Createu w TRIGONOSETRY MAR COMPOUND ANGLE SINALISCOM L.Y.C.B. MARIASINALISCOM I.Y.C.B. MARIASIN,

Question 1

Prove the validity of each of the following trigonometric identities.

- **a**) $\sin\left(x+\frac{\pi}{4}\right) \equiv \cos\left(x-\frac{\pi}{4}\right)$
- **b**) $\cos\left(x+\frac{\pi}{3}\right)+\sqrt{3}\sin\left(x+\frac{\pi}{3}\right) = 2\cos x$

c)
$$\cos\left(2x + \frac{\pi}{3}\right) + \cos\left(2x - \frac{\pi}{3}\right) \equiv \cos 2x$$

 $\frac{\sin(x+y)}{\cos x \cos y} \equiv \tan x + \tan y$

e) $\tan\left(x+\frac{\pi}{4}\right)\tan\left(x-\frac{\pi}{4}\right) \equiv -1$ I.Y.C.B. Madasman

ans com tro

I.I.G.p

(a) Ufs=sh(x+要)=smales要+losesm要= 握sma+ 怪lose
$H = \frac{\pi}{2} \cos $
(b) $U_{1}^{t} = \omega_{S}(x + \frac{\pi}{2}) + M^{2} sm(x + \frac{\pi}{2})$
Frazzauter Frazzazier + Frazza =
= 1/00 - 13 pm2 + 3 + 1 un2 + 13 + 15 + 15 cora
$=\frac{1}{2}\log_2 + \frac{3}{2}\log_2 = 2\log_2 = 245$
$(\overline{y} - c_{2})aa + (\overline{y} + c_{2})aa = 2\mu$ (3)
= COS2LOST - SURDERT + COS2LSINT + SIN 2+SINT
= 2105221053= 2×1052x-2 = 0522 = EHS
10

Madasmaths.com

Ins.com

The Com

I.Y.C.B.

COM

2017

I.V.G.

K.C.B. Madasm

Question 2

I.V.G.B.

Prove the validity of each of the following trigonometric identities.

a)
$$\sin\left(x + \frac{\pi}{3}\right) - \sqrt{3}\cos\left(x + \frac{\pi}{3}\right) \equiv 2\sin x$$

b) $\frac{\cos x}{\sin y} - \frac{\sin x}{\cos y} \equiv \frac{\cos(x + y)}{\sin y \cos y}$

b)
$$\frac{\cos x}{\sin y} - \frac{\sin x}{\cos y} \equiv \frac{\cos(x+y)}{\sin y \cos y}$$

c)
$$\tan(x+60^\circ)\tan(x-60^\circ) \equiv \frac{\tan^2 x - 3}{1 - 3\tan^2 x}$$

d)
$$\sin(x+y)\sin(x-y) \equiv \cos^2 y - \cos^2 x$$

e) $\cot(x+y) \equiv \frac{\cot x \cot y - 1}{\cot x + \cot y}$

1.4.6.5

e) $\cot(x+y) \equiv \frac{\cot x \cot y - 1}{\cot x + \cot y}$ I.V.C.B. Madasmaths.Com

		- An -	
	- A.	10	
	0	10	
€.		- Seiler	÷
1			
	"ON		
			Γ.
	· · · · · · · · · · · · · · · · · · ·	1	1
	· · · · · · · · · · · · · · · · · · ·		
		P	
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	<u>n</u>	
		1	
	. · · · ·		
e i	· · · · · · · · · · · · · · · · · · ·	10	
	<i>n</i> .	~// A	
Έ.	10.	- 1h	
1	10		
	- Y		
	(a) SW(a+=)-NSwe(a+=)= SMacon = (B)	with a comment	1
	$= \frac{1}{2} \sin 2 + \frac{1}{2} \cos 2 - \left[\frac{1}{2} \cos 2 - \frac{1}{2} \cos $	-3-5WX	
	= 2 312 + 12 602 - 12 602	+ 콜= 3142	
	$= 2s_{1}m_{A} = R4+S$		
k.	(b) UAS = Cosx - Sma = Cosacosu - Smassing = Cos	<u>a(a+y)</u> = RHS Mycoey	
	(c) LHS = tw(2+60) tw(2-60) = tw2+tw60 × ton2 1-tonto60 × 1++	- toylo tans toxo	
	$= \frac{\tan_{12} + v_{1}^{2}}{1 - v_{1}^{2} \tan^{2}} \times \frac{\tan_{12} - v_{1}^{2}}{1 + v_{1}^{2} \tan^{2}} = \frac{\tan_{12} - 3}{1 - 3 \tan_{12}^{2}}$	= R45	
Ø.	(d) 443 = Sm(2+4) sm(2-4) = (smx (agg + werseny) (smx we	- ouszeny)	
	= sintersy - sintergrootsy + worsymptical	- เอริ่มราหรีย	
	$= (1 - \omega k^2) \omega k^2 - \omega k^2 (1 - \omega k^2)$	0	
	- logy - logs		en.
	= RHJ		1
	() (UF = mt(=1)) (os(atu) (osaloru como		٢.,
	- min - wil certy =		
	sinasny sinasny cotacoty -1	1448 =	

