TRIGONOME1 XAM QUESTION

Question 1 (**)

Given that $\cos x = \sqrt{2} - 1$, show clearly that

E.

 $\cos 2x = 5 - 4\sqrt{2} \; .$

Question 2 (**)

Show clearly that

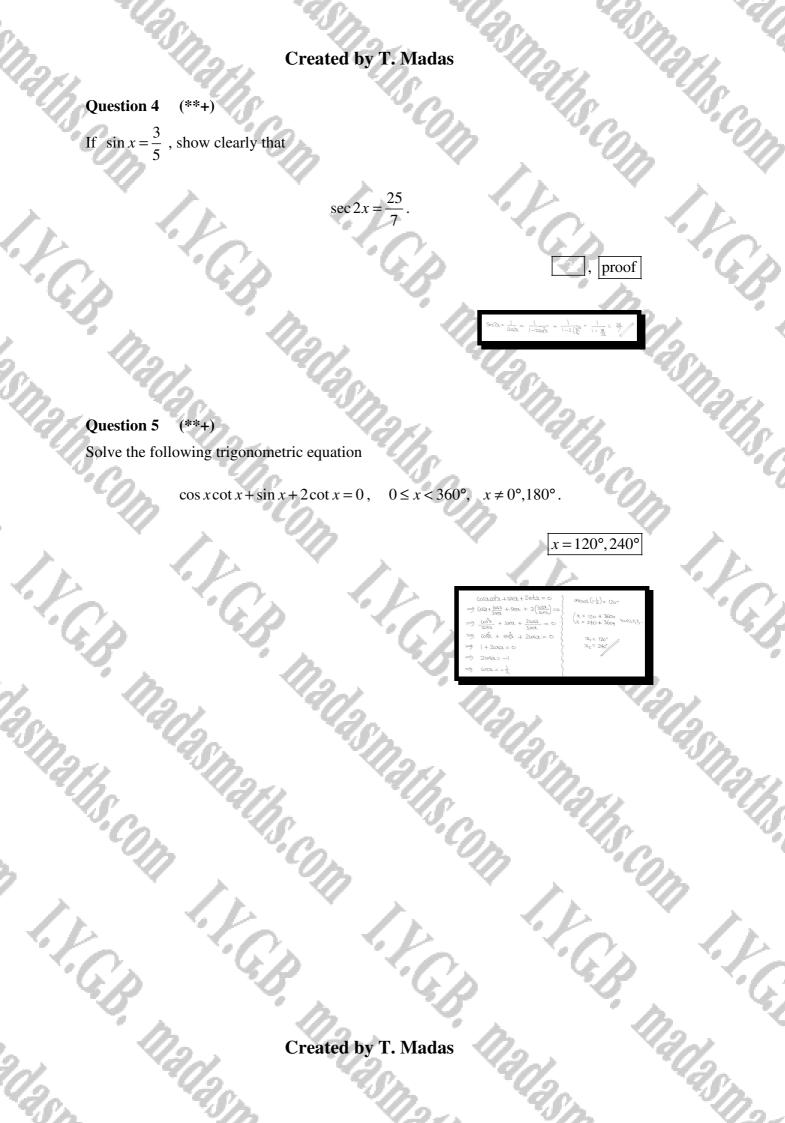
 $\frac{\cos(x-y)}{\sin y \cos y} \equiv \frac{\cos x}{\sin y} + \frac{\sin x}{\cos y}.$

proof

proof

Question 3 (**+)

Prove the validity of the trigonometric identity


 $\tan 2\theta \sec \theta \equiv 2\sin \theta \sec 2\theta.$

 $= \frac{2 \sin \theta \cos \theta}{\cos \theta} \times \sin 2\theta$

G

Question 6 (**+)

Simplify fully the following trigonometric expression

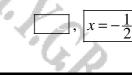
i.G.B.

 $\frac{\sqrt{2}\cos x^\circ - 2\sin(45 - x)^\circ}{2\sin(60 + x)^\circ - \sqrt{3}\cos x^\circ}$

Madasn.

