 0$.

2

	14.00
$\begin{array}{l} \operatorname{Sarcot}(x,-\sqrt{s}) - \overline{\tau} = 0 \\ \Rightarrow \operatorname{Sarcot}(x,-\sqrt{s}') = \overline{\tau} \\ \Rightarrow \operatorname{arcot}(x,-\sqrt{s}') = \overline{x} \\ \Rightarrow \operatorname{arcot}(x,-\sqrt{s}') = \overline{x} \\ \Rightarrow \operatorname{Carcot}(x,-\sqrt{s}') = \overline{x} \\ \Rightarrow \operatorname{Carcot}(x,-\sqrt{s}) = \overline{x} \\ \Rightarrow x,-\sqrt{s}'' = \frac{1}{1+x} \end{array}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \rightarrow 2 - 4 \overline{2} \cdot 4 \overline{2} \cdot 1 \\ \end{array} \\ \begin{array}{c} \end{array} \rightarrow 2 - 4 \overline{2} \cdot 2 \cdot 4 \overline{2} \cdot 1 \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \rightarrow 2 - 4 \overline{2} \cdot 2 \cdot 4 \overline{2} \cdot 1 \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	1

Question 4 (***+)

A curve C is defined by the equation

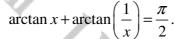
 $y = -\arcsin(x-1), \ 0 \le x \le 2.$

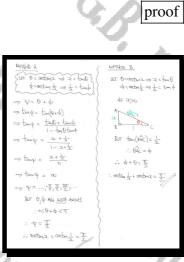
- a) Describe the 2 geometric transformations that map the graph of arcsin x onto the graph of C.
- **b**) Sketch the graph of C.

The sketch must include the coordinates of any points where the graph of C meets the coordinate axes and the coordinates of the endpoints of C.

, translation by 1 unit to the right, followed by reflection in the x axis

Question 5 (***+)

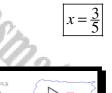

Simplify, showing all steps in the calculation, the following expression


 $\tan(\arctan 3 - \arctan 2)$,

giving the final answer as an exact fraction.

Question 6 (***+)

Show clearly that if x > 0


the com

Question 7 (***+)

Solve the equation

I.V.C.

 $2\arctan\left(\frac{1}{2}\right) = \arccos x$,

2(금)

showing clearly all the workings.

Question 8 (***+)

Simplify, showing all steps in the calculation, the expression

 $\tan\left[\arctan\frac{1}{3} + \arctan\frac{1}{4}\right],$

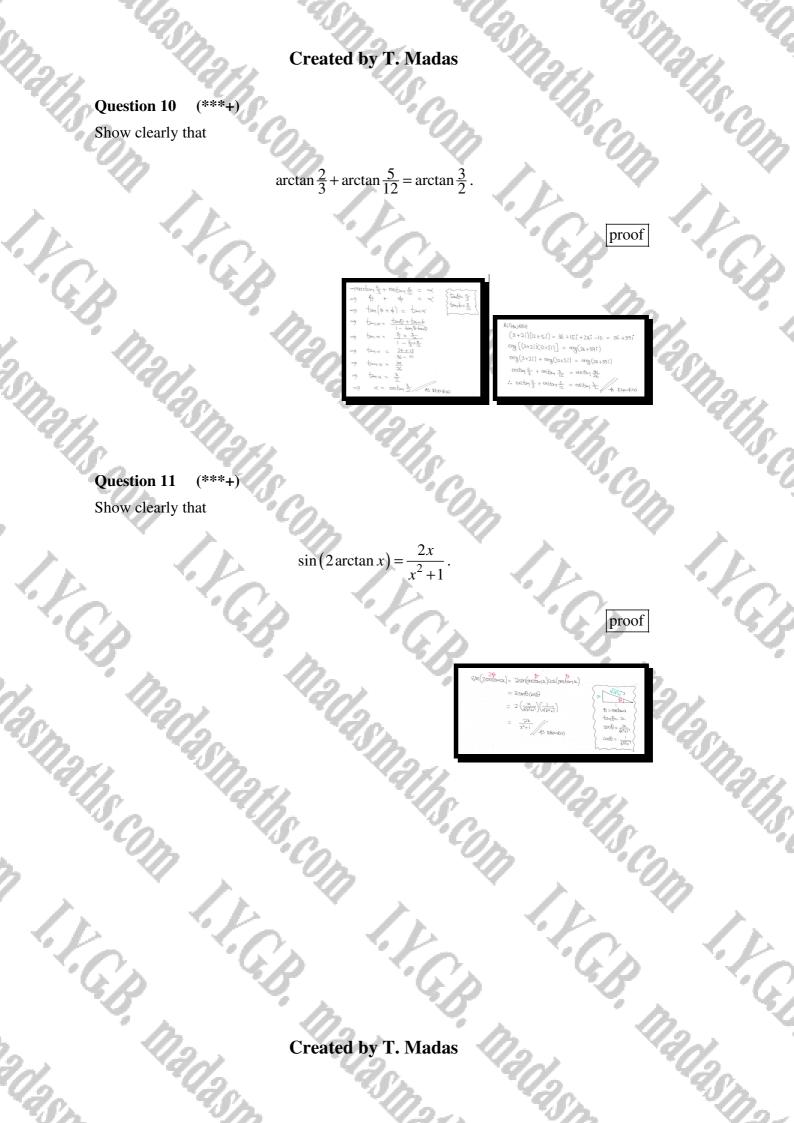
giving the final answer as an exact fraction.

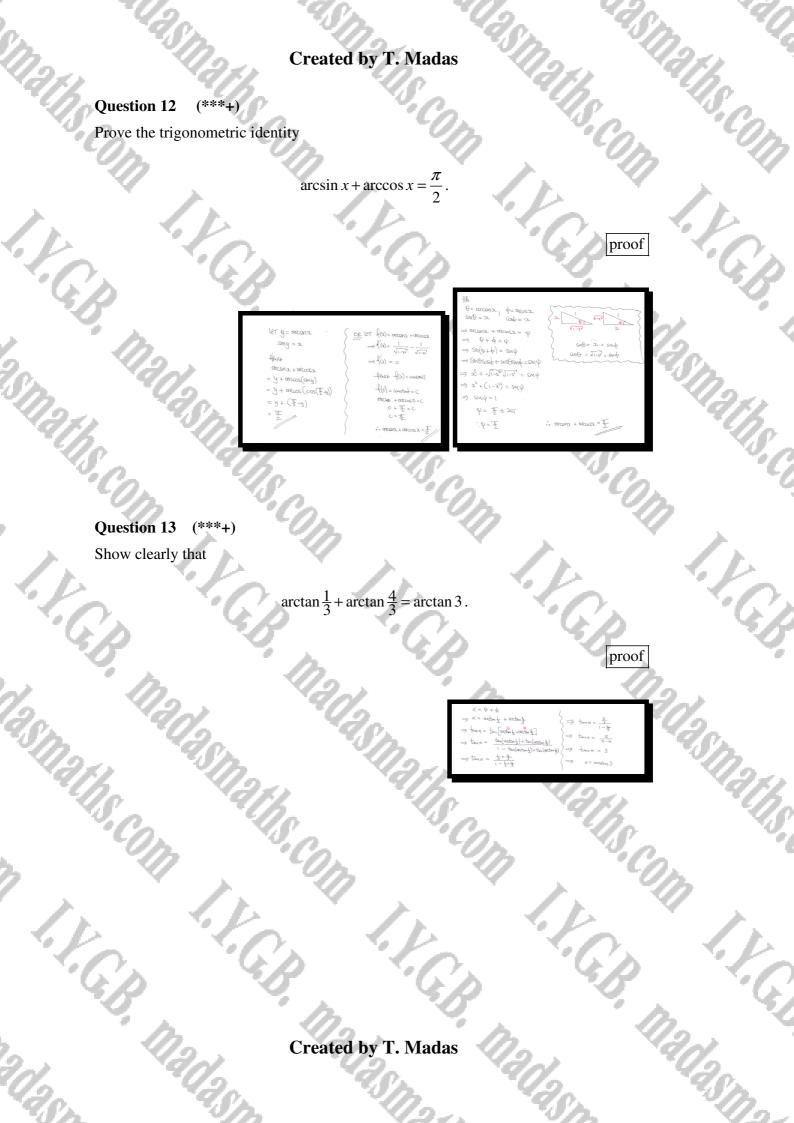
Question 9 (***+)

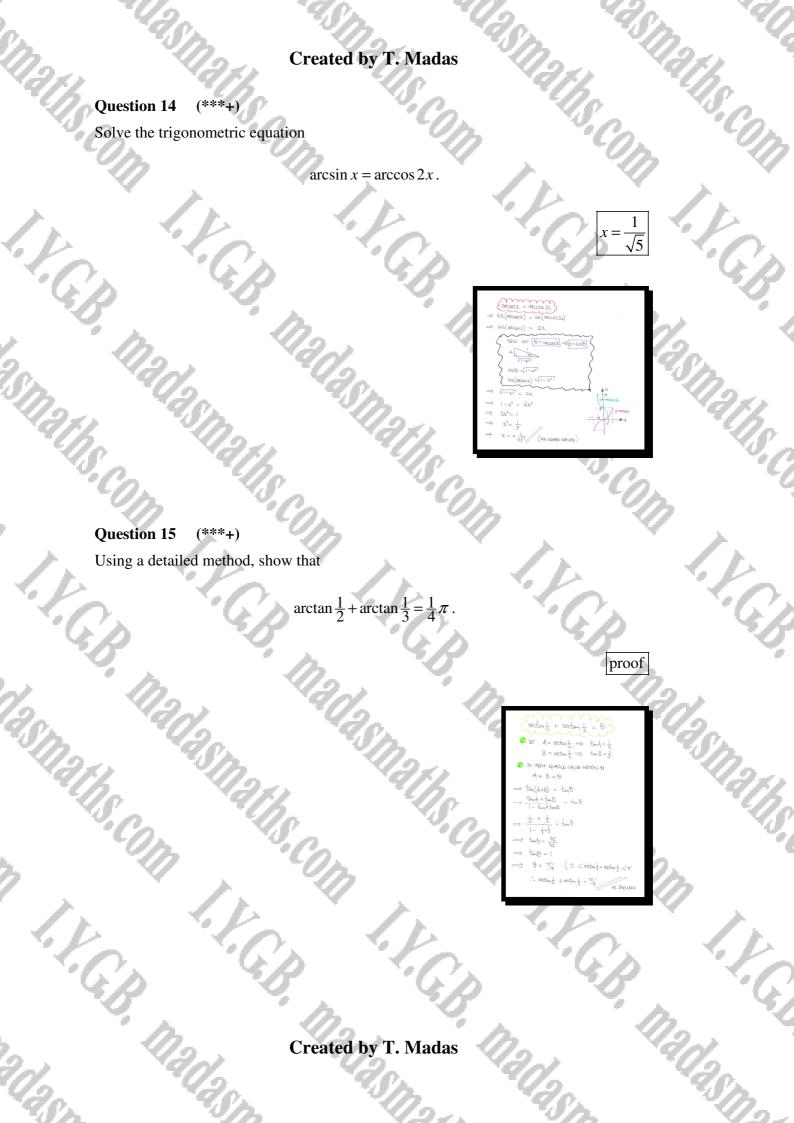
Show clearly that

 $2\arccos\left(\frac{4}{5}\right) = \arccos\left(\frac{7}{25}\right).$

proof


C.A.


2


 $\frac{7}{11}$

$\begin{array}{c} 2 \arctan \frac{d_{1}}{2} = - \arctan \frac{d_{2}}{2} \\ (br - \theta = - \operatorname{cons} \frac{d_{1}}{2} \\ (bs \theta = - \operatorname{cons} \frac{d_{2}}{2} \\ (bs \theta = - \operatorname{cons}$	$ \begin{array}{c} \partial \omega_{n}^{2} \Theta - = 2 \\ \partial \left(\frac{4}{5} \right)^{2} - = 2 \\ \partial z = \frac{7}{27} \\ \text{tr express} \end{array} $

m (0+4)

Question 16 (***+)

I.F.G.B.

naths.com

I.V.C.B. Madasm

SMaths.com

I.F.C.p

2

Þ

>

Show, by detailed workings, that

I.C.p.

 $\arctan 2 + \arctan 3 = \frac{3\pi}{4}$ V.C.B. Madas

Madasn

The Com

naths.com

.B.

nadasma,

Madasm

G

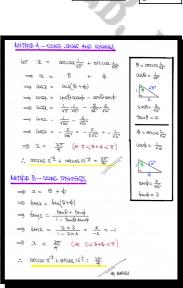
aths com

I.C.B.

Created by T. Madas

(D)]]

·GA

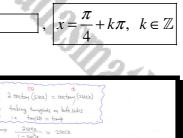

I.C.P.

madasmaths.com

Question 17 (***+)

Use a detailed method to show that

 $\arccos\left(5^{-\frac{1}{2}}\right) + \arccos\left(10^{-\frac{1}{2}}\right) = \frac{3\pi}{4}$

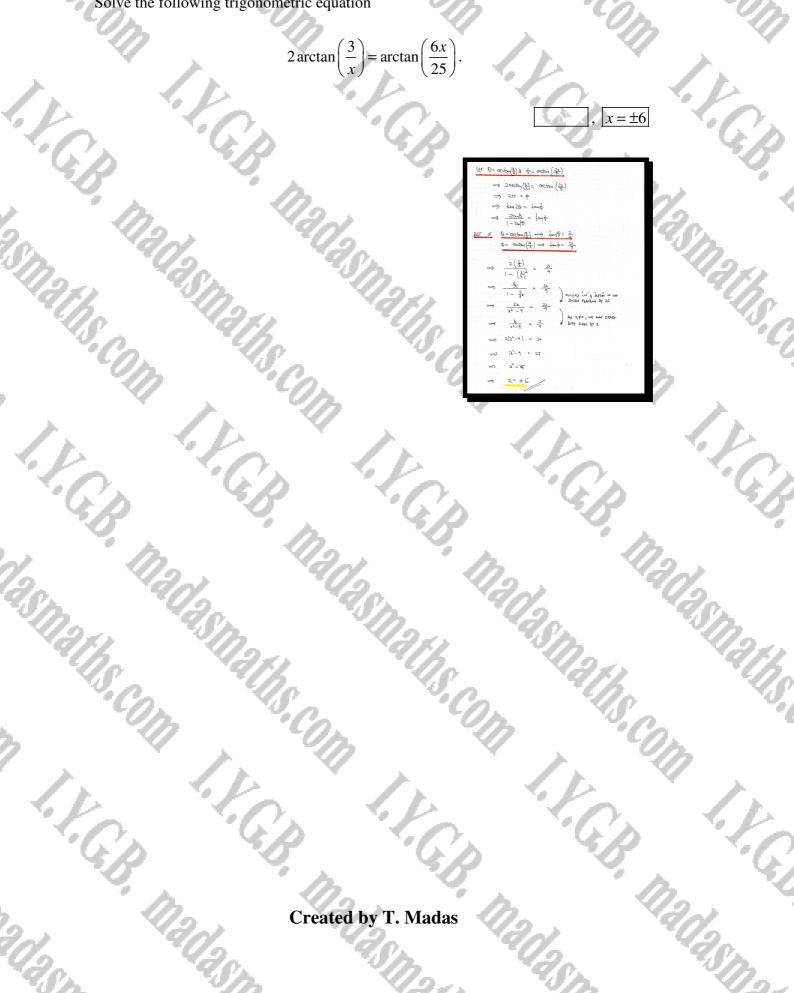

proof

Question 18 (***+)

I.V.C.

Find the general solution of the following trigonometric equation

 $2\arctan(\sin x) = \arctan(\sec x).$


 $\begin{array}{l} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

Ģ

(***+) **Question 19**

Solve the following trigonometric equation

I.V.C.B. Madasma $2\arctan\left(\frac{3}{x}\right) = \arctan\left(\frac{6x}{25}\right).$

naths.com

asinains.com

(***+) Question 20

Prove that

I.F.G.B.

I.F.G.B.