naths.com

Idasma

I.C.

20

I.V.C.B. Madasm

hs.com

Question 3

F.G.B.

21115

I.F.C.B

Prove the validity of each of the following trigonometric identities.

a) $\cos(x+y)\cos(x-y) \equiv \cos^2 x - \sin^2 y$

b)
$$\sin P - \sin Q \equiv 2\cos\left(\frac{P+Q}{2}\right)\sin\left(\frac{P-Q}{2}\right)$$

c)
$$\sin^2\left(\theta + \frac{\pi}{4}\right) + \sin^2\left(\theta - \frac{\pi}{4}\right) \equiv 1$$

 $\cos x$ **d**) $\cos x + \sin x \tan 2x \equiv$ $\cos 2x$

. /

e)
$$\cos P + \cos Q \equiv 2\cos\left(\frac{P+Q}{2}\right)\cos\left(\frac{P-Q}{2}\right)$$

- [Less cosy sinalsing][c ny] = dilformit = 60ईदावहेंy - รพธิธรพรุ้y $= (a \hat{s}_{\alpha}(i - s \hat{n}_{y}) - (i - c \hat{s}_{\alpha}) s \hat{n}_{y}$ = cost - costering - sing + costa sing
- = cosa snzy
- = RHS
- sm(4+B) = sm4cas8+coa4sm8 sm(4-B) = sm4cas8-coa4sm8 (6) sobbrad - equations sm(A+B) - sm(A-B) = 2005AsmB
 - P = A + B Q = A B Q = A B Add Guudions: P+Q = 2A P = Q P = Q
 - Subtract Equations: P-ap = 2B
 - TANS 🛞 BEROMAS $\sin \frac{p}{2} - \sin \varphi = 2 \cos \left(\frac{p+\varphi}{2}\right) \sin \left(\frac{p-\varphi}{2}\right)$
- $(\mathbf{j}_{1}^{\mathrm{max}} + \mathbf{j}_{2}^{\mathrm{max}} + \mathbf{j}_{2}^{\mathrm{max}} \mathbf{j}_{2}^{\mathrm{max}} + \mathbf{j}_{2}^{\mathrm{max}} \mathbf$ $= \frac{\left(\frac{1}{2} \cos \theta \cos \frac{\pi}{4} + \cos \theta \sin \frac{\pi}{4}\right)^{2}}{\left(\frac{1}{2} \cos \theta \cos \frac{\pi}{4} + \cos \theta \sin \frac{\pi}{4}\right)^{2}} + \frac{\left(\frac{1}{2} \cos \theta \cos \frac{\pi}{4} + \cos \theta \sin \frac{\pi}{4}\right)^{2}}{\left(\frac{\pi}{2} \cos \theta \sin \frac{\pi}{4} + \sin \frac{\pi}{4} \cos \frac{\pi}{4} + \sin \frac{\pi}{4} \sin \frac{\pi}{4}\right)^{2}}$

 - = $s_{M}^{2}\Theta + c_{0}s_{0}^{2}\Theta = 1$

(b) 145 = 000 + SM2 tong 2 = 000 + SM2 (b) $= \frac{(c_{-3/2})_{2/0}}{(c_{-3/2})_{2/0}} = \frac{(c_{1/2})_{2/1/2} + c_{2/2/0}}{(c_{2/2})_{2/1/2}} =$ 2#15 = x200 = Bm2Am2 - Beccher = (8+4) 200 Bm2Am2 + Becchero = (8-4) 200) Add Equations

2012sm

21128

 $\Im \int Bau Aau \nabla = (E - Bau + (B + A)au)$ Let P=4+B) Q=A-B) add fguudi. P+Q= 24 $\frac{P-Q=23}{\left\lceil \frac{P-Q}{2}-B\right\rceil}$

G.B.