	_ smils losz – losilssina_ szavist- [sneckai +za
$= \frac{1}{\sqrt{2} \log x} - 2 \left[\frac{42}{\sqrt{2}} \log x + \frac{1}{2} \log x - \frac{1}{\sqrt{2}} \log x}{1 - \sqrt{2} \log x} \right] =$	12652-12652+125m2 12652+5112-12652
$= \frac{\sqrt{2}s_{M2}}{s_{M2}} = \sqrt{2}$	

 $\sqrt{2}$


Question 7 (**+)

I.V.G.B.

ic.p.

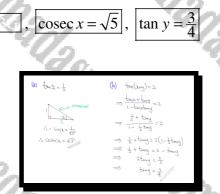
Solve the following trigonometric equation

 $\pi - 3\arccos(x+1) = 0.$

F.C.P.

G

$-3 \operatorname{arcos}(x, +i) = 0$	
3arcos(x+1) = T	
$arcos(x+1) = \frac{1}{2}$	
Cos [orccas(x+i)] = cos(T)	
$(x+1) = \frac{1}{2}$	
$Q = -\frac{1}{2}$	


Question 8 (**+)

The angle x is acute so that $\tan x = \frac{1}{2}$.

a) Find the exact value of $\operatorname{cosec} x$.

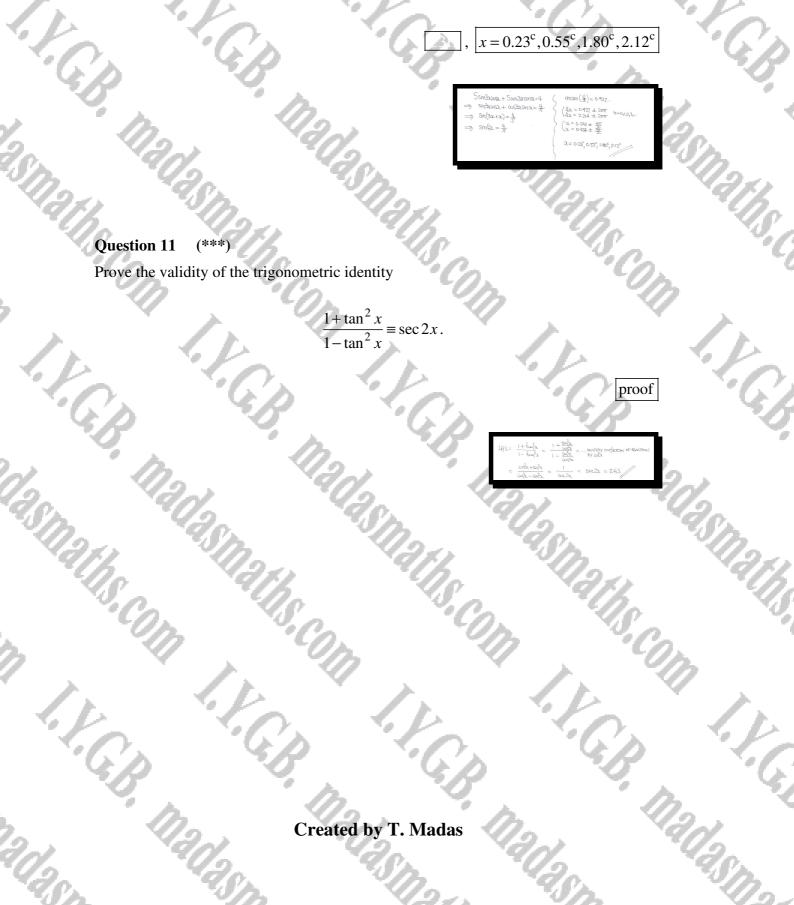
It is further given that tan(x+y) = 2, where y is another angle.

b) Determine the value of tan *y*.

Question 9 (***)

 $\csc \theta + 8\cos \theta = 0$, $0^{\circ} \le \theta < 360^{\circ}$.

Find the solutions of the above trigonometric equation, giving the answers in degrees correct to one decimal place.