 $2 \arcsin\left(\frac{2}{3}\right) = \arccos\left(\frac{1}{9}\right).$

SO.	63	40	· · · · ·	
6.0	$\underbrace{Mtribo}_{A} - 2 \operatorname{ancun}_{X} = \operatorname{anc}$	Los d	D C - Gauteral	
~0~	$\underbrace{\text{LET } \mathfrak{P} = \text{critical}_{\frac{2}{3}} \text{So } \text{ we critical}$	OFT RATIOS OFF -4 TRINGE	$\theta = \frac{2}{3}$	
	$\leq n \theta = \frac{2}{3}$		N	
	$\frac{1}{162} 2\theta = 49, \beta 2, sour 49 T$ $\implies 60.20 = 60.000$.E	3 3 10 0 3	2
), <i>V</i> , 2,	$\Rightarrow 1 - 2su^{2}\Theta = (as\psi)$ $\Rightarrow 1 - 2s(\frac{2}{3})^{2} = (as\psi)$ $\Rightarrow 1 - 2s(\frac{2}{3})^{2} = (ac\psi)$		2 2	- 1 V
12 10	$\Rightarrow 1 - \frac{8}{9} = \cos \varphi$ $\Rightarrow \cos \varphi = \frac{1}{9}$	NOD (8/ THE COSING PUG 1/2= 3+3-2232+3×00=28	
KD. K	=> qr c=		16 = 9 + 9 _ 18(22) 9 = 9 ≥ 920181	- Y
dry	1/2	$2\Theta = \psi$ $2\alpha R_{SM} \frac{1}{2} = \alpha R_{III} \frac{1}{2}$	60528= ± 20 ≈ arccas±	
*(D_	$\frac{MtTIPD B}{2} = 2 \operatorname{arcsm}^2 = \operatorname{arc}$		Zarcsin z = arccas t	
- V.	$SWD = \frac{2}{3} \qquad (\Theta = \alpha n)$ $SWD = \frac{4}{3}$	(<u>F</u> M2)		
Co.	$- \frac{\partial}{\partial \theta} = -\frac{\partial}{2}$ $-2sw^2 \Theta = -\frac{\partial}{2}$			
"Uh	$\begin{aligned} I - 2SiP\theta &= I - \frac{1}{2},\\ Go(2\theta) &= \frac{1}{2}. \end{aligned}$			<u>b.</u>
	20 = arccesf 2arcsung = alacast			
	A			
· .	/ K. 🛛 🔨	× .		
J.Y.				10
Self-		60		
N.	60	1.0		
60		- C.A.	510	
0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.4		
				h
v ().		v 1	2	20.
9. Vd	~ ~	6 V	19.	30
10. U	10 1	7.P.	911	- 42
No.	"To.	m.	da	0
din	m.	1215	100	1
-Ch	1225	~ (h.	100	
	Ch.		· 9/1	þ.
· Co	10	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		<u>р</u>
"Uh	· · · · ·	-0	<u>ь</u> 0	0
	- Uh		n :	CO.
		7	×	S
A	J. K. 19	A		
Jr.	30 Jr	- / x.	To P-	
So V	SO.	SP.	- S.O.	
				b.

NERED $ar \ll n \frac{2}{3} = 0$ SINO = =

V

asmaths.com

proof

às marns.com

asmaths.C

F.G.B.

I.C.

madasmaths

L. C.B. Marian

Created by T. Madas

I.V.G.B.

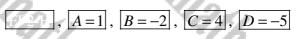
Madas,

Question 21 (***+)

F.G.B.

I.V.G.B.

2


Differentiate with respect to x

 $\arctan\left[\frac{\sqrt{1-x^2}}{x-2}\right]$

Give a simplified answer in the form

 $\frac{A+Bx}{(Cx+D)\sqrt{1-x^2}}$

where A, B, C and D are integers to be found.

 $\Rightarrow \frac{d_{y}}{dx} = \frac{1}{1 + \left[\frac{(1-x^{2})z}{2}\right]^{2}} \times \frac{d}{dx} \left[\frac{(1-x^{2})^{\frac{1}{2}}}{2-2}\right]$

¥.G.B.

- L 2-2 J TUDI AND HARY THE GOOTHUT RULE IN THE GHAN'
- $\Im \quad \frac{d_{Q}}{d\lambda} = \frac{l}{1 + \frac{1-\lambda^2}{(\lambda-2)^2}} \times \frac{(\lambda-2) \times \frac{1}{2} (1-\lambda^2)^2 (\lambda-2) (1-\lambda^2)^2 (\lambda-2)}{(\lambda-2)^2}$
- $= b \quad \frac{d u}{d \lambda} = \frac{-\chi(x-y)(-x^2)^2}{(\lambda-2)^2 + (-\chi^2)}$
- $= \frac{dq}{d\xi} = \frac{(i-\chi)^{-1} \frac{1}{\xi} \left[-x(\lambda-\chi) (i-\chi) \frac{1}{\xi} \right]}{\chi^{2} (4\chi + 1) + (-\chi)^{2}}$
- $\Rightarrow \frac{\partial \lambda}{\partial y} = \frac{1}{(1-\lambda_p)_{\frac{p}{2}}(\lambda_{\frac{p}{2}}+3\gamma-1)} \bowtie_{\frac{p}{2}}$
- $= \frac{du}{d\lambda} = \frac{2\lambda i}{(2 + i\sqrt{2})} = \frac{1 2\lambda}{(4\lambda 1)}$

2017

nana

G

ŀ.C.p.

Question 22 (***+)

Differentiate with respect to x

$$\sin\left[\arctan\left[\frac{1}{\sqrt{1-x^2}}\right]\right].$$

Give a simplified answer in the form

 $\frac{A}{x^n}$,

where A and n are integers to be found.

.C.A

F.C.B.

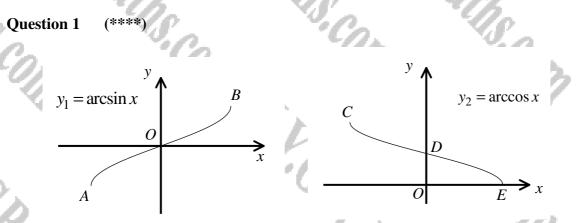
I.V.C.P.

2.	
20	
[A = -1], [A = -1]	, n=2

I.C.B.

Ĩ?Į

2017


G

F.G.B.

a	- x × 1+(x ²)	
	SHE WARNAM OF FIRST APPROVAL	
dr dr	$= \frac{\mathcal{I}_{3}(\mathcal{I}_{r}^{-1})_{3\overline{\mathcal{I}}}}{-\pi(\mathcal{I}_{r}^{-1})_{3\overline{\mathcal{I}}}}$	

$$\frac{dy}{d\lambda} = -\frac{1}{\lambda^2}$$
 As Heaven

Created by T. Madas Mada **19 STANDAKL** QUESTIONS STIATISCOM I. Y. C.B. Madasmalls.Com I.Y. C.B. Madasmalls.com I.Y. C.B. Madasmalls.com I.Y. C.B. Madasma

The diagrams above shows the graphs of $y_1 = \arcsin x$ and $y_2 = \arccos x$.

The graph of y_1 has endpoints at A and B.

The graph of y_2 has endpoints at C and E, and D is the point where the graph of y_2 crosses the y axis.

a) State the coordinates of A, B, C, D and E.

The graph of y_2 can be obtained from the graph of y_1 by a series of two geometric transformations which can be carried out in a specific order.

- **b**) Describe the two geometric transformations.
- c) Deduce using valid arguments that

 $\arcsin x + \arccos x =$ constant,

 $C(-1,\pi)$

 $D\left(0,\frac{\pi}{2}\right)$

E(1,0)|

constant =

stating the exact value of this constant.

Question 2 (****)

 $y = \arcsin x \,, \quad -1 \le x \le 1 \,.$

a) Show that

I.C.B.

aths.com

I.V.C.P.

dy $\frac{d}{dx}$

The point $P(\frac{1}{6},k)$, where k is a constant lies on the curve with equation

$$\arcsin 3x + 2 \arcsin y = \frac{\pi}{2}, \ |x| \le \frac{1}{3}, \ |y| \le 1.$$

b) Find the value of the gradient at *P*.

	$y = \operatorname{arcon} \alpha -l \leq x \leq l \Rightarrow = \frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
	MAKE a THE SUBJECT AND DIFFERENTIATE WITH REARCT TO Y
¶ ¶ ¶ ¶ ¶	$\begin{array}{l} z_{2}v_{3} - z_{4} \\ z_{2} = z_{3}v_{3} \\ dy = z_{3}v_{1}v_{3}v_{3}^{2} \\ dy = z_{3}v_{1}v_{3}v_{3}^{2} \\ dy = z_{3}v_{1}v_{3}v_{3}^{2} \\ dy = z_{3}v_{1}v_{3}v_{3}^{2} \\ dy = z_{3}v_{1}v_{3}v_{3}v_{3} \\ dy = z_{3}v_{1}v_{3}v_{3}v_{3}v_{3}v_{3}v_{3}v_{3}v_{3$
Diaz	RESTINITING INPRICATLY WAS REPORT TO a

	3	+ 2	da.	=0	
1	DETRIMUTED	Ithe WHILLE OF	k		
			_		

 $\Rightarrow \operatorname{ancsm}(3 \times \frac{1}{6}) + 2 \operatorname{ancsm} k = \frac{\pi}{6}$ $\Rightarrow \operatorname{ancsm}(k) + 2 \operatorname{ancsm} k = \frac{\pi}{6}$

R

$\implies \overline{E} + 2 \operatorname{arcsml} = \overline{\Sigma}$	
⇒ Zarcsink = F	
= arcant = T	
⇒ k=±	
> n=2	
FINALLY WE ARE THE GOLDANST AT PC (12)	
the second se	
$\frac{3}{\sqrt{1-9c^2}} + \frac{2}{\sqrt{1-y^2}} \frac{dy}{dx} = 0$	
$\implies \frac{3}{\sqrt{1-\frac{1}{4}}} + \frac{2}{\sqrt{1-\frac{1}{4}}} \frac{du}{dv_{\pm}} = 0$	
$\rightarrow \frac{1}{\sqrt{k_1}} + \frac{2}{\sqrt{k_1}} \frac{du}{dt} = 0$	
=> 3 + 2 ====	
- du)	
$\Rightarrow \frac{dy}{dy} = -\frac{3}{2}$	

aths.com

F.C.B.

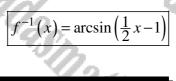
lasm;

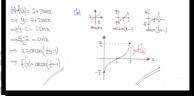
20

G

N.C.B. Madasn

The Com


Y.C.


Question 3 (****)

$f(x) = 2 + 2\sin x, \ -\pi \le x \le \pi.$

- **a**) Find an expression for $f^{-1}(x)$
- **b**) Sketch the graph of $f^{-1}(x)$.

The sketch must include the coordinates of any points where the graph of $f^{-1}(x)$ meet the coordinate axes as well as the coordinates of its endpoints.

Question 4 (****)

Solve the following trigonometric equation

 $\tan(\arctan 3x - \arctan 2) + \tan(\arctan 3 - \arctan 2x) = \frac{3}{8}.$

USING THE IDENTRY FOL four(A-B)

- > by (arthurs matrix) + to (arthur matrix) = 3
- $\Rightarrow \frac{3x 2}{1 + (3x)(2)} + \frac{3 2x}{1 + 3(2)} = \frac{3}{9}$
- $\Rightarrow \frac{3_{1}-2}{1+6_{1}} + \frac{3-2_{1}}{1+6_{2}} = \frac{3}{8}$
- $\Rightarrow \frac{2+1}{1+6} = \frac{3}{8}$
- =) 82+8 = 3+
- ⇒ 5= loz

Question 5 (****)

A curve has equation

 $y = \pi - \arccos(x+1), \ -2 \le x \le 0.$

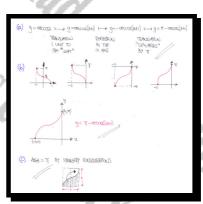
a) Describe geometrically the 3 transformations that map the graph of

 $y = \arccos x \,, \, -1 \le x \le 1 \,,$

onto the graph of

- $y = \pi \arccos(x+1), \ -2 \le x \le 0.$
- **b**) Sketch the graph of

 $y = \pi - \arccos(x+1), \ -2 \le x \le 0.$


The sketch must include the coordinates of any points where the graph meets the coordinate axes.

c) Use symmetry arguments to find the area of the finite region bounded by

$$y = \pi - \arccos(x+1), \ -2 \le x \le 0,$$

and the coordinate axes.

, translation by 1 unit to the right, followed by reflection in the x axis

area = π

(****) **Question 6**

I.V.C.B. Madasmaths.Com

na

I.F.G.B.

I.F.C.B.

I.V.G.B.

Solve the following trigonometric equation

I.C.B. Madasm $\arctan\left(\frac{1}{x}\right) + \arctan\left(\frac{1}{x+1}\right)$ $\frac{\pi}{4}$

The Com

naths.com

F.G.B.

Y.G.B.

I.V.G.

Madasma,

L.C.B. Madasm

Question 7 (****)

i C.B.

 $f(x) = -2 + 2 \tan\left(\frac{1}{2}x\right), \ -\pi \le x \le \pi.$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Sketch the graph of $f^{-1}(x)$.

The sketch must include ...

- ... the equations of the asymptotes of $f^{-1}(x)$
- ... the coordinates of any points where the graph of $f^{-1}(x)$ meets the coordinate axes.

		12
$\begin{split} \hat{f}(t) &= -2 + 2 \xi \text{part} \frac{1}{2} \tilde{f}(t) \\ &= 2 \text{supp}(\frac{1}{2} \frac{1}{2} + 1) \\ &= 2 \text{supp}(\frac{1}{2} \frac{1}{2} + 1) \\ &= \frac{1}{2} \frac{1}{2} \frac{1}{2} + 1 = \xi \text{ part} \frac{1}{2} \\ &= \frac{1}{2} 1$	(c) 3-motion g-2005m(2n) (c) (c) (c) - 2005m(2n)	5
		/

F.C.P.

R

 $\overline{f^{-1}(x)} = 2\arctan\left(\frac{1}{2}x+1\right)$

(****) **Question 8**

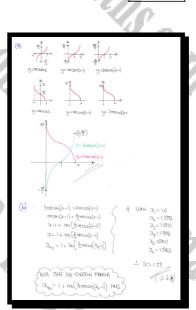
Solve the following trigonometric equation

Solve the following trigono	metric equation	5 CD	~ Um
	$2 \arctan\left(\frac{3}{x}\right) = \arcsin\left(\frac{6x}{25}\right).$	1.2 9	×. "
in the	· Co	$x = \pm 4$	·
63 63		$\frac{Pbreed}{\Rightarrow} 2 \arctan\left(\frac{b_{1}}{b_{1}}\right) = \min\left(\frac{b_{2}}{b_{1}}\right)$	
a. Mari	nadasm.	$ \begin{array}{c} $	28m
	"Snarr	$\begin{cases} s_{N}b_{1} = \frac{1}{(1+2)} \\ w_{1}b_{2} = \frac{1}{(1+2)} \\ w_{2}b_{1} = \frac{1}$	SIN ALION
S.Con Alls	15	$\Rightarrow 2\left(\frac{2}{\sqrt{1+r^2}}\right)\left(\frac{2}{\sqrt{1+r^2}}\right) = \frac{C_1}{22}$ $\Rightarrow -\frac{C_2}{1+2^2} = \frac{C_2}{22}$ $\Rightarrow -\frac{1}{1+2^4} = 22$ $\Rightarrow -\frac{1}{2} = 14$	· · C
		$\rightarrow x = \pm 1$	· / .
1. Ko	1.Je	N.C.	·
6.0	n Cp	S.B.	~ <i>G</i> ,
120. 120	120/20 ···	nan ^{na}	ds.
nar asno.	12/2	asm	"Snar
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S. S.	on alls	
	On .		6
No No	s its	· C.	1.1
201 1200	Created by T. Madas	Mada VI	20/20
Yash Yash	CD2	"asp	- CO-

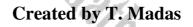
Ths.com

naths.com

### **Question 9** (****)


The curves  $C_1$  and  $C_2$  have respective equations

 $y_1 = 3 \arcsin(x-1)$  and  $y_1 = 2 \arccos(x-1)$ .


**a**) Sketch in the same diagram the graphs of  $C_1$  and  $C_2$ .

The sketch must include the coordinates of any points where the graphs of  $C_1$  and  $C_2$  meet the coordinate axes as well as the coordinates of the endpoints of the curves.

**b**) Use a suitable iteration formula of the form  $x_{n+1} = f(x_n)$  with  $x_1 = 1.6$  to find the *x* coordinate of the point of intersection between the graphs of  $C_1$  and  $C_2$ .



 $x \approx 1.59$ 



Smaths.com

naths.com

### (****) Question 10

Make x the subject of the equation



ASTRAILS COM F.Y.C.P. MARASINALIS COM F.Y.C.P. MARASIN

### (****) Question 11

It is given that

COM

I.F.G.B.

Þ

>

$$\frac{d}{du}(\arcsin u) = \frac{1}{\sqrt{1-u^2}}, \quad |u| \le 1.$$

Hence show that if  $y = \sin\left(\frac{1}{2}\arcsin 2x\right)$ , then ...

**a)** ... 
$$(1-4x^2)\left(\frac{dy}{dx}\right)^2 = 1-y^2$$
.

**b**) ... 
$$(1-4x^2)\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + y = 0$$
.

I.G.B.

ne,

COM

, proof

C011

aths.com

i C.p.