1202

G

 $\frac{1}{2}$ becomes $\frac{1}{2}$ b

Question 4

If $\sin(\theta + \alpha) = 2\sin\theta$, show clearly that

KG

 $\tan\theta = \frac{\sin\alpha}{2 - \cos\alpha}$

$\begin{split} & Sm\left(\Theta t, \alpha\right) = 2 \text{SmB} \\ & SmB(cSH + CosB(SmH) = 2 \text{SmB} \\ & CosB(SmH) = 2 \text{SmB} - SmB(csH) \\ & CosB(SmH) = -SmB(csH) \\ & CosB(SmH) = -SmB(csH) \\ & SmB(sH) = -SmB(sH) \\ & SmB(sH) \\ & SmB(sH) = -SmB(sH) \\ & SmB(sH) \\$	- tanga - smar 2- tang 44 Espurito

Question 5

By expanding $tan(\theta + 45^\circ)$ with a suitable value for θ , show clearly that

 $\tan 75^\circ = 2 + \sqrt{3}$.

proof

$$\begin{split} & \mathsf{sur}(75) = \mathsf{bur}_1(4(33)) = \frac{\mathsf{bur}_1(5+\mathsf{dow}_35)}{(-\mathsf{bur}_1(5+\mathsf{dow}_35))} = \frac{\mathsf{l} + \frac{\mathsf{st}_1^2}{2}}{\mathsf{l} - \mathsf{l} \times \mathsf{st}_2^2} \\ & = \frac{\mathsf{3}_+ \mathsf{st}_2^2}{\mathsf{3}_- \mathsf{st}_1^2} = \frac{(\mathsf{3}_+ \mathsf{st}_1^2)(\mathsf{3}_+ \mathsf{st}_2^2)}{(\mathsf{3}_- \mathsf{st}_1^2)(\mathsf{3}_+ \mathsf{st}_2^2)} = \frac{\mathsf{q}_+ \mathsf{f} \mathsf{st}_2^2 + \mathsf{st}_2}{\mathsf{q} - \mathsf{3}_-} = \frac{\mathsf{1}_2 + \mathsf{st}_2^2}{\mathsf{q}} \\ & = 2 + \mathsf{st}_2^2 \end{split}$$

Question 6

E.

By expanding $sin(45^\circ - x)$ with a suitable value for x, show clearly that

 $\csc 15^\circ = \sqrt{2} + \sqrt{6} \, .$

proof

2

$$\begin{split} f_{-1}(\tau, \tau, s) &= g_{0}(d_{1}, -s_{0}) = g_{0}(d_{2}, -s_{0}) =$$

Question 7

By expanding $tan(\theta + 45^\circ)$ with a suitable value for θ , show clearly that

 $\tan 105^\circ = -2 - \sqrt{3}$.

$$\begin{split} &\mathcal{H} \stackrel{\text{des}}{=} & \mathcal{G}_{\text{ch}} \left(\mathcal{G}_{\text{ch}} + \mathcal{G}_{\text{ch}} \right) = \frac{\mathcal{G}_{\text{ch}} \mathcal{G}_{\text{ch}} + \frac{\mathcal{G}_{\text{ch}} \mathcal{G}_{\text{ch}}}{\left[- \mathcal{G}_{\text{ch}} \right]} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} + 1}{1 - \mathcal{G}} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} = \frac{\mathcal{G}_{\text{ch}} (1) \left(+ \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(- \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(- \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(- \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(- \mathcal{G}_{\text{ch}} \right)}{\left(- \mathcal{G}_{\text{ch}} \right)} \\ &= \frac{\mathcal{G}_{\text{ch}} (1) \left(- \mathcal{G}_{\text{$$