	$\theta = 97$	7.2°, 172.8°,	277.2°,	352.8°
с.	That he	$\begin{array}{c} \cos \theta + 8\cos \theta = 0 \\ \Rightarrow \sin \theta + 8\sin \theta = 0 \\ \Rightarrow \sin \theta + 8\sin \theta \sin \theta = 0 \\ \Rightarrow 1 + 8\sin \theta \sin \theta = 0 \\ \Rightarrow 1 + 4(2\pi \theta \cos \theta) = 0 \\ \Rightarrow 1 + 4\sin^2 \theta = -1 \\ \Rightarrow \sin^2 \theta = -1 \\ \Rightarrow \sin^2 \theta = -\frac{1}{4} \end{array}$	$ \begin{array}{c} \circ \operatorname{arcsn}(-\frac{1}{4}) = -1 \\ (20 = -4 \cdot 49 \pm 24 \\ (2e = -94 \cdot 49 \pm 24 \\ (2e = -74 + 80 - 24 + 162 + 1$	4-168 См. Иссундаза. См. Иссундаза. 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I.V.C.		K	roy B
Created I	oy T. Madas	m.		1

1

### Question 10 (***)

### $5\sin 3x\cos x + 5\cos 3x\sin x = 4, \ 0 \le x < \pi.$

Use a compound angle trigonometric identity to find the solutions of the above trigonometric equation, giving the answers in radians correct to two decimal places.



### **Question 12** (***)

Solve the following trigonometric equation

$$\operatorname{Barccot}\left(x-\sqrt{3}\right)-\pi=0.$$

	$x = \frac{4}{3}\sqrt{3}$
0	

3 arccot (2 - 13) - T = 0	
	< => 2-45'> 1/10-
= 3accot(2-V3) = T	( => 2-15 = <u>15</u>
$\implies$ areat $(2 - \sqrt{2}) = \frac{1}{2}$	= = N3+ N3
$\Rightarrow$ at $\left[\operatorname{ancost}(a-\sqrt{3})\right] = \operatorname{cot} \overline{\mathcal{F}}$	
$\Rightarrow \propto -\sqrt{3^2} = \frac{1}{\tan \pi}$	
Creat 3	1

Question 13 (***)

$$f(x) \equiv \sqrt{3}\sin x + \cos x, \ 0 \le x < 2\pi.$$

**a)** Express f(x) in the form  $R\cos(x-\alpha)$ , R > 0,  $0 < \alpha < \frac{\pi}{2}$ .

nadasm.

- **b**) State the maximum value of f(x) and find the value of x for which this maximum value occurs.
- c) Solve the equation

 $f(x) = \sqrt{3}.$ 

$$f(x) \equiv 2\cos\left(x - \frac{\pi}{3}\right), \quad f(x)_{\max} = 2, \quad x = \frac{\pi}{3}, \quad x = \frac{\pi}{6}, \frac{\pi}{2}$$

a)	f(a) = vision + cost = (a)+	
	= REOBLOSA + REMARKA	
	= (Rosa) Losa + (Roma) sona	
	$\begin{cases} \mathcal{R} \log x = 1 \\ \mathcal{R} \log x = 1 \\ \mathcal{R} \log x = \sqrt{1} \\ \mathcal{R} \log x = 1$	
	ture tan a = VS = a T/2	
	4. +(2)= 2 cos(2- #)	
•)	fa) = 2 // 17 occurs with cos(a-)=1	
	2-3-0 2-5	C
	2=3	(06 a <:
)	$f(\alpha) = \sqrt{3}$ 2 cos( $\alpha - \overline{\Psi}$ ) = $\sqrt{3}$	
	2 405(2-F)=12	

user- T )=	43
~ (= = s)20	NB
	2

- 2-F = E ± 2mg
- $(x = \frac{\pi}{2} \pm 2n\eta$   $\therefore Q = 1$

1.

Question 14 (***)

It is given that

F.C.B.

i.C.B.

 $1 + \cot^2 x$  $\equiv \sec x$ .  $\cot x \operatorname{cosec} x$ 

a) Prove the validity of the above trigonometric identity.