9

G

- :4= sin(±arcsm2x) cer(1-arcsin/2) × 2 1 1-(21)2 ×2 20 an(22) × (22)  $\left((-lb_{2}^{2})\left(\frac{dy}{dx}\right)^{2}=-(-SM^{2})\left(\frac{1}{2}\right)^{2}$ (1-42)(部) b) Differentiate again wit 2  $-8\alpha \left(\frac{du}{dx}\right)^2 + 2(1-4x^2)\left(\frac{du}{dx}\right)\frac{d^2u}{dx^2} = -2u\left(\frac{du}{dx}\right)$
- $-8x\frac{dy}{dx} + 2(1-4x^2)\frac{d^2y}{dx^2} = -2y$  $2(1-b_{1}^{2})\frac{du}{dx} - 8x\frac{dy}{dx} + 2y = 0$  $(1-lp^2)\frac{d^2q}{dx} - 4x\frac{dq}{dx} + g = 0$ 45 RAPUL

I.C.B.

nadasm

Created by T. Madas

2017

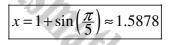
E.

Question 12 (****)

 $y = \arcsin x, -1 \le x \le 1.$ 

a) By expressing  $\arccos x$  in terms of y, show that

 $\arcsin x + \arccos x =$ 


**b**) Hence, or otherwise, solve the equation

F.G.B.

FGB Madasm

I.V.G.B.

 $3 \arcsin(x-1) = 2 \arccos(x-1)$ .



COM

Ĉ.

u(₹-y))

- d- smA= coc陛-A) cocA=sm(垩-4)
- $\frac{\pi}{2} = Slu23na + c1c$ AS REQUIRED

COM

12/12

 $G_{i}$ 

I.C.p

### , LFT y=2-1

- n(a-1) = 2an
- 2 [ F-arismy ]

- 1.59776

Created by T. Madas

2017

- Question 13 (****)
- A curve has equation

$$y = \arcsin 2x, \ -\frac{1}{2} \le x \le \frac{1}{2}, \ -\frac{\pi}{2} \le y \le \frac{\pi}{2}.$$

**a**) By finding  $\frac{dx}{dy}$  and using an appropriate trigonometric identity show that

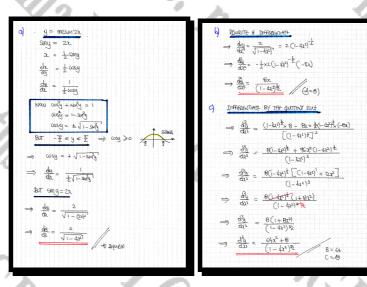
$$\frac{dy}{dx} = \frac{2}{\sqrt{1 - 4x^2}}$$

**b**) Show further that ...

F.G.B.

I.F.C.B

i. ... 
$$\frac{d^2 y}{dx^2} = \frac{Ax}{(1-4x^2)^{\frac{3}{2}}}$$


**ii.** ... 
$$\frac{d^3 y}{dx^3} = \frac{Bx^2 + C}{\left(1 - 4x^2\right)^{\frac{5}{2}}},$$

where A, B and C are constants to be found.

, proof

1 il

The I



Question 14 (****)

$$= \arcsin x \,, \, -\frac{1}{2} \le x \le \frac{1}{2} \,, \, -\frac{\pi}{2} \le y \le \frac{\pi}{2} \,.$$

a) By finding  $\frac{dx}{dy}$  and using an appropriate trigonometric identity show that

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \,.$$

A curve C has equation

I.C.B. Madasmaths.Com

1.2.

2

I.F.G.B.

$$dx = \sqrt{1 - x^{2}}$$
  
on  
$$y = x \arcsin 2x, -\frac{1}{2} \le x \le \frac{1}{2}, -\frac{\pi}{2} \le y \le \frac{\pi}{2}.$$

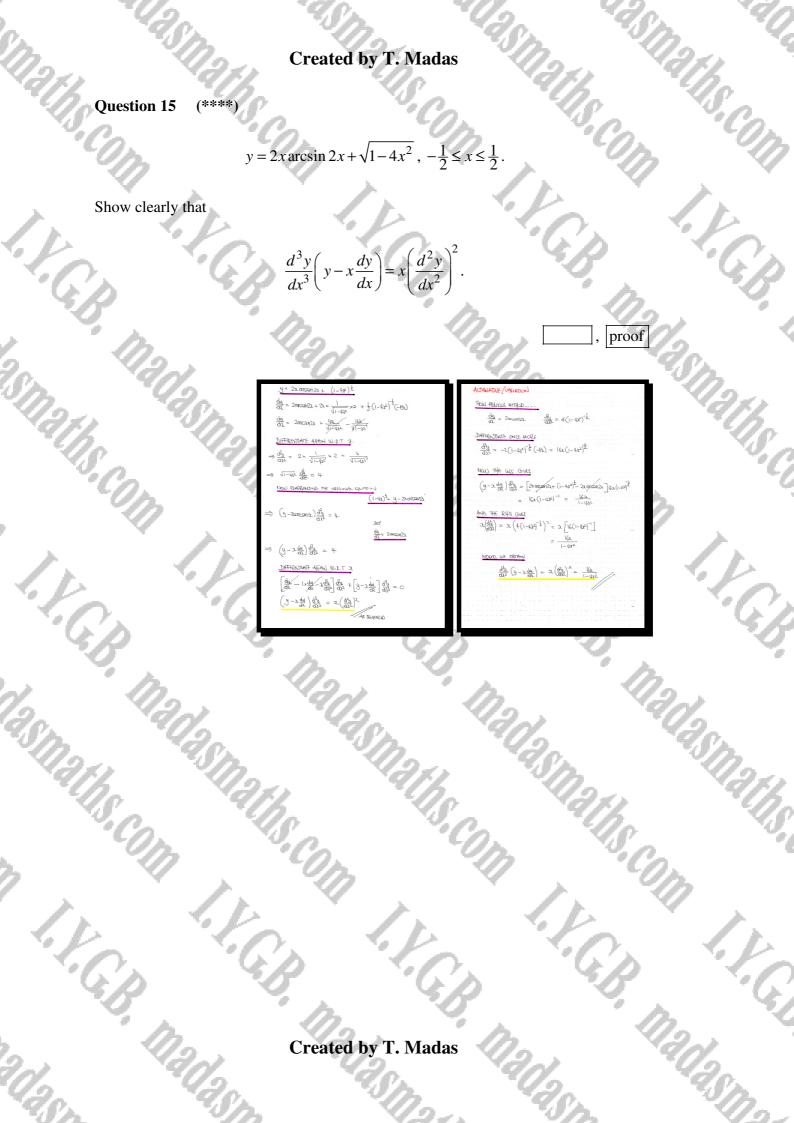
**b**) Find the exact value of  $\frac{dy}{dx}$  at the point on *C* where  $x = \frac{1}{4}$ .

	K.
)	BY THE INDICUSE BOUL
	⇒ y∈ arcame
	$\Rightarrow$ Smy = $\infty$
	$\Rightarrow 2 = 5mg$ $\Rightarrow da = 6mg$
	-) da - (ag
	and a trange
	$BT - F \leq y \leq F$ so $0 \leq \cos y \leq 1 \longrightarrow \frac{1}{20} = +\sqrt{1-\sin^2 y}$
	$\Rightarrow \frac{dy}{dq} = \sqrt{1 - sa_{ij}^{2}}$
	$\implies \frac{dx}{dy} = \sqrt{1-2^2}  \Rightarrow  4s  Swy = x$
	■ #* //
	ay a the angle a
	DIFFERENTIATION) BY THE PROMIT DIVE
	$y = 2 \text{ or can } 2 \xrightarrow{\text{or can } 2} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = 1 \times 2 \text{ or can } 2 \xrightarrow{\text{or can } 2} \times 2 $
	9- 1 mana = 00: 1×010ma + 1×
	$\implies \frac{dy}{dl} = \arctan 2l + \frac{2l}{\sqrt{1-t^2}} \left(\frac{4}{t}\right)^2$
	NOM NAHEN 75 7
	$\frac{du}{du}\Big _{2=\frac{1}{4}} = ar(\underline{x}_{0})\frac{1}{2} + \frac{2\times \frac{1}{4}}{\sqrt{1-4(t)^{2}}} = \overline{u} + \frac{1}{\frac{2}{3}} = \overline{u} + \frac{1}{\sqrt{1-4(t)^{2}}}$

ŀG.p.

ths.com

I.C.B.


202.SM

dasma

Madasm

 $G_{i}$ 

Ins.com



### Question 16 (****)

Use trigonometric algebra to solve the equation

K.C.

 $\sin\left[\arcsin\frac{1}{4} + \arccos x\right] = 1.$ 



SOUNDE THE EQUATION AS FOLLOWS					
$\Rightarrow$ sin (arcsin $\frac{1}{4}$ + arccosx) = 1					
$\Rightarrow \operatorname{arcsn}[\operatorname{sm}(\operatorname{arcsn}_{\pm}+\operatorname{arccos})] = \operatorname{arcsn}], \pm 2\operatorname{nT}$					
$\Rightarrow \operatorname{arcsm}_{\frac{1}{4}} + \operatorname{arccos}_{\mathcal{X}} = \overline{\mathcal{F}} \pm 2n\overline{n}$ $(n=q_1,2,3)$					
$\Rightarrow$ $arcsm_{f}^{\perp} \pm 2\pi T$					
BUT OFCLOSZ GAN ONLY RETURN DALVES BATWEN O & TI					
$\Rightarrow ancws x = \frac{11}{2} - ancsin \frac{1}{4}$					
$\Rightarrow x = \cos\left(\frac{\pi}{2} - arcm^{1}\right)$					
$\theta_{MZ} \equiv (\theta_{-} \overline{\Psi}) 2\omega_{0}$ Tel.					
$\Rightarrow 2 = sin(arcsin \frac{1}{4})$					
$\Rightarrow \underline{x} \cdot \underline{z}$					

Question 17 (****)

Ke,

The curve C has equation

 $y = \arcsin(2x-1), -0 \le x \le 1.$ 

Find the coordinates of the point on C, whose gradient is 2.



G

Г	y= arcsm(za-1) (	Now $\frac{1}{\sqrt{2-3^2}} = 2$
d.	$\frac{dy}{dx} = \frac{1}{\sqrt{1 - (2x-1)^2}} \times 2$	$\Rightarrow \frac{1}{2-x^2} = 4$
	$\frac{du}{d\lambda} = \frac{2}{\sqrt{(-(4\lambda^2-4\eta+1))}}$	$\implies  \lambda - \lambda^{2_{n}} = \frac{1}{4}$
1	$\frac{d_{4}}{dx} = \frac{2}{\sqrt{4\chi - 4\chi^{2}}}$	$\Rightarrow 4x - 4x^{x} = 1$
1		$\Rightarrow -4x^2 + yx - 1 = 0$
	$\frac{du}{d\lambda} = \frac{1}{\sqrt{\lambda - \lambda x}}$	$\Rightarrow 4\vec{x} - (x + 1) = 0$ $\Rightarrow (x - 1)^2 = 0$
		$\Rightarrow 1 \cdot \frac{1}{2}$
	5	é y = misino = 0
	<u>}</u>	: (1/2 10)
	/	

### Question 18 (****)

Find a simplified expression for

C,

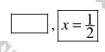
1

202.51

$$\frac{d}{dx}\left[\arctan\left(\frac{x}{\sqrt{4-x^2}}\right)\right]$$

$$\int \frac{d}{dx} \left[ \arctan\left(\frac{x}{\sqrt{4-x^2}}\right) \right] = \frac{1}{\sqrt{4-x^2}}$$

V4 -




### Question 19 (****)

I.F.G.B.

Solve the following trigonometric equation.

 $\arctan 2x + \arctan x = \arctan 3, \quad x \in \mathbb{R}$ 



### (arctay 2x + arctay 2 = arctay 3}

- ANG. THE COUPOUR ANGLE FERMINA FOR THIGHT
  - $\sqrt{2}u_{1}(A+B) = \frac{\tan A + \tan B}{1 \tan A \tan B}$
- ⇒ tan[artan 2x + orton 2] = tan (artan 3) → tan [artan 2x + on [artan 2] = 3
- $\frac{2\alpha + \alpha}{\alpha} = 3$
- $\implies 3L = 1 23L^2$  $\implies 2T^2 \pm v = 1 \equiv n$
- =) (2x-1)(x+1)=0
- $a < \frac{1}{2}$
- As anti-(-2) + ontou (-1) <0 untay 3 > 0

G

# HARD QUESTING IN THE INTERNATION INTERNATION IN THE INTERNATION I STRATUS COM L.Y. C.B. MARIASINATIS COM L.Y. C.B. MARIASINATIS COM L.Y. C.B. MARIASINATIS COM L.Y. C.B. MARIASINA

Question 1 (****+)

Smarks Com I. K. C. B.

Manas,

I.F.G.B.

10p	$f(x) = 2\arcsin\sqrt{x} - \arcsin\sqrt{x}$	$\sin(2x-1),  0 \le x \le 1.$	, On	~ N
By considering	f'(x) sketch the graph of $f$	(x).	E.	1 m
N.C.	Gp	Gp	, graph	·Gp
	nar	$f'(x) = 2 \times \frac{1}{\sqrt{1-(\alpha)}}$	$\frac{\partial \nabla \mathcal{L}}{\partial p} \times \frac{\partial}{\partial t} (\partial \overline{\mathcal{L}}) - \frac{1}{\sqrt{1-2}} \times \frac{\partial}{\partial t} (\partial \mathcal{L})$	
	- ^{- 1} 351	$= \frac{2}{\sqrt{1+x^2}} \times \frac{1}{2\delta}$ $= \frac{1}{\sqrt{1+x^2}}$ $= \frac{1}{\sqrt{1+x^2}}$	2/2-22	Sinath.
Co.	21/s	6Haugtinulo Say are 2=0 f(0)= 2ans.1110 - anc	н салаан и салаан и салаан о Ц1	".C
	COM-	- o-(-(*) - 포 - 포		
1. K. C	K.C.p. 1	Ko.	Y.G.S	· .
	1720.	4.B.	112	
asnath an	SID2- 38	nars an	Sp.	asinari
	Sinarias Marias V.C.p	Naths Com		
			I.V.	7
· C .	42	· O.	'G'D	1.0

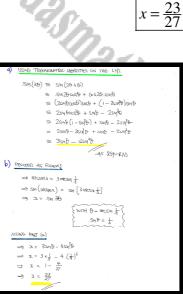
The Com

naths.com

I.F.G.

I.F.C.B. Marian

Question 2 (****+)


i C.B.

I.V.G.B.

 $\sin 3\theta \equiv 3\sin \theta - 4\sin^3 \theta \, .$ 

- a) Prove the validity of the above trigonometric identity by considering the expansion of  $sin(2\theta + \theta)$ .
- **b**) Hence or otherwise solve the equation

 $\arcsin x = 3 \arcsin\left(\frac{1}{3}\right).$ 



F.C.P.

G.

112/12ST

### Question 3 (****+)

Solve the following simultaneous equations

 $\arctan x + \arctan y = \arctan 8$ 

The Com

E.

-40	$\arctan x + \arctan y = \arctan 8$	
Kn KC	x + y = 2.	$x = \frac{1}{2}, y = \frac{3}{2}$ , in either order
1020	1200	$\begin{array}{c} (15005-714; 744 CANFDARB IDENTITY \\ + ton (A+B) = \frac{12n_1A + 20n_2B}{(benA+22n_2B} \\ \rightarrow - ton (active 1 onthory)) = - ton (actor 18) \end{array}$
naths ^{alas} nath	asinaths.	$\Rightarrow \frac{\operatorname{tor}\left(\operatorname{action}_{2}\right) + \operatorname{bar}\left(\operatorname{action}_{2}\right)}{1 - \operatorname{tor}\left(\operatorname{action}_{2}\right) \operatorname{tor}\left(\operatorname{action}_{2}\right)} = \mathcal{B}$ $\Rightarrow \frac{2 + q}{1 - xq} = \mathcal{B}$ $\Rightarrow \frac{2}{1 - xq} = \mathcal{B}$
		$ \Rightarrow  \exists d_{1} + d_{1}^{2} = \exists_{1} \\ \Rightarrow  \frac{3}{4} + g^{2} = \exists_{2} \\ \Rightarrow  d_{1}^{2} - \varepsilon_{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{1}^{2} - \varepsilon_{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}^{2} + \frac{3}{4} = 0 \\ \Rightarrow  d_{2}^{2} - \varepsilon_{2}$
Cp C	9. 17. C.B.	·GB
		nadasm. ^{Va} da
	1s.com ~	n dins.com
I.V. C.D. I.C.	B I.C.	
in.	Created by T. Madas	m. no

**Question 4** ***+)

I.C.p

ins,

I.F.G.B.