Question 8

By expanding $\cos(y+45^\circ)$ with a suitable value for y, show clearly that

 $\sec 75^\circ = \sqrt{2} + \sqrt{6} \ .$

proof

ic75 =	$\frac{1}{6573} = \frac{1}{65430} = \frac{1}{654300}$
Ξ.	$\frac{1}{\frac{q_{1}^{2}}{2}\frac{q_{1}^{2}}{2}-\frac{q_{2}^{2}}{2}x_{2}^{\frac{1}{2}}} = \frac{1}{\frac{q_{1}^{2}}{4}-\frac{q_{2}^{2}}{4}} = \frac{4}{\kappa^{2}-q_{2}^{2}} = \frac{4(j\zeta_{+}^{2}(\zeta_{+}^{2}))}{(q_{+}^{2}-q_{2}^{2})(q_{+}^{2}+q_{2}^{2})}$
=	$\frac{4(\sqrt{6}+\sqrt{2})}{6} = \sqrt{4(\sqrt{6}+\sqrt{2})} = \sqrt{6} + \sqrt{2}$

Question 9

By considering the expansion of tan(A+B) with suitable values for A and B, show clearly that

 $\cot 75^\circ = 2 - \sqrt{3}.$

proof

$$\begin{split} & = \frac{1}{1 - \frac{\sqrt{3}}{2}} = \frac{1}{\frac{3 - \sqrt{3}}{1 - \sqrt{3}}} = \frac{1}{\frac{\sqrt{3} + \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}}{1 - \sqrt{3}}} = \frac{1}{\frac{\sqrt{3} + \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}}{1 - \sqrt{3}}} \\ & = \frac{1 - \frac{\sqrt{3}}{2}}{1 - \sqrt{3}} = \frac{3 - \sqrt{3}}{2 - \sqrt{3}} = \frac{\sqrt{3} - \sqrt{3}}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}} \\ & = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} = \frac{1 - \sqrt{3}$$

Question 10

Show clearly, by using the compound angle identities, that

K.C.

Show clearly, by using the compound angle identities, that

 $\cos 105^\circ = \frac{\sqrt{2} - \sqrt{6}}{4}.$

proof

proof

1-15E / AS 84401

 $\begin{array}{l} (\alpha_{1},\beta_{2$

Question 12

Show clearly, by using the compound angle identities, that

 $\tan 15^\circ = 2 - \sqrt{3} \ .$

r.

 $m_1 U'' = t_{m_1} (60'-45'') = \frac{t_{m_1} b_0 - t_{m_1} 45}{1 + t_{m_1} b_0 t_{m_1} 45} = \frac{15' - 1}{1 + \sqrt{3} \times 1}$

 $= \frac{\sqrt{3^{2}-1}}{\sqrt{3^{2}+1}} = \frac{(\sqrt{3}-1)(\sqrt{3^{2}+1})}{(\sqrt{3^{2}+1})(\sqrt{3^{2}-1})} = \frac{3-2\sqrt{3^{2}+1}}{3-1} = \frac{4-2\sqrt{3^{2}}}{2}$ $= 2-\sqrt{3^{2}}$

= 2 - NJ HI ERNIGED

Question 13

 $\sin(A+B) \equiv \sin A \cos B + \cos A \sin B.$

a) Use the above trigonometric identity with suitable values for A and B, to show that

 $\sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}.$

b) Hence by using the trigonometric expansion of $cos(75^\circ + \alpha)$ with a suitable value for α , show clearly that

 $\cos 165^\circ = -\sin 75^\circ.$

Question 14

 $\sin A = \frac{12}{13}$ and $\cos B =$ 5

If A is obtuse and B is acute, show clearly that

 $\sin\left(A+B\right)=\frac{33}{65}.$

proof

proof

Question 15

$$n\theta = \frac{8}{17}$$
 and $\cos \varphi = \frac{5}{13}$.

If θ is obtuse and φ is acute, show clearly that

$$\cos\left(\theta+\varphi\right)=-\frac{171}{221}$$

proof

Question 16

The constants a and b are such so that

$$\tan a = \frac{1}{3}$$
 and $\tan b = \frac{1}{7}$

Determine the exact value of $\cot(a-b)$, showing all the steps in the workings.

$$\cot(a-b) = \frac{11}{2}$$

Question 17

$$nx = \frac{12}{13}$$
 and $\cos y = \frac{15}{17}$.