**b**) Hence solve the equation

 $\frac{4(1+\cot^2 x)}{\cot x \operatorname{cosec} x} = \tan^2 x + 5, \quad 0 \le x < 2\pi,$ 

giving the answers in terms of  $\pi$ .

$[ ], \underline{x = \frac{1}{3}, \frac{1}{3}}$
$ \begin{pmatrix} \frac{1}{k_{m2}} & = \frac{c_{m2}\omega}{c_{m2}} & = \frac{c_{m2}\omega}{c_{m2}} & = \frac{c_{m2}\omega}{c_{m2}c_{m2}} & = \frac{c_{m2}\omega}{c_{m2}c_{m2}} & = 2 \text{HJ}  (1) $
= sutx = tosx = sucx = RHS
$\frac{4(1+\omega^2 z)}{\omega z \cos z} = \frac{1}{z \omega^2 z + 5}  \left\{ \rightarrow \omega z = \frac{1}{z} \right\}$
$\Rightarrow 4 \sec a = \tan^2 a + 5$
$\Rightarrow 4 \Im \mathfrak{ca}_{-} = (\Im \mathfrak{ca}_{k-1}) + 5 \qquad \left\{ \begin{array}{c} (\chi_{\mathfrak{c}} \frac{\pi}{3} \pm 2m) \\ \chi_{\mathfrak{c}} \frac{\pi}{3} \pm 2m \\ \chi_{\mathfrak{c}} \frac{\pi}{3} \pm 2m \end{array} \right. \xrightarrow{h_{\mathfrak{c}} \mathfrak{a}_{1}/2},$
$0 = (3\kappa \lambda - 2)^2$ $\alpha_1 = T_3$

200

G,

Madasm

Com

mada

G

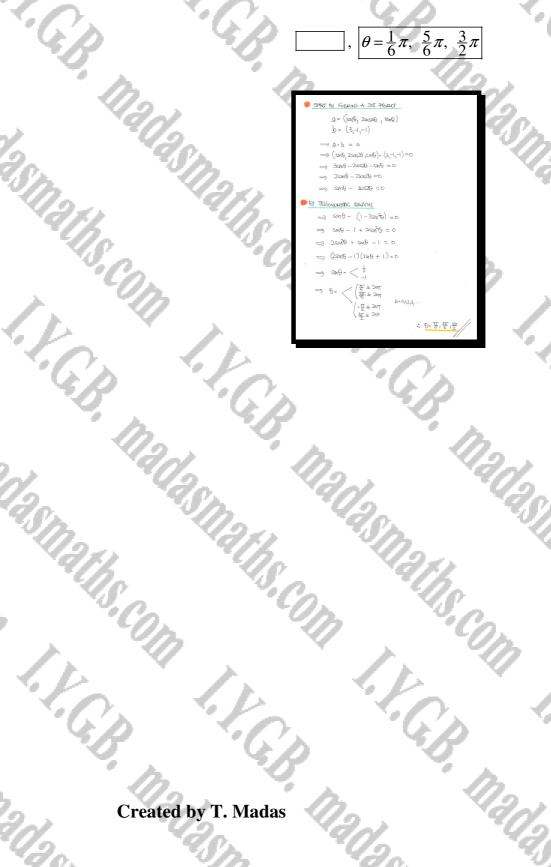
I.C.P.

 $\pi$  5 $\pi$ 

The.

G

### Question 15 (***)


ŀ.G.B.

I.G.B.

Two vectors **a** and **b** are given below.

$$\mathbf{a} = (\sin \theta)\mathbf{i} + (2\cos 2\theta)\mathbf{j} + (\sin \theta)\mathbf{k}$$
 and  $\mathbf{a} = 3\mathbf{i} - \mathbf{j} - \mathbf{k}$ .

Find the values of  $\theta$ ,  $0 \le \theta < 2\pi$ , for which **a** is perpendicular to **b**.