- $0 \le x < \frac{\pi}{2} \cup \frac{\pi}{2} < x \le \pi \,.$  $f(x) = \sec x \, ,$
- a) Sketch in the same diagram the graphs of f(x) and  $f^{-1}(x) = \operatorname{arcsec} x$ .
- **b**) State the domain and range of  $f^{-1}(x) = \operatorname{arcsec} x$ .
- c) Show clearly that  $\operatorname{arcsec} x = \operatorname{arccos}\left(\frac{1}{x}\right)$ .

**d**) Show further that  $\frac{d}{dx}(\operatorname{arcsec} x) = \frac{1}{\sqrt{x^4 - x^2}}$ .

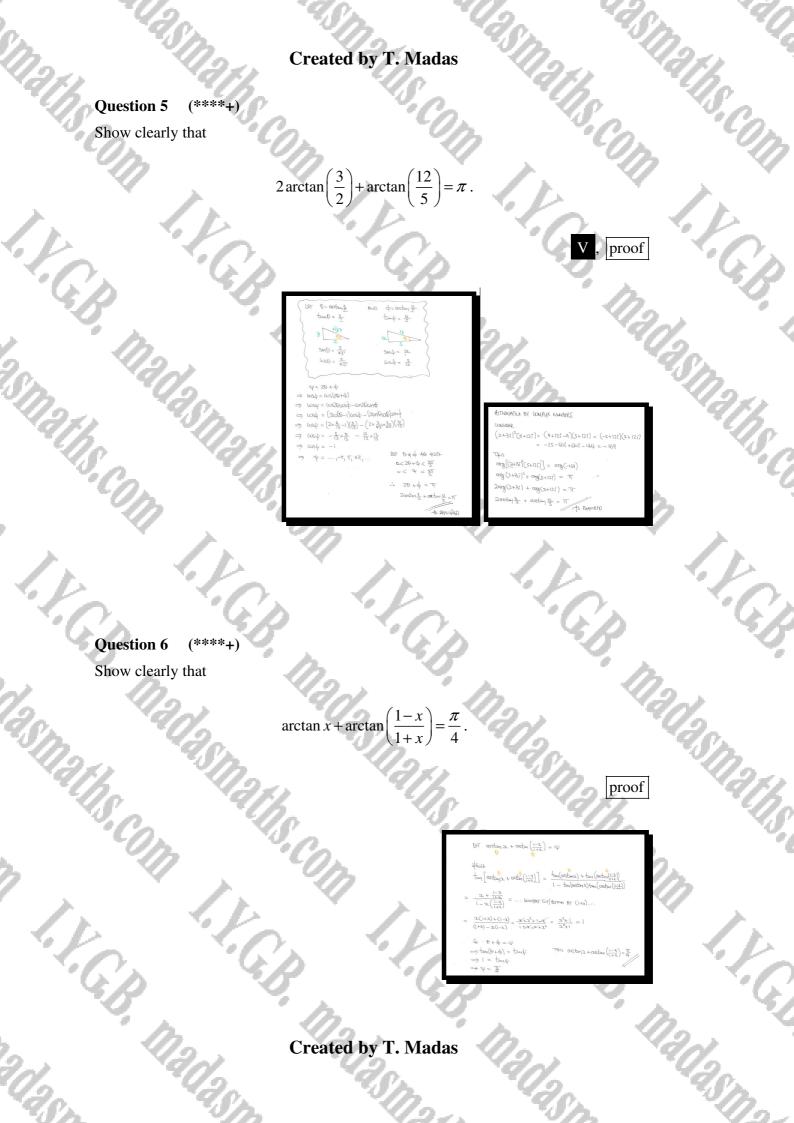
N.C.

domain: x ≤ −1 ∪ x ≥ 1, range: 0 ≤  $f^{-1}(x)$  ≤ π,  $f^{-1}(x) \neq \frac{\pi}{2}$ 

$= \frac{1}{x} = \frac{1}{y^2}$	
$\implies g = \arccos(\frac{1}{2c})$	
the ances of a	= arccos(+)
d) GIHAR ONE STANDARD RESUL	r of twower of ther (c)
$\frac{d}{dt}(accecs) = \frac{dt}{dt}(accos($	$\left(\frac{1}{2k}\right) = -\frac{1}{\sqrt{2}-1} - = \left(\frac{1}{\sqrt{2}}\right)$
= - 1	$\frac{1}{\sqrt{1-\frac{1}{32}}} = \frac{1}{\sqrt{1-\frac{1}{32}}} \times \frac{1}{\sqrt{1-\frac{1}{32}}}$
~ OR BY THE INDRESS RULE ~~	A REALIGO
} ⇒ y= arcseci	$\Rightarrow \left(\frac{dx}{dy}\right)^2 = \alpha^2 - \alpha^2$
z =xerci = 2	$\Rightarrow \left(\frac{dy_1}{dy_1}\right)^2 = \frac{1}{y_1^4 - y_2}$
≤ => a = siecy ≤ => \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	$\Rightarrow \frac{d\lambda}{d\lambda} = \pm \frac{1}{\lambda a_{x}^{4} - x^{2}}$
$\begin{cases} \Rightarrow \left(\frac{dx}{dy}\right)^2 = 3c_y^2 + a_y^2 \end{cases}$	$\Rightarrow \frac{du}{dx} = + \frac{1}{\sqrt{x^2 - x^2}}$
< - (ta)2 = saizy (saizy-1)	PUSHICK GRADINT IN THE GRIEF DEAMAN (PRAPH)
$\begin{cases} \rightarrow \left(\frac{du}{dy}\right)^2 = Ste_y^2 - Ste_y^2 \end{cases}$	ξ
minim	

Is.com

I.C.P.

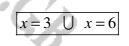

. K.G.B.

A.C.

7.9.1

う

I.C.B. Mag




### (****+) **Question 7**

Solve the following trigonometric equation.

**Created by T. Attack**  
**Question 7** (****)  
The the following and postment in equation:  

$$f(x) = f(x) = f$$



às marns com

F.G.B.

Smaths.C

Ý.G.B.

I.Y.G.

Madasmaths.

1. K. C.B. 111.21/2.8m

Created by T. Madas

I.V.G.B.

Madas,

I.F.G.B.

Question 8 (****+)

 $y = \arccos x, \ -1 \le x \le 1, \ 0 \le y \le \pi.$ 

**a)** By writing  $y = \arccos x$  as  $x = \cos y$ , show that

$$\frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}}.$$

The curve C has equation

<u>R</u>p

I.C.P.

$$y = \arccos x - \frac{1}{2} \ln(1 - x^2), \ x > 0.$$

**b**) Show that the y coordinate of the stationary point of C is

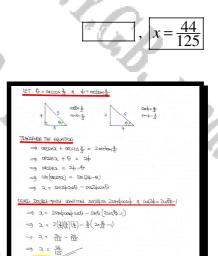
$$\frac{1}{4}(\pi+\ln 4).$$

() <u>three the standard of the second of the</u>	$\Rightarrow 2x^{2} = 1$ $\Rightarrow x^{2} = \frac{1}{2}$ $\Rightarrow x_{2} = \frac{1}{2}$ $\Rightarrow x_{3} = \frac{1}{2}$
b) Differentiation the (avance) on the count $\Rightarrow  y = a \arccos \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-x^2}$	$\Rightarrow \overline{A} = \frac{1}{2} [\underline{a} + \overline{a} + a$

20281

proof

(G.);


# Question 9 (****+)

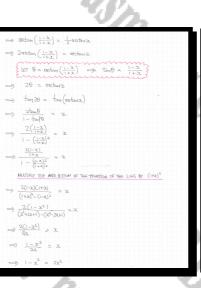
Solve the following trigonometric equation

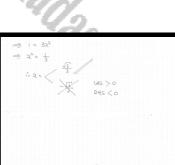
.C.

 $\arcsin x + \arccos \frac{3}{5} = 2 \arctan \frac{3}{4}$ .

Mada




Question 10 (****+)


2115

I.V.G.B.

Find the solution of the equation

$$\arctan\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\arctan x$$
.





 $x = \frac{\sqrt{3}}{3}$ 

N. i.

### (****+) Question 11

The functions f and g are defined by

$$f(x) \equiv 3\sin x, \ x \in \mathbb{R}, \ -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
$$g(x) \equiv 6 - 3x^2, \ x \in \mathbb{R}.$$
$$f^{-1}g(x).$$

$$g(x) \equiv 6 - 3x^2, \ x \in \mathbb{R}$$

**a**) Find an expression for  $f^{-1}g(x)$ .

**b**) Determine the domain of  $f^{-1}g(x)$ .

I.G.B.

>

I.V.G.P.

# $f^{-1}g(x) = \arcsin(2-x^2)$ , $-\sqrt{3} \le x \le -1$ or $1 \le x \le \sqrt{3}$

a)	-fa) = 3.5ma== :	426至
	3(a) = 6-32° a.€	
=	=9 Y = 3.21ma	Now $f'(g(x)) = f'(6-3x^2)$
-	$=9\frac{14}{3} = s_{MD}$	$= \operatorname{ORCSIN}\left(\frac{6-3\chi^2}{3}\right)$
	$\Rightarrow x = \arcsin \frac{y}{3}$ $\therefore f(x) = \arcsin \frac{x}{3}$	= 0705 M (2-32)
b)	(a) Hus Downin [-垩理] (b) Hus Downin [-y3]	
	(∞∈Q) 9(∞) 9(∞) (∞∈Q) 9(∞)	acf-481 fa
	46-xe	
=) =>	$-3 \le 8(3) \le 3$ $-3 \le 6 - 3\alpha^2 \le 3$ $-9 \le -3\alpha^2 \le -3$ $1 \le -3\alpha^2 \le -3$	$\underbrace{ak}_{i} = \begin{cases} & \overset{\text{outsub}}{=} 2 - 1 & \overset{\text{outsub}}{=} 2 - 1^2 \leq 1 \\ & \overset{\text{outsub}}{=} 3 \leq -1^2 \leq -1 \\ & \overset{\text{outsub}}{=} 3^2 \leq 3 & \text{er} \end{cases}$

COM

ma

7.9.

2010

Madasm

G

I.C.B.

I.C.P.

$= 9 - 3 \le 6 - 3\alpha^2 \le 3$ $\Rightarrow - 9 \le - 3\alpha^2 \le -3$			2-12 5		5
$\Rightarrow 1 \leq x^2 \leq 3$			22 4		2
163-9-B626B					
$\mathfrak{A}^2 \geq   \Rightarrow \mathfrak{A} \geq   \Rightarrow \mathfrak{A} \leq   \Rightarrow \mathbb{A}$	-6	-1	0	i .	é.
	5 -N3 5	25-1	02	1525	. N3

Created by T. Madas

COM

KR,

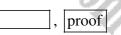
Question 12 (****+)

 $y = \arctan x$ ,  $x \in \mathbb{R}$ .

a) By writing the above equation in the form x = g(y), show that

 $\frac{d}{dx}(\arctan x) = \frac{1}{1+x}$ 

The function f is defined as


 $f(x) = \arctan \sqrt{x}, x \in \mathbb{R}, x \ge 0.$ 

**b**) Show further that

F.G.B.

I.V.G.P.

 $f''(x) = -\frac{1}{4}x^{-\frac{3}{2}}(3x+1)(x+1)^{-2}.$ 



C.p.

R



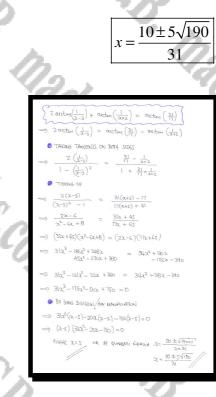
(****+) Question 13

Smaths.com  $, 0 < x < 2\pi.$  $f(x) \equiv \arctan\left(\frac{\sin x}{\cos x - 1}\right)$ 



às marns com

Question 14 (****+)


F.C.B.

I.F.G.B.

 $2 \arctan\left[\frac{1}{x-3}\right] + \arctan\left[\frac{1}{x+2}\right] = \arctan\left[\frac{31}{17}\right].$ 

Show that x = 5 is one of the solutions of the above trigonometric equation, and find in exact surd form the other two solutions.

21/2



C.B.

G.

Question 15 (****+)

$$= \arccos x, x \in \mathbb{R}, -1 \le x \le 1.$$

a) By writing the above equation in the from x = f(y), show that

$$\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$$

A curve has equation

$$y = \arccos\left(1-x^2\right), \ x \in \mathbb{R}, \ 0 < x \le \sqrt{2}.$$

**b**) Show further that

$$\frac{d^2 y}{dx^2} = \frac{2x}{\left(2 - x^2\right)^{\frac{3}{2}}}.$$

Show clearly that c)

$$16\frac{d^3y}{dx^3} = 4x\frac{d^2y}{dx^2}\left(\frac{dy}{dx}\right)^2 + \left(2+x^2\right)\left(\frac{dy}{dx}\right)^5$$

(a) Experies the susception Graph  

$$\Rightarrow \frac{1}{2} = 0 \text{Ecosyst}$$

$$\Rightarrow \frac{1}{2} = 0 \text{Ecosyst}$$

$$\Rightarrow \frac{1}{2} = \frac{1$$

with THIS "FAILS INSTHAT  $\implies \frac{\alpha_{n}^{2}}{4x^{2}} = \frac{(2-x^{2})^{\frac{1}{2}}\overline{\alpha} - 2x_{2}^{\frac{1}{2}}(x-x^{2})^{\frac{1}{2}}(-2x)}{[(2-x^{2})^{\frac{1}{2}}]^{\frac{1}{2}}}$ 2 (2-x¹)^{1/2}  $\Rightarrow \frac{d^2_{4}}{du^2} = \frac{2u(z-u)^2}{(2-u^2)^2}$ => dhe = 22 dat = (2-22)/2 As Reported NTIATE APTHE DEWEITING SINCE CH_ 9 22 ARE DEWITH  $= \frac{2\lambda}{(2-\lambda^2)} Y_2 = \frac{2}{(2-\lambda^2)^2} \times \frac{\lambda}{2-\lambda^2} = \frac{d_{V_1}}{dk} \left( \frac{\lambda}{2-\lambda^2} \right)$  $\left[\frac{dy^2}{dy}\right] = \frac{dy}{dy} \left[ -\frac{dy}{dy} \cdot \frac{y - yy}{x} \right]$  $\frac{d\frac{2}{3}}{dx^{2}} \times \frac{x}{2-x^{2}} + \frac{dy}{dx} \times \frac{(2-x^{2})\times 1-x(-2x)}{(2-x^{2})^{2}}$  $= \frac{d\hat{h}_{1}}{d\hat{h}_{2}} \times \frac{1}{4} \lambda \left(\frac{4}{2-\chi^{2}}\right) + \frac{d\hat{h}_{2}}{d\hat{\lambda}} \times \frac{2-\chi^{2}+2\chi^{2}}{(2-\lambda^{2})^{2}}$  $= \frac{d^2_{ij}}{d\eta^2} \times \frac{1}{4} \Im \left[ \frac{2}{(2-3^2)^2} \right]^2 + \frac{d_0}{d\lambda} \times \frac{2+2^2}{(2-3^2)^2}$  $= \frac{d^2 q}{d \lambda^2} \times \frac{1}{4} \lambda \left( \frac{d q}{d \lambda} \right)^2 + \frac{d q}{d \lambda} \times (2 + \lambda^2) \times \frac{1}{16} \times \frac{16}{(2 + \lambda^2)^2}$  $= \frac{d^2 y}{d \chi^2} \times \frac{1}{4} \lambda \left( \frac{d y}{d \chi} \right)^2 + \frac{1}{16} \left( 2 + \chi^2 \right) \frac{d y}{d \chi} \left[ \frac{2}{(2 - \chi^2)^{1/2}} \right]^4$  $= \pm x \frac{d^2}{d^2 u} \left( \frac{du}{dx} \right)^2 + \frac{1}{6} (2+x^2) \frac{du}{dt} \left( \frac{du}{dt} \right)^4$  $\Rightarrow k \frac{dx_1}{dx_1} = 4 \chi \frac{dx_1}{dx_1} \left( \frac{dy}{dx_1} \right)^2 + (z + x^2) \frac{dy}{dx_1}$ 

# AUTHONATIVE ARROADE FOR PART (C)

, proof

G

- $\Rightarrow \frac{d^2g}{d\lambda_x} = \frac{2\lambda}{(2-2)}$
- $\Rightarrow \frac{d_{2}^{\frac{1}{2}}}{dt^{\frac{1}{2}}} = \frac{(2-z^{2})^{\frac{1}{2}} z^{2} 2i + \frac{3}{2}(z-z^{2})^{\frac{1}{2}} 2i}{[(2-z^{2})^{\frac{1}{2}}]^{\frac{1}{2}}} = \frac{2(2-z^{2})^{\frac{1}{2}} + (z^{2}(2-z^{2})^{\frac{1}{2}}}{(2-z^{2})^{\frac{1}{2}}}$
- $\Rightarrow \frac{\partial x_{k}}{\partial x^{k}} = \frac{2(2-\chi^{2})^{\frac{k}{2}} \left[ (2-\chi^{2}) + 3\chi^{k} \right]}{(2-\chi^{2})^{\frac{k}{2}}}$
- $\Rightarrow \frac{\delta_{ij}^3}{dx^3} = \frac{2(2+2x^2)}{(2-x^2)^{k_1}} = \frac{4(x^2+i)}{(2-x^2)^{k_2}}$
- $\therefore | \zeta \ \frac{d^3 y}{d \alpha^3} \ \stackrel{\times}{=} \ 64 \langle x^2 + i \rangle \times \frac{1}{(2 2^2)} i \xi$

### NOW BY TREELFICK ON OF THE R. H.S. NOTING $JHHL R_{fg}^{(2)} = \frac{(5-7x)}{(5-7x)}$

- $$\begin{split} & \sum_{k=1}^{\infty} \left| \frac{\partial g_{k}^{2}}{\partial t_{k}} + \sum_{k=1}^{\infty} \frac{\partial g_{k}^{2}}{\partial t_{k}} + \sum_{k=1}^{\infty} \frac{\partial g_{k}}{\partial t_{k}} + \sum_{k=1}^{\infty} \frac{\partial g_{k}}{$$

- $\Rightarrow |6\frac{d^3g}{dt^3} = \frac{64x^2}{(2-x^2)^{\frac{1}{2}}} + \frac{6u}{(2-x^2)^{\frac{1}{2}}}$  $\Rightarrow |6\frac{d^3g}{dt^3} = \frac{64(x^2u)}{(2-x^2)^{\frac{1}{2}}}$



# Created by T. Madas 36 ENRICHMENT Madas 36 SARCHMENT DUESTIONS

Question 1 (*****)

Given the simultaneous equations

 $3\tan\theta + 4\tan\varphi = 8$ 

 $\theta + \varphi$ 

find the possible value of  $\tan \theta$  and the possible value of  $\tan \varphi$ .