If x is obtuse and y is acute, show clearly that

 $\sin(x-y) = \frac{220}{221}.$

Question 18

.K.C.

 $\sin P = \frac{8}{17}$ and $\tan Q =$

If P is obtuse and Q is reflex, show clearly that

 $\cos\left(P-Q\right)=\frac{13}{85}.$

proof

2×15 - (-5)×1

2

8 9 20	T C	$Gas P = -\frac{15}{17}$	
S IQ J	S A A	$Contp = -\frac{3}{2}$ $Contp = -\frac{4}{2}$	
as(P−9) = =	$m_Z + Q_Z \omega q^2 \cos \frac{1}{2}$ $m_Z + \left(\frac{1}{2}\right) \times \frac{2i}{7i} - \frac{3}{2}$	$\varphi_{ii}Q_{ij} = \left(\frac{\varphi}{2}\right) \cdot \left(\frac{\varphi}{2}\right) \cdot$	$\frac{51}{28} = \frac{55}{28}$

 $\sin\theta = \frac{5}{13}$ and $\sin\varphi = -\frac{7}{25}$

If θ is obtuse and φ is such so that $180^{\circ} < \varphi < 270^{\circ}$, show clearly that

 $\sin\left(\theta+\varphi\right)=-\frac{36}{325}$

1asma

COM

the com

 \hat{c}_{i}

Question 20

2

N.C.

$$\cos\theta = -\frac{3}{5}$$
 and $\tan\varphi = \frac{24}{7}$

If θ is reflex, and φ is also reflex, show clearly that

$$\sin\left(\theta-\varphi\right)=-\frac{44}{125}$$

2017

$\cos \theta = -\frac{3}{5}$		$SWD = -\frac{4}{5}$ $Cost \phi = -\frac{2}{5}$ $Sh \phi = -\frac{24}{25}$
sn(b-i	$ \sum_{k=1\\k=1\\k=1\\k=1\\k=1\\k=1\\k=1\\k=1\\k=1\\k=1\\$	
	= 44	* p

Question 23

$$nA = \frac{1}{3}$$
 and $\cos B = \frac{1}{2}$.

If A is obtuse and B is reflex, show clearly that

$$\sin\left(A+B\right)=\frac{1-2\sqrt{6}}{6}.$$

The point A lies on the y axis above the origin O and the point B lies on the y axis below the origin O.

The point C(12,0) is at a distance of 20 units from A and at a distance of 13 units from B.

By considering the tangent ratios of $\angle OCA$ and $\angle OCB$, show that the tangent of the angle ACB is exactly $\frac{63}{16}$.

proof

proof

Question 25

R

Solve each of the following trigonometric equations.

- **a**) $\cos(\theta + 30^\circ) = \sin \theta$, $0 \le \theta < 360^\circ$
- **b**) $3\cos(x+30^\circ) = \sin(x-60^\circ), \quad 0 \le x < 360^\circ$
- c) $\sin(y-30^\circ) = \sin(y+45^\circ)$, $0 \le y < 360^\circ$
- **d**) $\sin(\varphi + 30^\circ) = \cos(\varphi 45^\circ), \quad 0 \le \varphi < 360^\circ$
- e) $\cos(\alpha 60^\circ) = \cos(\alpha 45^\circ), \quad 0 \le \alpha < 360^\circ$

$$\theta = 30^{\circ}, 210^{\circ}, x = 60^{\circ}, 240^{\circ}, y = 82.5^{\circ}, 262.5^{\circ}, \varphi = 52.5^{\circ}, 232.5^{\circ}, z = 52.5^{\circ}, 232.5^{\circ}, z = 52.5^{\circ}, z = 52.5^$$