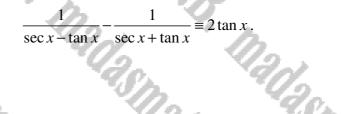


Question 16 (***)

It is given that

 $\frac{1-\cos 2\theta}{\sin 2\theta} \equiv \tan \theta, \ \theta \neq 90k^{\circ}, \ k \in \mathbb{Z}.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence show that


 $\tan 15^\circ = 2 - \sqrt{3} \; .$ 



 $\begin{array}{l} (\theta) &= \frac{1}{2}\frac{\partial^{2}\partial^{2}}{\partial \omega} = \frac{\partial^{2}\partial^{2}}{\partial \omega} = \frac{\partial^{2}}{\partial \omega} = \frac{\partial^{2}\partial^{2}}{\partial \omega} = \frac{\partial^{2}\partial^{2}}{$ 

### **Question 17** (***)

Prove the validity of the trigonometric identity





1.

- = 1 |
- (Sea+buna) 1(Seca-bana)
- = Sta+tana_seta+tana)
- = 2taux (1+tuis)-tuis
- = 2toy2
- = 2 tonz = 245

### **Question 18** (***)

Solve the trigonometric equation

 $\cos\theta + \sec\theta = \frac{5}{2}, \quad 0^\circ \le \theta < 360^\circ.$ 

Madasn

	-0	h.
$\begin{array}{c} \cos \theta + \sec \theta = \frac{\pi}{2}, \\ \Rightarrow \cos \theta + \frac{1}{4\cos^2} = \frac{\pi}{2}, \\ \Rightarrow 2\sin \theta + \frac{2}{\sin \theta} = 5, \\ \Rightarrow 2\sin^2 \theta + 2\cos \theta + 2\cos \theta, \\ \Rightarrow 2\sin^2 \theta - 2\sin \theta + 2\cos \theta, \\ \Rightarrow (2\sin^2 \theta - 1)(\cos^2 \theta - 2) = 0, \\ \Rightarrow \cos^2 \theta - \frac{1}{2}, \\ \end{bmatrix}$	$ \begin{array}{l} \Rightarrow \cos\theta = \frac{1}{2} \\ \sigma E \cos(2t) = 60^{\circ} \\ \sigma E \cos(2t) = 60^{\circ} \pm 360_{H} \\ \theta = 300^{\circ} \pm 360_{H} \\ \theta_{1} = 60^{\circ} \\ \theta_{2} = 300^{\circ} \end{array} $	Ч≡0,01213, >

 $\theta = 60^\circ, 300^\circ$ 

### **Question 19** (***)

I.C.B.

I.F.G.B.

I.C.B.

Prove the validity of the trigonometric identity

Y.C.

F.G.B.

 $\sqrt{2+2\cos 2\theta} \equiv 2\cos \theta \,.$ 

proof

The Com

17202

1. Y.G.

I.C.B.

The com

asmaths.C

$$\begin{split} & \psi_{12} = \sqrt{2 + 2\cos^2{\theta_1}} = \sqrt{2 + 2(2\cos^2{\theta_{-1}})^2} = \sqrt{2 + 4\cos^2{\theta_{-2}}^2} \\ & = \sqrt{4\cos^2{\theta_1}} = 2\cos^2{\theta_{-2}} = 245 \end{split}$$

nn

Question 20 (***)

 $y \equiv 2\sqrt{2}\cos x + 2\sqrt{2}\sin x , \ x \in \mathbb{R}.$ 

- **a)** Express y in the form  $R\sin(x+\alpha)$ , R>0,  $0 < \alpha < \frac{\pi}{2}$ .
- **b**) Solve the equation

y = 2 for  $0 < x < 2\pi$ .

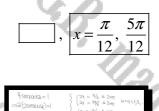
- c) Write down the maximum value of y.
- d) Find the smallest positive value of x for which this maximum value occurs.

x +

 $y \equiv 4 \sin \theta$ 

$\frac{7\pi}{12}, \frac{23}{1}$	$\frac{3\pi}{2}$ , $y_{\text{max}} = 4$ , $x = \frac{\pi}{4}$
20	<ul> <li>(e) 217 losa + 217 lona = Ran(a+a) = Ran(a+a) + Ranswa = (Riv Jan C C )</li> </ul>
	$ = \underbrace{\mathbb{E}}_{(Loc_{k}) \approx 0} + \underbrace{\mathbb{E}}_{(Loc$
<u>,</u>	$ \begin{array}{c} (b) & afficar +2 affant +2 \\ \Rightarrow & day(t_{2}T) +2 \\ \Rightarrow & and(t_{2}T) +2 \\ \Rightarrow & and(t_{2}T$

i C.P.