$\left[\operatorname{tan} \theta, \operatorname{tan} \varphi\right] = \left[2, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}\right]$	in.	$\left[\tan\theta,\tan\varphi\right] = \left[2,\frac{1}{2}\right] = \left[\frac{2}{3},\frac{3}{2}\right]$	12. 1
CB (B, IIalas II	alls co. 2023	$\begin{array}{c} 3\frac{3}{6}\omega\theta + 1\frac{1}{6}\omega\theta = \theta\\ \Theta + \Phi - \frac{1}{2} \end{array} \rightarrow \begin{array}{c} 3\frac{3}{6}\omega\theta + \frac{1}{6}\omega\theta = \theta\\ 3\frac{3}{6}\psi\theta + e = \theta + \theta\\ 3\frac{3}{6}\psi\theta - \theta + e = \theta + \theta\\ 3\frac{3}{6}\psi\theta - \theta + e + \theta = \theta\\ 3\frac{3}{6}\psi\theta - \theta + e + \theta = \theta\\ (\frac{1}{6}\omega\theta - 2) = 0\\ \frac{1}{6}\psi\theta = \frac{1}{6}\frac{1}{6}\\ \frac{1}{6}\psi\theta = \frac{1}{6}\frac{1}{6}\\ \frac{1}{6}\psi\theta = \frac{1}{6}\frac{1}{6}\frac{1}{6}\\ \frac{1}{6}\psi\theta = \frac{1}{6}\frac{1}{6}\frac{1}{6}\\ \frac{1}{6}\psi\theta = \frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}1$	Shaths.C
	K.C.S		
Created by T. Madas			
a sparter sparter	10303 C	Created by T. Madas	30/25m

(****) **Question 2** 

Simplify, showing all steps in the calculation, the expression

 $\arctan\frac{4}{3} + \arctan 2 - \arctan 3$ ,

giving the answer in terms of  $\pi$ .

V.C.B. Madasm

21/15

I.V.G.B.

·C.A

þ

2



4+2-3+ 4×2×3

A+B-C = 7

 $\frac{1+3!}{\left(\frac{3+4!}{1}\right)\left(\frac{1+3!}{(1+2!)}\right)}=\frac{1+3!}{3+6!+4!-8}=\frac{1+3!}{-5+10!}=\frac{(1+3!)}{(1+3!)}=\frac{(1+3!)}{(1+3!)}$  $\frac{-S + |S_1 + |O_1 + 3O|}{|O|} = \frac{2S + 2S_1}{|O|} = \frac{S}{2} + \frac{5}{2} i$  ths.com

. R. P.

COM

 $\frac{\pi}{4}$ 

nadasma

Madasn

G

I.C.B.

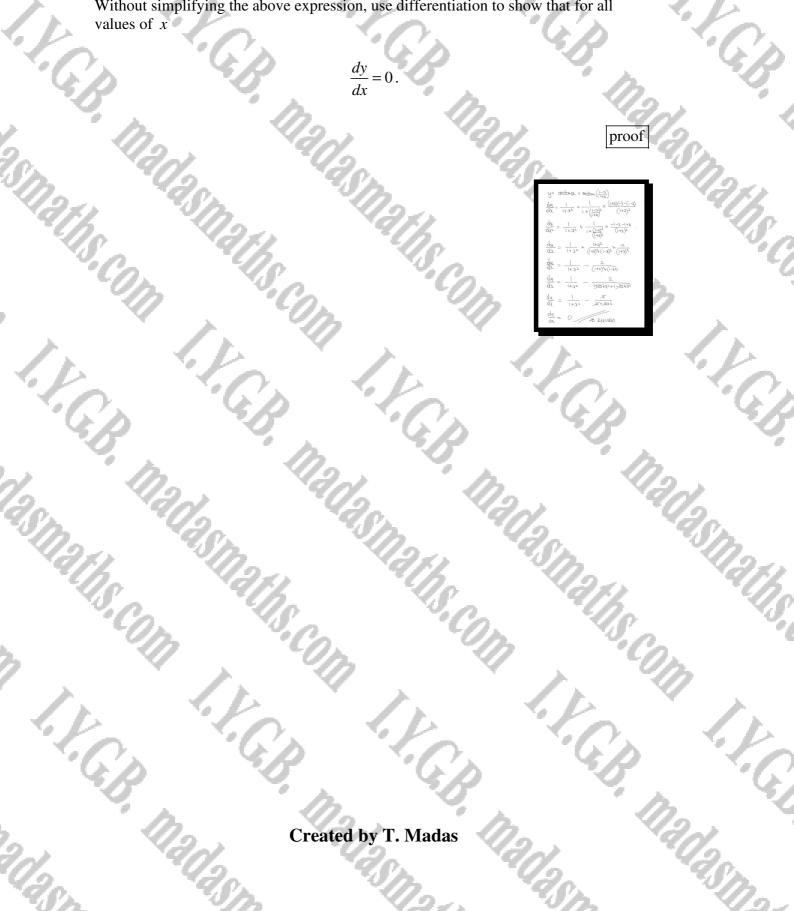
 $\operatorname{cugg}\left[\frac{1+3!}{(3+f!!)(1+3!)}\right] = \operatorname{cugg}\left(\frac{5}{2}+\frac{5}{2}!\right)$ mg (3+41) + ang (1+21)

21/2.87

Created by T. Madas

2017

R,


naths.com

The Com

Question 3 (****)

 $y = \arctan x + \arctan\left(\frac{1-x}{1+x}\right), x \in \mathbb{R}.$ 

Without simplifying the above expression, use differentiation to show that for all values of x



- Question 4 (*****)
- A curve C has equation

F.G.B.

I.Y.C.B.

 $y = e^{\arctan x}, x \in \mathbb{R}.$ 

a) Show, with detailed workings, that

$$\frac{d^3 y}{dx^3} = \frac{\left(6x^2 - 6x - 1\right)e^{\arctan x}}{\left(1 + x^2\right)^3}$$

**b**) Deduce that C has a point of inflection, stating its coordinates.

 $\frac{d\mu_3}{dm} = \frac{(1+2\epsilon)^3}{\Theta_{44}(2m^2)^3} (\Theta_{45} - \Theta_{7} - 1)$  $\frac{du}{dx} = e^{arcboug} \times \frac{1}{1+r^2}$ FOR + POINT OF INFLEXION dit = 0 à dit to y, BUT IT IS -2x> =0  $\frac{(\mu \pi^{2})e^{20 t_{\mu} \mu_{h}}}{(1+\chi^{2})^{2}}$ × 22 a∗£ (45 eastaux >0)  $= \frac{e^{\Theta(cbulk}(1-2k))}{(1+\chi^2)^2}$ •  $\frac{d_{ij}}{d_{ij}}\Big|_{J \times \frac{1}{2}} = \frac{e^{\alpha d_{ij} \times \frac{1}{2}}}{(1 + \frac{1}{2})^3} \times (e^{x \frac{1}{2}} - e^{x \frac{1}{2}} - I)$ NOW TAKEN'S LOGS IS AN APPROX OF DEAL WAY IT AS I PROVIDE" PROVIDE  $= \frac{e^{\alpha i \hbar w} \frac{1}{2}}{\frac{1}{16}} \times \left(\frac{1}{2} - i - i\right)$  $\Rightarrow \frac{dy_2}{dy_2} = (1-2t)e_{altgant_2}(1+x_1)$  $= \frac{16}{25} o_{autor \frac{1}{2}} \times \left( \frac{1}{2} \right)$  $\begin{cases} \frac{ds}{dt}(fdp) = f(dp + fd, p + fdp) \end{cases}$ = - 10  $\Leftrightarrow \frac{\partial g_{k}}{\partial \alpha_{k}} = -2 e^{\operatorname{ardsun}} C_{1+} x^{2}_{1} + (1-2i) e^{\operatorname{ardsun}} + \frac{1}{(+)^{2}} (1+i^{2})^{2} + (1-2i) e^{\operatorname{ardsun}}$ 70  $\Rightarrow \frac{df_{\ell}}{q^{\ell}} = -\frac{(1+\delta_{\ell})_{\ell}}{5e_{aupoir}} + \frac{(1+\delta_{\ell})_{\ell}}{(1-5\ell)e_{aupoir}}$  $-\frac{4\chi(1-2z)e^{\alpha RJ}}{(1+\chi^2)^3}$ : (1, ealthing ) is a point of indixing) FACTORIZE AND TIDY  $\Rightarrow \frac{d_{y_1}^2}{dy_1} = \frac{e^{antoux_1}}{(1+x^2)^4} \left[ -2(1+x^2) + (1-2x) - 4x(1-2x) \right]$ 9  $\frac{d^3y}{db^3} = \frac{e^{\theta(that)}}{(1+x^2)^3} \left[ -2 - 2x^2 + 1 - x_1 - 4x + 8x^2 \right]$ 

 $\arctan\frac{1}{2}$ 

F.C.B.

G

# Question 5 (*****)

I.V.G.B.

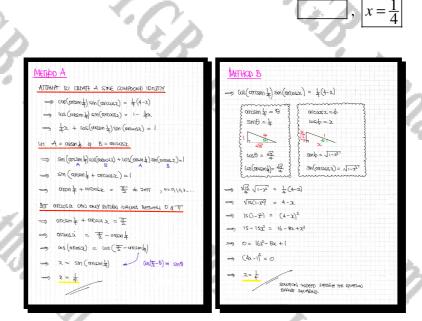
þ

aths com

I.C.B.

21/15,

I.L. G.B.


Solve the following trigonometric equation

·GA

N.C.

Inadasn

 $\cos\left(\arcsin\frac{1}{4}\right)\sin\left(\arccos x\right) = \frac{1}{4}(4-x) , \quad x \in \mathbb{R}.$ 



1121/2SI

18.CON

nadasm.

2017

11.2d2.81

G

I.F.G.B.

# Question 6 (*****)

Simplify, showing all steps in the calculation, the expression

 $\arctan 8 + \arctan 2 + \arctan \frac{2}{3}$ ,

giving the answer in terms of  $\pi$ .

i.G.B.

21/15

I.F.G.p

Madası

han (A+B) = tand + tanB I - tanA hanB  $true (A+B+C) = true (A+B)+C = -\frac{true (A+B) + true C}{1 - true (A+B) true C}$ touA + tonB + touc ++++++B 1-+++++B "TOP & BOTTOM" OF THE RULETION BY hand + tours + tours (1- tour A tours) 1 - touthours - (tout + tous) tour C tax(A+B+C) = <u>LanA + taxB + taxC - taxA taxB taxC</u> I - taxA taxB - taxB taxC - taxC.taxA A= artay 8 -> fay A=8 ⇒ fon (A+B+C) =  $\frac{8+2+\frac{2}{3}-8\times2\times\frac{2}{3}}{1-(8\times\frac{2}{3})-(8\times\frac{2}{3})}$  $\frac{l0 + \frac{a}{3} - \frac{32}{3}}{l - l6 - \frac{16}{3} - \frac{4}{3}}$ 

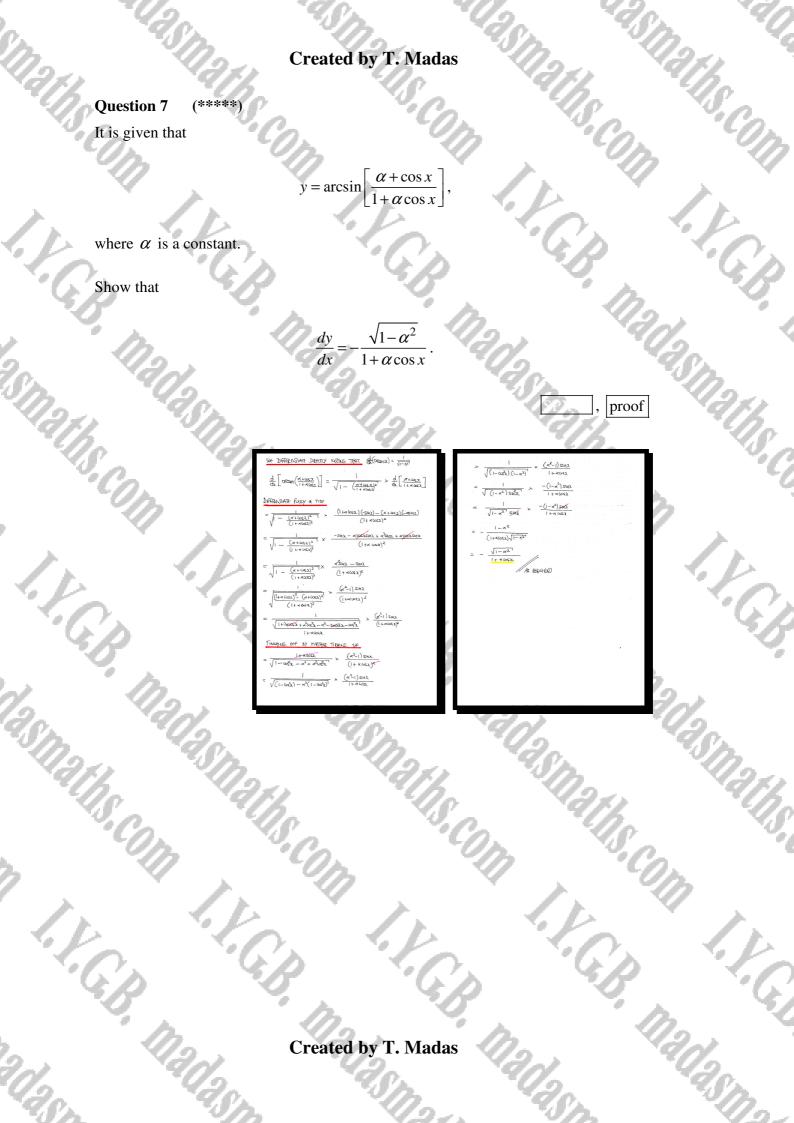
AtBt archus + antre + AS A, B, C ARE ALL ADUTH 0 < 4+B+c < 3T antuge + antug 2 + actury 2

Com

 $, \pi$ 

2011

madasn


 $G_{i}$ 

ŀ.G.p.

### ALTERNATIVE BY COMPLEX NUMBERS

 $\begin{array}{l} \text{CONSTRUTTLE Focusion IC} \\ \text{CONSTRUTTLE Focusion IC} \\ & \mathbb{R} - (1 + 81)(1 + 21)(3 + 21) = (1 + 81)(3 + 21 + 61 - 61) \\ & \mathbb{R} = (1 + 81)(-1 + 81) \\ & \mathbb{R} = -31 + 81 - 81 - 81 \\ & \mathbb{R} = -32 \\ & \mathbb{R} = -32$ 

- TALINO- AlGONNAN IN THE FOUDWING EXPRESSIO
- $\implies$  (1+Bi)(1+5i)(3+5i) = -ei
- $\Rightarrow \operatorname{org}[(1+\operatorname{Bi})(1+2t)(3+2t)] = \operatorname{org}(-65)$
- $\implies \operatorname{outpu}\left(\frac{1}{2}\right) + \operatorname{outpu}\left(\frac{1}{2}\right) + \operatorname{outpu}\left(\frac{1}{2}\right) + \operatorname{outpu}\left(\frac{1}{2}\right) = \operatorname{outpu}\left(\frac{1}{2}\right) + \operatorname{outpu}\left(\frac{1}{2}\right) = \operatorname{outpu}\left(-\epsilon_{1}\right)$
- :  $0nby 8 + onby 2 + anby = \pi$



Question 8 (*****)

C.B. Madasm

Y.G.B.