(m) (celan-)- and	(C. D) D.
a (control = sino	= (u-12) Duy= 12+1
- Allan Love - 0	7 tony 2 42+1
	and (Sett) - that
- 10	1100m (V3-V2) - 62.5
	= 4= 80.0° ± 180, Mars122
620-	in sis mars //
-> 3toub = N3	
⇒ tomb = <u>K</u>	(d) SM((+30)= cos(+-45)
antry (5/3) = 30°	Three Live + 2 basis and a compatibility of the state of the
A= 30 + 160+ V=0.123	= 12 SMC+ + tost = 2 cost + 2 SMC
0 00 100 1 11-11(s.:.	=> North + unst = North + Rough -
	=> VS such + cash = vs cash + vEsut
(b) 30500030-3972930= 572610-6	and the cost cost
$=\frac{3\sqrt{3}}{2}\cos 2 - \frac{3}{2}\sin 2 = \frac{1}{2}\sin 2 - \frac{3}{2}\cos 2$	=> (15-12) bud = 42-1
=> 313con2 - 3sm2 = sun2 - 13cos2	=) trut = N-1
⇒ Avistosa = Asiva	anton (12-1)= 2520
= 45Cost , SM2	- += 525 =1804, N=01/2,3,
COSA COSA	: \$ = \$2.5, 232.5°
> tanz = 13	61-6-12
ONCOM (N?) = GO+	$(\textcircled{e}) US((x-G_0)) = \cos(x-45)$
and the A Manual Annual	= + con + K = = R = K
JE CO & GOW HE GILLY	7 2 WAY T
: 2=60/240	- Win + Wi Shak = V2 COSK + V2 SHA
(c) sultan) - sultant	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	+ + > Durk = +2' + H2' Durk
- Marin Providence - autoost + rostistinte	-7 (3-42) Dura = 42-1
7 2 any - 2 cosy = 2 sing + 12 cosy	- Conx = NS-VE
> Kashy - 6054 = VZSMY + NZLOBY	Same numbers as (d)
I V3 STAM - LOSY = AP STAM + VELOSY	.: or = 52.5° : 232.5°
The start and a start and a start a st	
1 = 15. Bund + 1/2,	

F.G.B.

G

20/2.sm

Question 26

.C.

Solve each of the following trigonometric equations.

- **a**) $\sin(\theta 45^\circ) = \sin \theta$, $0 \le \theta < 360^\circ$
- **b**) $\cos(x-30^\circ) = \sin(x+30^\circ), \quad 0 \le x < 360^\circ$
- c) $\cos(y-30^\circ) = \sin(y+45^\circ), \quad 0 \le y < 360^\circ$
- **d**) $\sin(\varphi 30^\circ) = \cos(\varphi 45^\circ), \quad 0 \le \varphi < 360^\circ$
- e) $\cos(\alpha 60^\circ) = \cos(\alpha + 60^\circ), \quad 0 \le \alpha < 360^\circ$

 $\theta = 112.5^{\circ}, 292.5^{\circ}, x = 45^{\circ}, 225^{\circ}, y = 37.5^{\circ}, 217.5^{\circ}, \varphi = 82.5^{\circ}, 262.5^{\circ}, z_{0} = 82.5^{\circ}, 262.5^{\circ}, z_{0} = 82.5^{\circ}, z_{0} = 82$

G.B.

Ģ

 $\alpha = 0^{\circ}, 180^{\circ}$

21/281

Question 27

I.F.C.B.

21/15

I.V.G.B.

Solve each of the following trigonometric equations.

- **a**) $\sin\left(\theta + \frac{\pi}{4}\right) = \sin\theta$, $0 \le \theta < 2\pi$
- b) $\cos\left(x+\frac{\pi}{6}\right) = \cos\left(x-\frac{3}{3}\right)$ c) $\sin\left(\frac{\pi}{3}-y\right) = \cos\left(y+\frac{5\pi}{6}\right), \quad 0 \le y < 2\pi \text{ (very hard)}$ $\left(\pi\right) = 0 \le \varphi < 2\pi$

 - e) $\sqrt{2}\cos\left(\alpha + \frac{\pi}{4}\right) = \sin\left(\alpha + \frac{\pi}{6}\right), \quad 0 \le \alpha < 2\pi$

$$s\left(\varphi + \frac{\pi}{2}\right) + \sin\left(\varphi + \frac{\pi}{3}\right) = 0, \quad 0 \le \varphi < 2\pi$$

$$\cos\left(\alpha + \frac{\pi}{4}\right) = \sin\left(\alpha + \frac{\pi}{6}\right), \quad 0 \le \alpha < 2\pi$$

$$\theta = \frac{3\pi}{8}, \frac{11\pi}{8}, \quad \left[x = \frac{7\pi}{12}, \frac{19\pi}{12}\right], \quad y = \frac{\pi}{2}, \frac{3\pi}{2}, \quad \varphi = \frac{\pi}{6}, \frac{7\pi}{6}, \quad \alpha = \frac{\pi}{12}, \frac{13\pi}{12}$$

Y.C.