G

### Question 21 (***)

Solve the following trigonometric equation

 $4\sin x \cos x = 1, \ 0 \le x < \pi,$ 

giving the answers in terms of  $\pi$ .



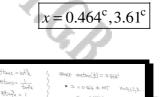
### Question 22 (***)

Solve the following trigonometric equation

 $\frac{\csc^2\theta\tan^2\theta}{\cos\theta} + 8 = 0, \quad 0^\circ \le \theta < 360^\circ.$ 

202.81

 $\theta = 120^\circ, 240^\circ$ 


G

### Question 23 (***)

Solve the following trigonometric equation

F.C.P.

 $8\tan x = \cot^2 x, \quad 0 \le x < 2\pi.$ 



# Question 24 (***)

I.C.B.

I.G.B.

Prove the validity of the following trigonometric identity

 $\frac{1}{\cos\theta - \sin\theta} - \frac{1}{\cos\theta + \sin\theta} \equiv 2\sin\theta\sec 2\theta.$ 

proof

 $\begin{array}{rcl} & 1 & 1 \\ (\underline{\sigma}_{12}-\underline{\sigma}_{22})-(\underline{\sigma}_{12}-\underline{\sigma}_{22}) \\ (\underline{\sigma}_{12}-\underline{\sigma}_{22}) & \underline{\sigma}_{12}-\underline{\sigma}_{22} \\ (\underline{\sigma}_{12}-\underline{\sigma}_{22}) & \underline{\sigma}_{12}-\underline{\sigma}_{22} \\ \underline{\sigma}_{12}-\underline{\sigma}_{12} \\ \underline{\sigma}_{12}-\underline{\sigma}_{12}-\underline{\sigma}_{12} \\ \underline{\sigma}_{12}-\underline{\sigma}_{12} \\ \underline{\sigma}_{12}-\underline{\sigma}_{12}-\underline{\sigma}_{12} \\ \underline{\sigma}_{12}-\underline{\sigma}_{12}-\underline{\sigma}_{12} \\ \underline{\sigma}_{12}-\underline{\sigma}_{12} \\ \underline{\sigma}_{12}-\underline$ 

.F.G.P.

Y.G.

19

200

Question 25 (***)

It is given that

F.G.B.

C.B.

$$\frac{1+\tan^2 x}{1-\tan^2 x} \equiv \sec 2x.$$

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence solve the equation
  - $\frac{1 + \tan^2 x}{1 \tan^2 x} + 2 = 0, \quad 0 \le x < 2\pi,$

giving the answers in terms of  $\pi$ .

$x = \frac{\pi}{3}$	$\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$
	- 0
(- <u>an n</u>	= MULTIPLY TOPEREDUCT PRETON BY $Log^{2}X$ = $\frac{1}{\log^{2}X}$ = SHC2L = RH1
(b) $\frac{1+t_{mix}^2}{1-t_{mix}}+2=0$ $\Rightarrow$ stuck +2 = 0	$ \begin{array}{c} 2\chi = \frac{2\Pi_{-}}{3} \pm 2\eta \Pi_{-} \\ 2\chi = \frac{4\Pi_{-}}{3} \pm 2\eta \Pi_{-} \\ (\chi = -\frac{1}{3}\chi \pm \eta \Pi_{-} \\ \chi = -\frac{1}{3}\chi \pm \eta \Pi_{-} \end{array} $
⇒ SHOA = -2. → Casia = -1	2 = 27/3 ± 4m

20

E.B.