2

The functions f and g are defined by

 $f(x) \equiv \cos x, \ x \in \mathbb{R}, \ 0 \le x \le \pi$ 

 $x = \pm \sqrt{1 - \frac{\pi}{6}}$ 

 $g(x) \equiv 1 - x^2, x \in \mathbb{R}.$ 

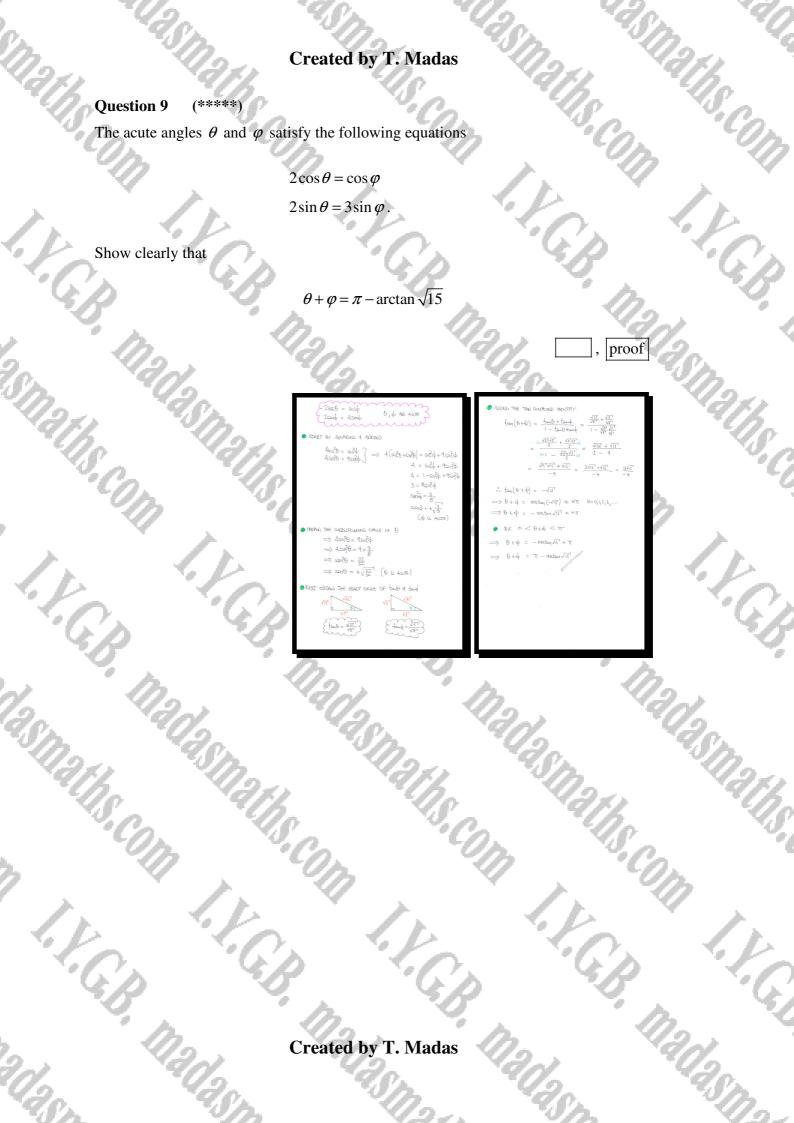
**a**) Solve the equation  $fg(x) = \frac{1}{2}$ .

**b**) Determine the values of x for which  $f^{-1}g(x)$  is **not** defined.

	Con .
$ \begin{array}{c} (\underline{a}) \\ (a$	$\mathbf{\hat{\sigma}} = \sum_{i=1}^{N} \frac{1}{i} - \sum_{i=1}^{N} \frac{1}{i} = \sum_{i=1}^{N$
a get 100 get 100	
$\begin{array}{l} (\mathrm{CAURONTION \ G, \ \underline{MUD}, \ H} \\ -1 \leq \Re(3) \leq 1 \\ -1 \leq -x^2 \leq 1 \\ -2 \leq -x^2 \leq 0 \\ 0 \leq x^2 \leq 2 \end{array}$	NOT DEEN45
-5< 7 < 5	

 $x < -\sqrt{2}$  or  $x > \sqrt{2}$ 

COM


mana

G

I.C.P.

Created by T. Madas

2017



### (***** Question 10

Madasmaths.com

I.C.P.

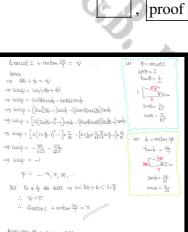
F.C.B.

I. C.B. Madasmaths.Com

11₂₁₂

Show clearly that

I.F.G.B.


2SM2/AS.COM

23

>

I.V.G.B

V.C.B. Madasn 4 arccot 2 + arctan  $\pi$  .



The Com

maths.com

GB

19.C

madasmaths

I.F.G.

## ACTIONATIVE BY COMPLEX NUMBERS

tay 34  $\begin{array}{l} (2+i)^{4}(7+24i) = (4+4i-i)^{2}(7+24i) = (3+4i)^{2}(7+24i) \\ = (4+24i-16)(7+24i) = (-7+24i)(7+24i) \end{array}$ 49-1681+1681-576 ang (2+i)* ang (2+1)4 +9m(7 I.C.B. 4 arg (2+1) + arg (7+241

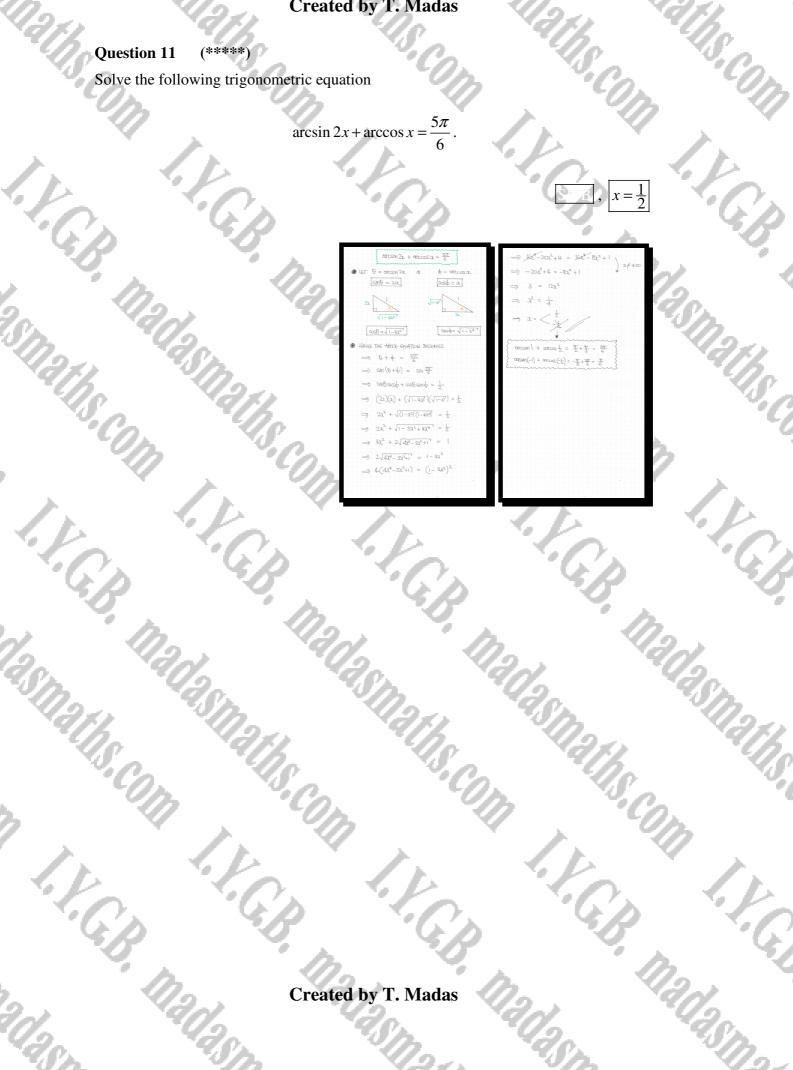
Madasmaths.com

I.V.C.B. Madasm

Created by T. Madas

Inadasmaths.Com

aths.com


### (****) Question 11

Þ

>

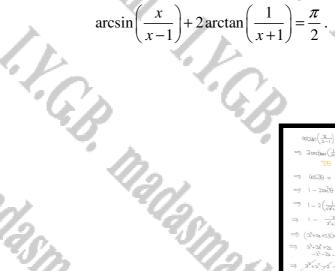
Solve the following trigonometric equation

 $\arcsin 2x + \arccos x =$ 



### Question 12 (*****)

T.Y.C.B. Madasman


Smarns com tro

1720

I.F.G.B.

I.F.G.B.

Find the only finite solution of the equation





ths.com

x = 0

naths.com

FGB.

I.V.C.B

1.1.6.

madasma

I.V.C.B. Madasm

Created by T. Madas

I.V.G.B

# Question 13 (*****)

I.V.G.B.

131/15.CON

F.G.B.

naths.com

I.F.C.P.

þ

 $\rangle$ 

Solve the trigonometric equation

 $2\arctan(x-2) + \arcsin\left(\frac{1-x}{1+x}\right) = \frac{\pi}{2}$  $x \in \mathbb{R}$ 

	11
$2 \operatorname{and}_{\operatorname{bul}}(z-2) + \operatorname{and}_{\operatorname{bul}}(z-2) = 0$	
TRISTLY REWRITE THE INVERSE TRIGONOMETR	ac FONDROUS AS ANULE
$\theta = \operatorname{anzby}(a-z)$	$\phi = \alpha RSDn\left(\frac{1-\alpha}{l+\alpha}\right)$
$\tan \theta = \alpha - 2$	$sm_{\varphi} = \frac{1-2}{1+2}$
$\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{(2\pi)^2} \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \frac{1}{(2\pi)^2} \frac{1}{(2\pi)^2}$	14-3 12-20 BY PYTH499042 THE ALDAGA
and a different and a same	$\sqrt{(1+\alpha)^2 - (1-\alpha)^2} = \sqrt{2\alpha^2}$
• there we use several the events $\rightarrow 2\theta + \phi = \frac{\pi}{2}$ $\rightarrow 2\theta = \frac{\pi}{2} - \phi$	s då follows
ITAKE THE COSINE OF THE EQUATION , P	SEGAUSE OF THE R.H.S.
$\implies \cos 2\theta = \cos \left(\frac{\pi}{2} - \phi\right)$	
$\Rightarrow 2620 - 1 = 5m\phi$	
$\rightarrow 2(-1) - 1 = \frac{1-x}{x}$	

 $\implies \frac{2}{\lambda^2 - 4\lambda + 5} - 1 = \frac{1 - \chi}{1 + \chi}$ 

 $\implies \frac{2 - \alpha^2 + 4\alpha - 5}{\alpha^2 - 4\alpha + 5} = \frac{1 - \alpha}{1 + \alpha}$ 

22

S.

Inadasm

 $\frac{-\frac{\lambda^2 + l_{X-3}}{2^2 - l_X + 5}}{\frac{\lambda^2 - l_X + 5}{2^2 - l_X + 5}} = \frac{2 - l}{3 + l}$  $=(\alpha-\eta(\alpha^2-\eta\alpha+s))$  $x^3 - 4x^2 + 5x$  $-x^2 + 4x - 5$  $\frac{1}{2} - 42^{2} + 32$  $2^{2} - 42 + 3 = 3x^2 - x + 3 = x^8 - 5x^2 + 9x - 5$  $2a^2 - 1bx + 8 = 0$ sx +4 = 0 1(x-4) = 0

The COM

, x = 4

Custo = Vies Sando = 3:5 Kasilo = 1:5

ŀ.G.p.

G

madasm

1F X=4	$\sim$
$\Rightarrow 2 \arctan 2 + \arctan \left(-\frac{3}{\pi}\right) = -4\psi$	< 2 VS
= 2antay 2 - arsin 3 p	5 3 3
$=20 - \phi = \psi$	2 +
$\rightarrow \cos(2\theta - \phi) = \cos(4\psi)$	·····
$\Rightarrow 000 = 4m2.05n2 + 4200(00)200 \Rightarrow$	
$\Rightarrow (2 \log^2 \theta - l) \cosh \phi + 2 \sin \theta \cos \theta \sin \phi = \cos \theta$	ł

 $\Rightarrow 2 \operatorname{anb}_{H}(-1) + \operatorname{ons}_{H}(0) = 2(-\frac{\pi}{4}) + 0 = -\frac{\pi}{2}$ 

### (****) Question 14

Maths.com

SM2/AS.COM

I.F.G.p

>

Use trigonometric algebra to fully simplify

$$\arctan\left[\frac{\sqrt{1+\sin x} - \sqrt{1-\sin x}}{\sqrt{1+\sin x} + \sqrt{1-\sin x}}\right], \ 0 < x < \frac{\pi}{4}$$

nadasın.


COM

Y.C.B.

madasmarns.com

I.C.B.

giving the final answer in terms of x.



dasmaths.com

I.V.C.B. Madasm

E.

naths.com

i C.B.

ŀ.G.B.

I.C.

20/2sm2

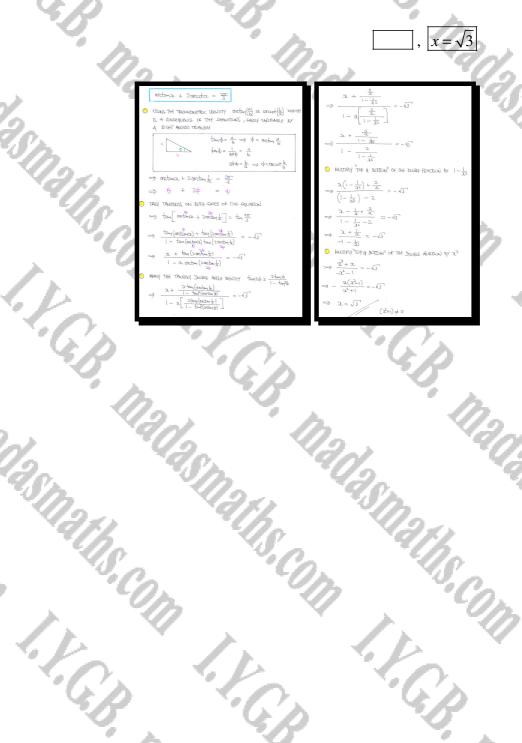
ths.com

Created by T. Madas

COM

N.C.

# Question 15 (*****)


F.C.B.

I.V.C.

Use trigonometric algebra to solve the equation

 $\arctan x + 2 \operatorname{arccot} x = \frac{2\pi}{3}.$ 

You may assume that  $\operatorname{arccot} x$  is the inverse function for the part of  $\operatorname{cot} x$  for which  $0 \le x \le \pi$ .