K.C.B. Mada

I.F.C.

naths.com

aths com the GB

Question 28

Solve each of the following trigonometric equations.

- **a**) $\sin(\theta 20^\circ) = \sin(\theta + 60^\circ), \quad 0 \le \theta < 360^\circ$
- **b**) $\cos(x-35^\circ) = \cos(x-55^\circ)$, $0 \le x < 360^\circ$
- c) $\sin(y-48^\circ) = \cos(y+12^\circ), \quad 0 \le y < 360^\circ$
- **d**) $\sin(\varphi + 72^\circ) = \cos(\varphi 38^\circ)$, $0 \le \varphi < 360^\circ$
- e) $\cos(\alpha 36^\circ) = \cos(\alpha 72^\circ)$, $0 \le \alpha < 360^\circ$

720

F.C.P.

R

$ \left\{ \begin{array}{c} (a) + b \\ (a) + b \\ (b) +$	19447) = 70 Bon 100023. 70 45 45 Bau 100023	$\begin{cases} (37.4)^{2} = (27.4)^{2} (37.4$	ocp.(2.217)= 50 4.22.*. cocp.(2.217)= 50 0.20.*.
$ \left. \begin{array}{c} (y_1+y_2) = (y_2+y_3) = (y_2+y_3) e_2 \\ (y_1+z_2e_1e_2-(y_2-(y_2e_1e_2)) = (y_2e_1e_2(y_2-(y_2e_1e_2)) e_2e_1e_2) \\ (y_1+z_2e_1e_2e_2) = (y_1e_1e_1e_2e_1e_2) = (y_1e_1e_1e_2e_1e_2) e_2e_2 \\ (y_1+z_2e_1e_2) = (y_1e_1e_2+(y_1e_2)) e_2e_2 \\ (y_1+z_2e_1e_2) = (y_1e_2e_1e_2e_2) e_2e_2 \\ (y_1+z_2e_1e_2e_2) = (y_1e_2e_1e_2e_2) e_2e_2 \\ (y_1+z_2e_1e_2e_2) = (y_1e_2e_1e_2e_2) e_2e_2 \\ (y_1+z_2e_1e_2e_2) = (y_1e_2e_1e_2e_2) e_2e_2 \\ (y_1+z_2e_1e_2e_2e_2) = (y_1e_2e_1e_2e_2e_2) e_2e_2 \\ (y_1+z_2e_2e_2e_2e_2e_2e_2e_2) = (y_1e_2e_2e_2e_2e_2e_2e_2e_2e_2e_2e_2e_2e_2e$	626)	$\begin{split} & \left(\mathrm{ccs}\left(\mathbf{x}' \rightarrow \mathrm{cds}\right) = \cos\left(\mathbf{x}' - 7\mathbf{x} \right) \\ & \mathrm{ccs}_{\mathcal{H}}(\mathrm{ccd}_{\mathcal{H}}^{2} + \mathrm{Sup}(\mathrm{Sup}(\mathcal{L}) = \mathrm{Sup}(\mathrm{ccd}_{\mathcal{H}}^{2} + \mathrm{Sup}(\mathrm{Sup}(\mathcal{L}) \in \mathrm{Sup}(\mathrm{Sup}(\mathcal{L}) = \mathrm{Sup}($	$\begin{array}{l} t_{20,4,4}\\ \\ \text{orthan}(1/3164) = 94\\ \\ \\ x'_{1} \leq 5\frac{4}{3} \pm 1/804, \forall x = q_{1}r_{1}, \\ \\ x'_{1} \leq 5\frac{4}{3} \pm \frac{1}{3} \\ \\ \\ x'_{2} + 2\frac{4}{3} \\ \end{array}$