COM

mana,

G

21/2.5m

**Question 26** (***)

- $f(x) \equiv \sin x + \sqrt{3} \cos x$ a) Express f(x) in the form  $R\cos(x-\alpha)$ , R > 0,  $0 < \alpha < \frac{\pi}{2}$ .
- - **i.** ... f(x).
  - **ii.** ...  $[f(x)]^2$ .
  - $\dots \frac{1}{5+f(x)}.$ iii.

COM

I.C.P.

, [-2,2], [0,4],  $[\frac{1}{7},\frac{1}{3}]$  $f(x) \equiv 2\cos\left(x - \frac{\pi}{6}\right)$ 

(n)

nadasma

(9)	$f(x) = \sqrt{3} \cos x$ $f(x) = \sqrt{2} \sin x = \sqrt{2}$ $f(x) = \sqrt{2} \sin x = \sqrt{2}$	= =( } 2=JC	$\frac{1}{2} \Rightarrow \alpha^{-1}$	(DSMX)SMX $S+1 = \sqrt{4} = 2$
(b)		kuna.	M, Apr	
	fai	-2_	2	< 2ws (2-15)
	[AG)]2	0	4	< two (r-F)
	5+400	+	<u></u>	/ - <u> </u> // 5+2w(a.T.)

aths com

l.Y.G.

The Com

K.C.J.

Madasmati

Created by T. Madas

2017

I.C.

**Question 27** (***)

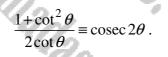
$$\cos^2 x + \sin^2 x \equiv 1.$$

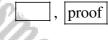
**a**) Starting with the above identity prove that

$$1 + \tan^2 x \equiv \sec^2 x \, .$$

**b**) Hence, or otherwise, solve the following trigonometric equation

 $2\tan^2 x + \sec^2 x = 5\sec x$ ,  $0 \le x < 360^\circ$ .


		and the second second
	$0 = 0^{2} M^{2} + 0^{2} \omega$ $0 = 0^{2} M^{2} + 0^{2} \omega$ $0^{2} \omega^{2} + 0^{2} \omega^{2} + 0^{2} \omega$ $0^{2} \omega^{2} + 0^{2} \omega^{2} + 1$	$\begin{cases} \Rightarrow \Re(x = \sqrt{\frac{1}{2}} \\ \Rightarrow \ \omega_{5,k} = \sqrt{\frac{1}{2}} \\ arcos(\frac{1}{2}) = 6 \end{cases}$
2	<ul> <li>(b) 2tay2a + St2a = 5840a</li> <li>⇒ 2(542x-1) + 842x = 5840a</li> <li>⇒ 3542x - 2 + 842x = 5540a</li> <li>⇒ 3542x - 5540a - 2 = 0</li> <li>⇒ (3442a + 1)(540a - 2) = 0</li> </ul>	$\begin{array}{c} (1, 1, 1) \in \{0, 1\} \\ (2, 1, 1) \in \{0, 1\} \\ (3, 1, 2) \in \{1, 2\} \\ (3, 1, 2) \\ (3, 1, 2) \in \{1, 2\} \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\ (3, 1, 2) \\$