Created by T. Madas

G

# Question 16 (*****)

Use trigonometric algebra to fully simplify

 $2 \arctan\left(\frac{1}{5}\right) + \arccos\left(\frac{7}{5\sqrt{2}}\right) + \arctan\left(\frac{1}{8}\right),$ 

giving the final answer in terms of  $\pi$ .



arns,

I.F.G.p

 $\begin{array}{rcl} \displaystyle \frac{1-\frac{1}{\sqrt{1-1}}}{1-\frac{1}{\sqrt{1-1}}} & = & \displaystyle \frac{\frac{1}{\sqrt{1-1}}}{1-\frac{1}{\sqrt{1-1}}} & = & \displaystyle \frac{1}{\sqrt{1-1}} & \stackrel{1}{\sqrt{1-1}} & \stackrel{1$ 

=> 21 + 3 tamp = 28 tamp -4 => 25 tamp = 25 => tamp = 1

⇒ ¥=₹//

# AUTIVINATIVE BY COMPLEX NUMBRES

LIGIZZEBANG SHIT SIBILIZING)

- $(5+i)^2(7+i)(8+i)^2$ = (25+10i-1)(7+i)(64+16i-1)
- = (24 + 101)(7+1)(63+161)= 2(24+51)(7+1)(63+161)

 $\begin{array}{l} = 2\left(84+42i+35i-5\right)(32+66i)\\ = 2\left(73+47i\right)(53+66i)\\ = 2\left(437i+47i\right)(53+66i)\\ = 2\left(437i+1245i+296i-752\right)\\ = 2\left(4255+4225i\right)\\ = 8450(i+i^{*})\end{array}$ 

### THIS

$$\begin{split} & \arg[\underline{G}_{k};I_{k}^{\dagger}]G_{k},I_{k}(\theta+1)^{k}] = \arg[\underline{\theta}_{k}SC_{k}]_{k} \\ & \arg[\underline{G}_{k};I_{k}^{\dagger}]_{k}^{\dagger} - \arg[\overline{G}_{k}I_{k}^{\dagger}] + \arg[\underline{G}_{k}I_{k}^{\dagger}] = \arg[\underline{\theta}_{k}SC_{k}]_{k} \\ & \arg[\underline{G}_{k}I_{k}^{\dagger}]_{k}^{\dagger} - \arg[\underline{G}_{k}I_{k}^{\dagger}] + 2\arg[\underline{G}_{k}I_{k}^{\dagger}] = \arg[\underline{\theta}_{k}SC_{k}]_{k} \\ & 2\arg[\underline{G}_{k}I_{k}^{\dagger}]_{k}^{\dagger} - \arg[\underline{G}_{k}I_{k}^{\dagger}]_{k}^{\dagger} - 2\arg[\underline{G}_{k}I_{k}^{\dagger}] = 0 + 3\arg[\underline{G}_{k}I_{k}^{\dagger}] \\ & 2\arg[\underline{G}_{k}I_{k}^{\dagger}]_{k}^{\dagger} - 3\arg[\underline{G}_{k}I_{k}^{\dagger}]_{k}^{\dagger} - 2\arg[\underline{G}_{k}I_{k}^{\dagger}]_{k}^{\dagger} = \frac{1}{44} \\ & 2\arg[\underline{G}_{k}I_{k}^{\dagger}]_{k}^{\dagger} - 3\arg[\underline{G}_{k}I_{k}^{\dagger}]_{k}^{\dagger} - 2\arg[\underline{G}_{k}I_{k}^{\dagger}]_{k}^{\dagger} - 3\arg[\underline{G}_{k}I_{k}^{\dagger}]_{k}^{\dagger} -$$

Com

 $\overline{}, \frac{\pi}{4}$ 

2017

nada.

G

I.C.P.

Created by T. Madas

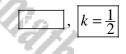
R

Question 17 (*****)

$$f(x) = \arctan(3x) + \arcsin\left(\frac{1}{\sqrt{9x^2+1}}\right), x \in \mathbb{R}.$$

Show, by a detailed method, that ....

I.C.B.


E.

I.C.B. III

I.F.C.P

**a**) ... f'(x) = 0.

**b**) ...  $\arctan(3x) + \arcsin\left(\frac{1}{\sqrt{9x^2+1}}\right) \equiv k\pi$ , stating the value of the constant k.



E.A.

(a) Let  $f(x) = \operatorname{arcbary} S_{X, k} = \operatorname{arcbary} \left(\frac{1}{(q_{Y+1}^{-1})}\right)$   $f(x) = \operatorname{arcbary} S_{X, k} = \operatorname{arcbary} \left(\frac{1}{(q_{Y+1}^{-1})}\right)^{-1}$   $f(x) = \frac{3}{1+Q_{X}^{-1}} + \frac{1}{x(1-(q_{Y}^{-1}))^{x}} \times \left(\frac{1}{(q_{Y}^{-1})}\right)^{\frac{1}{2}}$   $f(x) = \frac{3}{1+Q_{X}^{-1}} - \frac{q_{X}}{\sqrt{1-(q_{Y}^{-1})^{\frac{1}{2}}}} \times \frac{1}{(q_{Y}^{-1})^{\frac{1}{2}}}$   $f(x) = \frac{3}{1+Q_{X}^{-1}} - \frac{q_{X}}{\sqrt{1-q_{Y}^{-1}}} \times \frac{1}{(q_{Y}^{-1})^{\frac{1}{2}}}$   $f(x) = \frac{3}{1+Q_{X}^{-1}} - \frac{q_{X}}{\sqrt{1-q_{Y}^{-1}}} \times \frac{1}{(q_{Y}^{-1})^{\frac{1}{2}}}$   $f(x) = \frac{3}{1+Q_{X}^{-1}} - \frac{q_{X}}{\sqrt{1-q_{Y}^{-1}}} \times \frac{1}{(q_{Y}^{-1})^{\frac{1}{2}}}$   $f(x) = \frac{3}{1+Q_{X}^{-1}} - \frac{3}{2q_{Y}^{-1}} \times \frac{1}{(q_{Y}^{-1})^{\frac{1}{2}}}$   $f(x) = \frac{3}{1+Q_{X}^{-1}} - \frac{3}{q_{X}^{-1}}$  f(x) = 0 f(x) = 0 f(x) = 0  $f(x) = 1 + (q_{X}^{-1}) - \frac{3}{1+q_{X}^{-1}}$  f(x) = 0  $f(x) = 1 + (q_{X}^{-1}) - \frac{3}{1+q_{X}^{-1}}}$  f(x) = 0  $f(x) = 1 + (q_{X}^{-1}) - \frac{3}{1+q_{X}^{-1}}$  f(x) = 0  $f(x) = 1 + (q_{X}^{-1}) - \frac{3}{1+q_{X}^{-1}}$  f(x) = 0 f(x) = 0 $f(x) = 1 + (q_{X}^{-1}) - \frac{3}{1+q_{X}^{-1}}$ 

 $\frac{1}{\sqrt{q_{\lambda^2+1}}} = \frac{1}{2}$ 

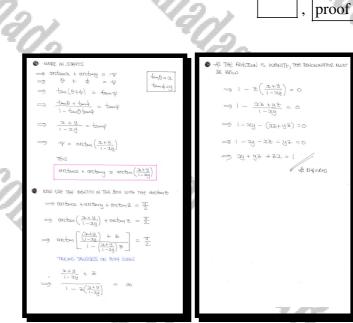
I.F.G.B.

20

 $G_{i}$ 

Question 18 (*****)

It given that


I.F.C.B

þ

 $\arctan x + \arctan y + \arctan z = \frac{\pi}{2}$ 

Show that x, y and z satisfy the relationship

xy + yz + zx = 1.



COM

COM

12/12

G

I.C.B.

C.F.

Created by T. Madas

R,

# Question 19 (*****)

The positive solution of the quadratic equation  $x^2 - x - 1 = 0$  is denoted by  $\phi$ , and is commonly known as the golden section or golden number.

Solve the equation

 $x\cos\left(\frac{1}{2}\arctan 2\right) = \sqrt{\phi}, \ x \in \mathbb{R}$ .

Give the answer in the form  $\sqrt[n]{m}$ , where *m* and *n* are positive integers.

$\begin{array}{c} 1 & \text{diag} = 2 \\ \Rightarrow 2 & \text{diag} = 1 \\ \Rightarrow 2 & \text{diag} = 2 \\ \Rightarrow$	- 200	<u>b.</u>
$\begin{array}{c} 1 & \text{diag} = 2 \\ \Rightarrow 2 & \text{diag} = 1 \\ \Rightarrow 2 & \text{diag} = 2 \\ \Rightarrow$	UNG-A SUBSTITUTION) θ= ±c	nobun2_
$\begin{array}{c} \Rightarrow \  \mbox{tr} \ \mbox{tr} \ \ \mbox{tr} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	=> 20 = tay2	$\Rightarrow 2\cos^2\theta - 1 = \frac{1}{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=> tay 28 = 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccc} & \mathcal{L} = \mathcal{L} & \mathcal{L}$		
$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	C is a second second black	
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $		
$ \Rightarrow \exists \sqrt{\frac{5+427}{10}} = \sqrt{\frac{1}{10}} \qquad $	=) (0520 = <del>15</del>	$=$ $020$ = $+\sqrt{\frac{10}{2442}}$
$= \int \frac{\int \underline{I_{2}} \underline{I_{3}}^{T}}{\int \underline{I_{2}} \underline{I_{3}}^{T}}} \left\{ \begin{array}{c} \alpha & aut + \phi^{2} - \rho - 1ev \\ \alpha & aut + \phi^{2} - \rho - 1ev \end{array} \right\}$ $(hulk Left THE Suide Nau)$	Thus lose = 6201 Zarbay:	$r_{2} = \sqrt{2+2}$
$= \int \frac{\int \underline{I_{2}} \underline{I_{3}}^{T}}{\int \underline{I_{2}} \underline{I_{3}}^{T}}} \left\{ \begin{array}{c} \alpha & aut + \phi^{2} - \rho - 1ev \\ \alpha & aut + \phi^{2} - \rho - 1ev \end{array} \right\}$ $(hulk Left THE Suide Nau)$	3 3 5+45 = 10	the 1+4T arms
MMURICATI THE SURD NOW		> 2
MMURICATI THE SURD NOW	=) $x = \frac{\sqrt{2}}{\sqrt{5+\sqrt{5}}}$	humin
	N to	
500	MMURICATE THE SUED NOW	
$\int_{z} \frac{1}{\sqrt{2+2}} \int_{z} \frac{1}{$	$J = \int_{-\frac{1}{2}}^{\frac{1}{2}+1} = \int_{-\frac{1}{2}}^{\frac{1}{2}+1} = J$	$\frac{1}{2\sqrt{2}} = \sqrt{\frac{1}{2\sqrt{2}} (\frac{1}{2\sqrt{2}} + \frac{1}{2\sqrt{2}})} = \sqrt{\frac{1}{2\sqrt{2}}}$

Sm 3Sm	Created by T. Madas	asm asm	
Question 20 (*****)	S.C.	alls "	Is.co
Prove that if $ x  \le 1$			-017
In the	$\arctan\left[\sqrt{\frac{1-x}{1+x}}\right] \equiv \frac{1}{2}\arccos x$ .	N.C. A	1
Co GB	G.B.	V, proof	60
	12.	$\begin{array}{l} \underline{L} \ \underline{A} \ fourns \\ \text{ler } LH \ \underline{c} = \underline{\theta} = \arctan_{H} \sqrt{\frac{1-X_{1}}{1+X_{1}}} \\ \end{array}$	
Span adasa	- Do -		nars
Sis ath	· · · · · · · · · · · · · · · · · · ·	$u_{LMG}$ $u_{AB} \equiv 2u_{AB} - 1$ $= 2u_{AB} = -1 = 2$ $\Rightarrow u_{AB} - 1 = 2$ $\Rightarrow 2b = a_{CMGG}$ $= 2b = a_{CMGG}$	- S.C.
	Con Con	At REVIEW	
1. Vo	1.2	1. Kon	No.
63 6	, Gp	C.B.	50
	1202		asmaths.
	adasmaths S.C.	asm	Shar
S.Con S.Con		aths .	~~? <u>s</u>
			>
No. KC	o in	· C.D	1.V
Sec.	10. 5		
adas nadasm	Created by T. Madas	nadasn na	asin .
19 No. 19 No.	12-	10/2	200

### Question 21 (****)

ths.com

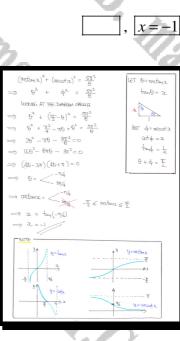
N.G.B. Madasm

Com

21/1S.

I.V.G.B.

2


Use a trigonometric algebra to solve the following equation

 $(\arctan x)^2 + (\operatorname{arccot} x)^2 = \frac{5\pi^2}{8}.$ 

You may assume that  $y = \operatorname{arccot} x$  is the inverse function of  $y = \cot x$ ,  $0 \le x \le \pi$ 

nadasn.

I.C.P.



Inasm.

Com

aths com

 $G_{i}$ 

Madasn,

I.F.G.B.

ths.com

. RA

COM

Created by T. Madas

COM

KQA

### (****) Question 22

I.V.C.B. Madasmaths.Com

I.F.G.B.

I.F.G.B.

manas,

I.F.G.B.

Solve the following trigonometric equation

 $\arctan\left[x\cos\left(2\arcsin\frac{1}{x}\right)\right] = \frac{1}{4}\pi$ .



Ths.com

x = -1,

x = 2

naths.com

. C.H.

Smaths.C

ŀG.J.

I.C.

Madasmaths


I.V.C.B. Mada

# Question 23 (*****)

þ

On a clearly labelled set of axes, draw a detailed sketch of the graph of

 $y = (\arcsin x)^2 \arccos x, \ -1 \le x \le 1.$ 



### (*****) Question 24

Solve the following trigonometric equation

F.G.B.

EB Madasman

2

I.G.B.

 $\sin\left[\operatorname{arccot}(x+1)\right] = \cos\left(\arctan x\right).$ 

You may assume that  $y = \operatorname{arccot} x$  is the inverse function for  $y = \cot x$ ,  $0 \le x \le \pi$ .

madasm

30		$x = -\frac{1}{2}$
	3	
	$\begin{aligned} & \int \partial u^{2} & = \int (i + 2 \sqrt{2} \int du x du$	⊊-4)
A.	> acros (cr.u) = 2 - arcano	$ = \operatorname{arccot}(x+i) = \overline{\Sigma} + \operatorname{arctar}_{X} $
2.5	$\rightarrow \text{oncet}(x_{H}) + \alpha_{T} \text{tran}_{x} = \frac{\pi}{2}$	= arcicot(2H) - action = II
10	$\frac{1}{2} = x + x = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x $	
Cil 2 5		1
SIZ .	$\Rightarrow \operatorname{archard}(\frac{1}{2CH}) + \operatorname{archard} = \frac{\pi}{2}$	= antru (1) - antru = T
	TAKING THNORITS ON BITH SIDES IN GAON C	2 CATTAUP GUATIONS
	$\Rightarrow tay[arctaw(\underline{L})+arctawx] = taw_2^{T}$	⇒. ton andren (thin) -antren ) = ton I.
	$\Rightarrow \frac{\frac{1}{2k+1} + \infty}{1 - \frac{1}{2k+1} \cdot \infty} \approx \infty$	$\Rightarrow \frac{1}{1 + \frac{1}{\lambda + 1} - \lambda} = \infty$
- C.	$\Rightarrow \frac{1+x(x+i)}{x+i-x} = \infty$	$\implies \frac{1 - \alpha(2+1)}{\alpha + 1 + \alpha} = \infty$
C	=) 1+2 ² +2 = 0	
-10	$\implies x^2 + x + 1 = \infty$	$= \Im  \frac{1 - \chi^2 - \chi}{2\chi + i} = 0$
	Guide sc=±co	== 2x+1=0
	DOW = T = T OD	=> 2=-1
<u>x</u>		2
	6	
1/2	1. C.	R.
-62	>	SP
	In	V V
	See.	

nadasmaths.

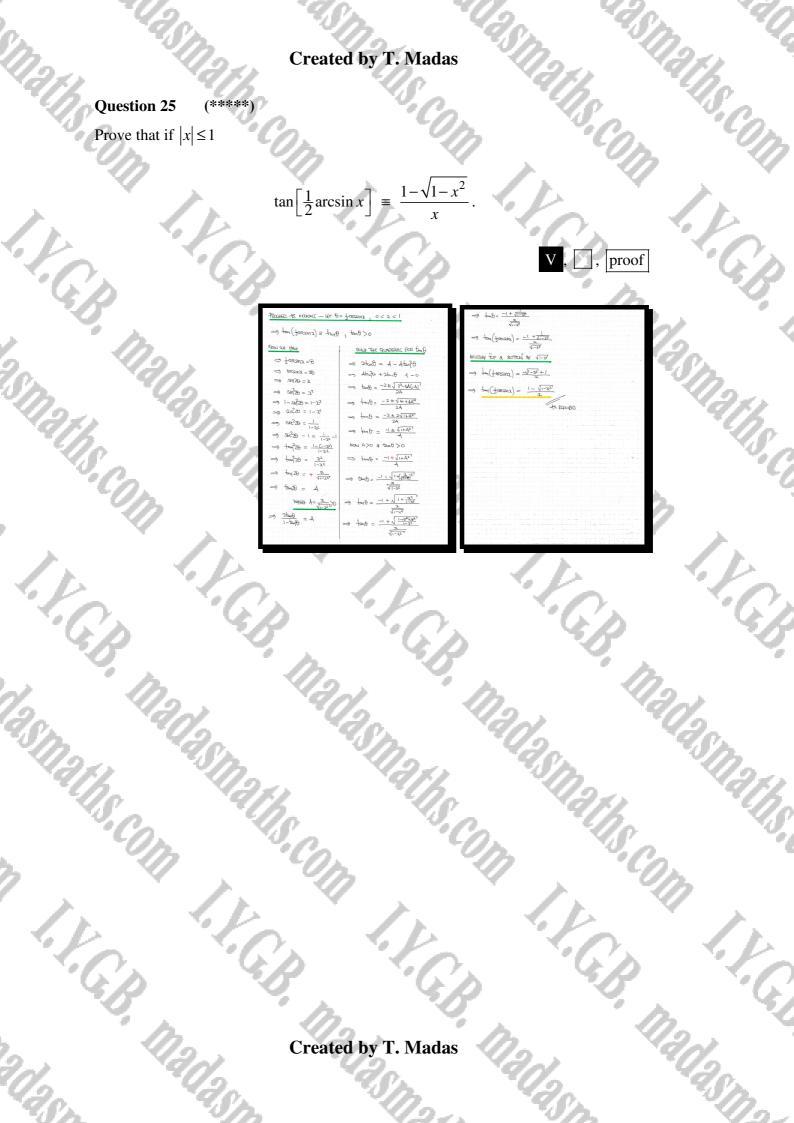
I.C.B.

°on

ns.com

Madasma

. DD


Madasm

 $G_{i}$ 

Created by T. Madas

madasmarias

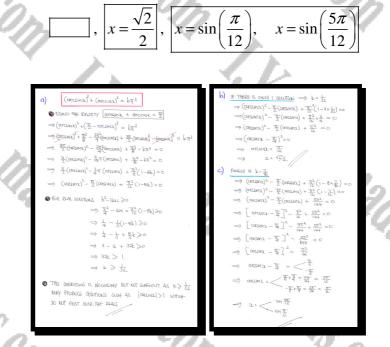
00



Question 26 (*****)

It is given that

 $(\arcsin x)^3 + (\arccos x)^3 = k\pi^3, |x| \le 1,$ 


for some constant k.

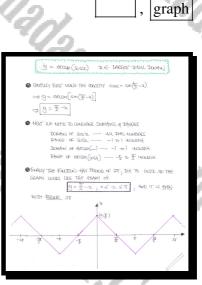
a) Show that a necessary but not sufficient condition for the above equation to have solutions is that

 $k \ge \frac{1}{32}$ .

**b**) Solve the equation given that it only has one solution.

c) Given instead that that  $k = \frac{7}{96}$ , find the two solutions of the equation, giving the answers in the form  $x = \sin(a\pi)$ , where  $a \in \mathbb{Q}$ .




Question 27 (*****)

Sketch the graph of

 $f(x) = \arcsin(\cos x),$ 

in the largest domain that the function is defined.

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusps of the curve.



Question 28 (*****)

 $y = \arctan\left(\frac{2x}{1-x^2}\right), x \in \mathbb{R}.$ 

F.C.B. Madasman Differentiate y with respect to  $\arcsin\left(\frac{2x}{1+x^2}\right)$ , fully simplifying the answer.

Inadasn.

# ASTRAILS COM L.Y. C.P. MARASHASINANS.COM J.Y. C.P. MARASH

naths.com

, 1

Smaths.com

I.F.G.B.

The C

I.V.G.B.

nadasmaths.

### (*****) **Question 29**

na

aths com

Smalls.com

I.L.G.B.

29

>

naths.com - x² with respect to  $\arccos \left| 2x\sqrt{1-x^2} \right|$ √1-Differentiate arctan , and hence sketch x

 $\frac{1}{2}$ sign(x)

 $= \frac{4x}{\sqrt{4x^2}\sqrt{1-x^2}}$ 

 $= \frac{2 \operatorname{sign}(z)}{\sqrt{1-\lambda^2}}$ 

 $\frac{d}{du}(y) = \frac{dy}{du} = \frac{dy}{dx} \times \frac{dx}{du}$ 

madasmaths.com

I.V.C.B. Madasm

madasmaths.

I.C.

 $\frac{4t}{\sqrt{4a^{2}(1-a^{2})^{2}}}$ 

22 1

the graph of the resulting gradient function. I.V.C.B.



Created by T. Madas

COM

1.01

mada.

madasmaths.com

Question 30 (*****)

It is given that

 $\arctan 2 + \arctan A + \arctan B = \pi$ .

It is further given that A and B are distinct positive real numbers other than unity.

Determine a pair of possible values for A and B.

2			],	5 &	÷
1.	÷ .		L		1
	1				
10.0	- <i>1</i>				
əhr za	REOBLEM IS NOT ONI	que, ur A=s	:		
	arctury2 + orctu	15 t antouB	≖भ		
OD BALLED	ZABAMUN XYYAM				
(1+	21)(1+51) = 1 + 5	i +2i -10 =	-9+71		
ingas too					
	+ 21)(1+51) = 1	NEGATIUF REAL N	JOMBER_ (S	SAY -1 AT T	tus (1909972 20t
	$2i C^{1+Si} = -1$ (-1+7i) = -1				
-	$(-1+7i) \ge -1$ $(9-7i) \ge -1$ $\ge -\frac{1}{9-7i}$				
->	Z = 9+				
$\rightarrow$	≥ = <u>9</u> + 13	7			
SO FILL WI	e tyhoe				
⇒ (i+	$(2i)(1+5i)\left(\frac{q+7i}{130}\right)$	= -{			
⇒ (i+	2i) $Ci+Si$ ) $(q+7i)$	= -13p			
⇒arg[(	(1+2;)(1+5;)(1+7;	ISO			
⇒arg (i	+2i) + ang (i+Si) + o	ng(q+7;) = ang	f(- Bo)		
= orta	a 1 antra 1 c.	the - T			

### (*****) **Question 31**

Þ

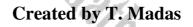
ins

I.Y.G.B.

By sketching the graph of the integrand, or otherwise, determine the maximum value of the following function

 $F(a,b) \equiv \int_{a}^{b} 2 \arcsin \sqrt{x+2} - \arcsin (2x+3) dx.$ I.V.G.B. proof  $\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{-(x^2+y_1+y_1^2)}} - \frac{1}{\sqrt{-y^2-y_1-2}}$ THERAND ARON THE ADEA IS I  $-1) = -(-\frac{\pi}{2}) + \frac{\pi}{2}$  $y = 2aRsin = aRsin = 2x \frac{\pi}{2} - \frac{\pi}{2} = \frac{\pi}{2}$ HI MAY SUFGET THAT THIS FUNCTION MAY BE CONSTAND? PROCEED BY _DIFFERENTIATION)  $\frac{da}{d\lambda} = 2 \times \frac{1}{\sqrt{1 - (\sqrt{23}\sqrt{2})}} \times \frac{d}{d\lambda} (\sqrt{33/2}) - \frac{1}{\sqrt{1 - (23)/2}} \times \frac{d}{d\lambda} (23+3)$  $= 2 \times \frac{1}{\sqrt{1-(\chi+2)}} \times \frac{\delta}{\delta \lambda} \left[ (\chi+2)^{\frac{1}{2}} \right] - \sqrt{1-(\chi+2)^{1+2}} \times 2$  $= \frac{2}{\sqrt{-\lambda-1}} \times \frac{1}{2} (2+2)^{\frac{1}{2}} - \frac{2}{\sqrt{-12-(\Delta-8)}}$  $= \frac{1}{\sqrt{-2-1^{2}}\sqrt{2+2^{2}}} - \frac{2}{\sqrt{4(-2^{2}-32-2)^{2}}}$ I.F.C.B. =  $\frac{1}{\sqrt{-(2+1)(2+2)^2}}$  -  $\frac{2}{2\sqrt{-2^2-34-2}}$ 

Created by T. Madas


R,

2011

12/12

G

I.F.G.B.



lasmarns.com

포(필,필,포).

I.C.B.

K.C.B. Madasmarkins.Com

asinarns.com

C.b. +

ISMaths.C

ŀG.B.

I.V.C.

Madasmaths

1. K. C.B. 111.21/2.8m

Question 32 (*****)


If  $0 \le x \le 1$ , simplify fully

smaths.com

I.F.G.B.

5

 $\arcsin(2x-1)-2\arcsin\sqrt{x}$ .





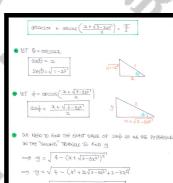
I.V.G.B

Madas,

### Question 33 (****)

I.F.G.p.

2SM27/IS-COM


23

>

I.F.G.B.

Prove that for all x such that  $-1 \le x \le 1$ 

 $\arccos x + \arccos \left[ \frac{1}{2} \left( x + \sqrt{3 - 3x^2} \right) \right] = \frac{\pi}{3}.$ 



- $1 + 2x^2 2\sqrt{3} \cdot x\sqrt{1 x^2} \equiv (A_2 + \sqrt{1 x^2})^2$
- I.V.C.B. Madasmanna Madasmanns.Com + 242 JI-12  $(A^2-1)a^2 + 2Aa \sqrt{1-a^2}$



13/hs.com

proof

2

às marns.com

Smaths.C

Ġ,

I.C.

madasmaths

I.V.C.B. Mada

- usp=1

î.B.

madasmaths.com

 $\therefore \quad \operatorname{qrccos} \mathcal{I} + \quad \operatorname{arccos} \left( \frac{\mathcal{I} + \sqrt{3} - 3 \mathcal{I}^2}{2} \right) = \frac{11}{2}$ 

nadasmaths.com

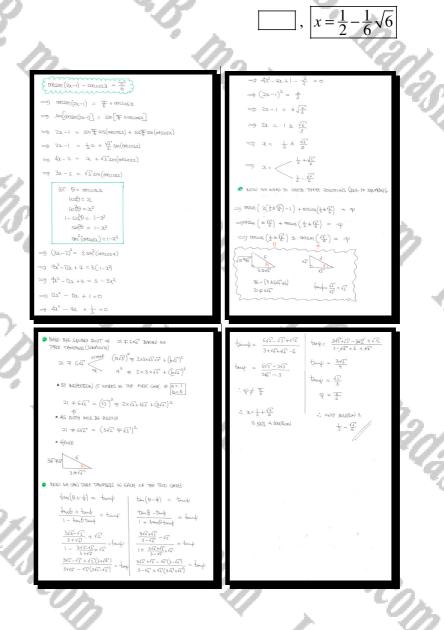
Created by T. Madas

I.Y.C.B.

11_{212s}

### Question 34 (*****)

F.C.P.


17

I.V.G.B.

Find, in exact surd form, the only real solution of the following trigonometric equation

 $\arcsin(2x-1) - \arccos x = \frac{\pi}{6}$ .

The rejection of any additional solutions must be fully justified.



. C.b.

R

### Question 35 (*****)

P.C.

By considering the trigonometric identity for tan(A-B), with A = arctan(n+1) and B = arctan(n), sum the following series

$$\sum_{n=1}^{\infty} \arctan\left(\frac{1}{n^2+n+1}\right).$$

 $\frac{\pi}{4}$ 

anter (KH) - anter [

E.G.A.

R

- 1

You may assume the series converges.





Question 36 (*****)

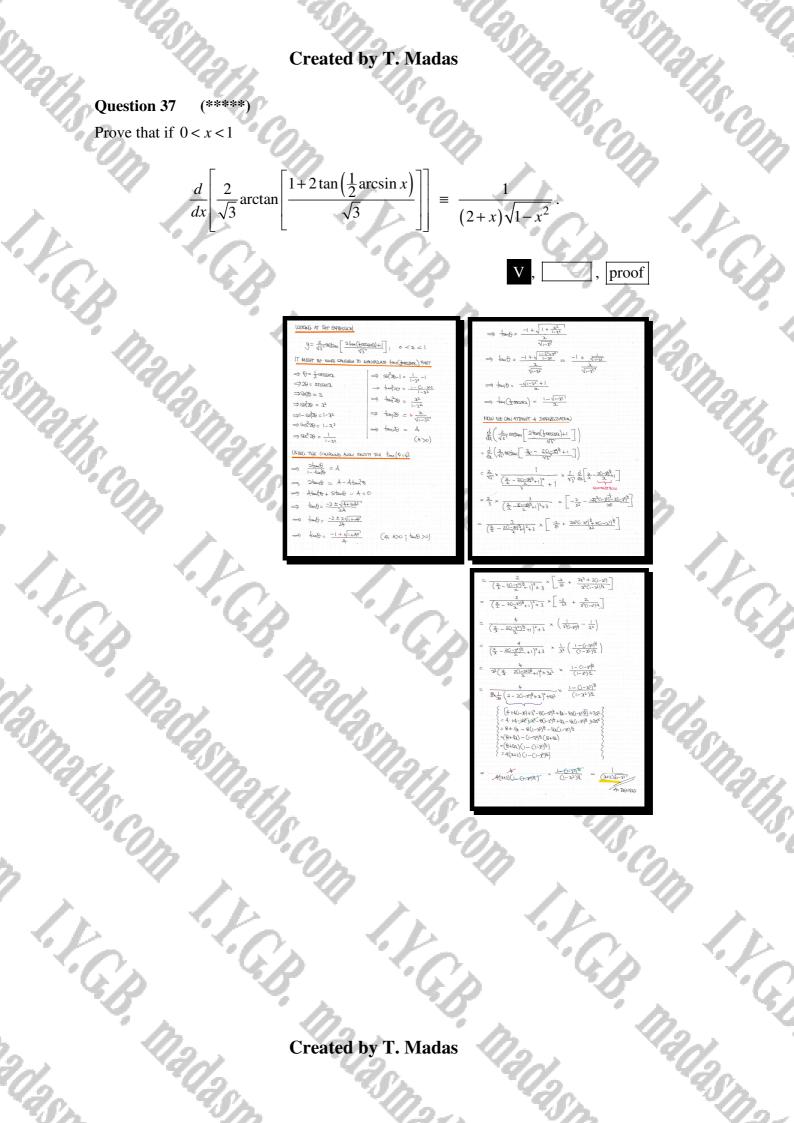
T

θ

A circular wheel of radius r and centre at the origin O of a positive x axis. A particle P is constrained to move on the positive x axis, so that the distance OP is x. The particle is connected to a taut cable which runs over the wheel and hangs vertically down on the other side of the wheel as shown in the figure above. The section of the cable RT, which is in contact with the wheel has length l. The section of the cable TP is a straight line.

**a**) Given that the angle  $TOP = \theta$  show that

$$\frac{dl}{dx} = -\frac{r^2}{x\sqrt{x^2 - r^2}}$$


Let s = l + |TP| and suppose that P is moving in the positive x direction with constant speed 2 units per unit time.

**b**) Find the rate at which s is increasing when P is at a distance of 2r from O.

0) LOOMING AT THE DIAGRAM SELOW
• $\frac{\Gamma}{\Delta} = \cos \Theta \implies \Theta = \arcsin \frac{\Gamma}{\Delta}$ • $\ell = (\pi - \theta)\Gamma = \pi\Gamma - \Gamma\operatorname{otes}(\underline{f})$
Diffiles During were a NATING THAT I U & CONTINUT
$\frac{d\lambda}{d\lambda} = \sqrt{\frac{1}{1-\frac{1}{2\lambda}}} \times \frac{1}{\sqrt{1-\frac{1}{2\lambda}}} = \sqrt{\frac{1}{2\lambda}} = \sqrt{\frac{1}{2\lambda}} \times \sqrt{1-\alpha} = \frac{1}{\sqrt{2\lambda}}$
$-\frac{-l_{T}}{\sqrt{2r}-l_{T}}\times\frac{1}{2r}=-\frac{l_{T}}{2\sqrt{2r}-l_{T}}(4r\times2^{\circ})$
b) NERT THE LANDAY OF THE CARLE & TP
$\varphi' = (+ TP) = [TT - ration + asim \theta]$
$\leq \pi r - raccos \frac{T}{2} + xsm(arccos(\frac{T}{2}))$
DIFFICUSTIATE AGAIN WHET IS A NULL F= CONTADILY WE PART (A)
$\left[\frac{1}{2} 2 \cos\left[\frac{1}{26}\chi(\frac{1}{2} \cos\left(\frac{1}{2}) + 2 \cos\left(\frac{1}{2}) \cos\left(\frac{1}{2}\right) + 2 \cos\left(\frac{1}{2}\right$
$\frac{ds}{d\lambda} = \frac{c^{2}}{2\sqrt{3\lambda^{2}r^{2}}} + \sin\left(arcs\frac{r}{\lambda}\right) + 1 \frac{d}{dx}\left[arcs\frac{r}{\lambda}\right]$

 $\frac{ds'}{dx} = \frac{-r^2}{x\sqrt{2^2 - r^2}}$  $\frac{d\xi}{dt} = Sin(orcus_{\frac{T}{2}})$ (when the Br SIMPUFIE TO 122-121) HUY, RELATING THE PARTICLE SPEED da = 2.  $= \frac{ds}{ds} \times \frac{ds}{dt}$  $\frac{\mathrm{d} \underline{x}}{\mathrm{d} t} = -\mathrm{SM}\left(\mathrm{array}_{\underline{X}}^{\underline{f}}\right) \times 2.$  $= - SIN \left( CIFCLOS \frac{1}{2} \right) \times 2$  $\left( \frac{5m}{3} \right) \times 2$ V3 ADDTS

 $\sqrt{3}$ 