 $x = 60^{\circ}, 300^{\circ}$ 

### **Question 28** (***)

1

Prove the validity of the following trigonometric identity





G

 $\begin{array}{l} \displaystyle \bigcup_{i=1}^{k}\sum_{i=1}^{k}\frac{1+i\frac{1}{2}}{2i\frac{1}{2}} = \frac{\cos^2_{i}\delta_{i}}{2i\frac{1}{2}} = \frac{1}{2i\frac{1}{2}i\frac{1}{2}}\sum_{i=1}^{k}\frac{\sin^2_{i}}{2i\frac{1}{2}} = \frac{\sin^2_{i}}{2i\frac{1}{2}}\sum_{i=1}^{k}\frac{\sin^2_{i}}{2i\frac{1}{2}} = \frac{\sin^2_{i}}{2i\frac{1}{2}}\sum_{i=1}^{k}\frac{\sin^2_{i}}{2i\frac{1}{2}} = \frac{1+\frac{\sin^2_{i}}{2i\frac{1}{2}}}{2i\frac{1}{2}} = \frac{1+\frac{\sin^2_{i}}{2i\frac{1}{2}}}{2i\frac{1}{2}} = \frac{1+\frac{\sin^2_{i}}{2i\frac{1}{2}}}{2i\frac{1}{2}} = \frac{1+\frac{\sin^2_{i}}{2i\frac{1}{2}}}{2i\frac{1}{2}} = \frac{1+\frac{\sin^2_{i}}{2i\frac{1}{2}}}{2i\frac{1}{2}} = \frac{1+\frac{\sin^2_{i}}{2i\frac{1}{2}}}{2i\frac{1}{2}} = \frac{1+\frac{1}{2}}{2i\frac{1}{2}} = \frac{1+\frac{1}{2}} = \frac{1+\frac{1}{2}}{2i\frac{1}{2}} = \frac{1+\frac{1}{2}}{2i\frac{1}{2}} = \frac{1+\frac{1}{2}} = \frac{1+\frac{1}{2}}{2i\frac{1}{2}} = \frac{1+\frac{1}{2}} =$ 

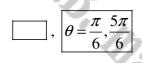
### (***) Question 29

	asp.	420.	asm.	190
Da. Dar	Created by T. Madas	na.	121	
Question 29 (***)	· Co	100		en.
Prove the validity of the follow	ving trigonometric identity	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Con !	On
	$\cot x - \tan x \equiv 2\cot 2x  .$	Tr.	~Q ,	
r. l.v.	1.1	- D.	, proof	5
La Ca	· Go			Gr
60 5		$\begin{aligned} & \qquad $	$= \frac{\mathcal{L}(\omega)}{\omega \omega} = \frac{\mathcal{L}(\omega)}{\omega \omega}$	20
	$\gamma_{2}$ , $\langle$	$=\frac{dm^{2}}{1}-\frac{dm^{2}}{2}=m^{2}-\frac{dm^{2}}{2}=m^{2}$	-06	
12 V 201		20.	"asp	
Question 30 (***)	The second	na.	, Y	US.
It is given that $\arcsin x = \arccos x$	sy.		e	18
Show, by a clear method, that	, ^v .C	2.	Con	-6
	$x^2 + y^2 = 1.$	9	- Q .	
In S.V.	×		proof	K.
Ko. Co	· · Fa		, proof	·C)
4.8 0	1 C/2	$ \begin{aligned} & \sigma(\mathcal{L}_{\mathcal{M}})_{\mathcal{X}} = \sigma(\mathcal{L}_{\mathcal{M}})_{\mathcal{L}} = \theta \\ & \left\{ \begin{array}{c} \sigma(\mathcal{L}_{\mathcal{M}})_{\mathcal{L}} = \theta \\ \sigma(\mathcal{L}_{\mathcal{M}})_{\mathcal{L}} = \theta \end{array} \right\} \Longrightarrow \left\{ \begin{array}{c} \sigma(\mathcal{L}_{\mathcal{M}})_{\mathcal{L}} = \theta \\ \sigma(\mathcal{L}_{\mathcal{M}})_{\mathcal{L}} = \theta \end{array} \right\} \Longrightarrow \left\{ \begin{array}{c} \sigma(\mathcal{L}_{\mathcal{M}})_{\mathcal{L}} = \theta \\ \sigma(\mathcal{L}_{\mathcal{M}})_{\mathcal{L}} = \theta \end{array} \right\} $	2 ² + y ²	·0,
i n	nan "	: a ² +v	J=1 + equilio	
282 402	428	120	~~Q_2,	r
Mary Sm	nar.	9800		20.
ils ill	18	- 42	12	Ch.
COD S	Co. "C	On "	So	
		×4 5	On	
1.1. 1.1.	I.	4.1		1.
C. C.	5 ° KO		2	1
48 0	· · · ·	<b>?</b> `	$\sigma_{\lambda}$	~G)
° Ma	Created by T. Madas	m	122	
901. ⁴ 01.	20.	40	×42	0.

### **Question 31** (***)

 $6\sec^2 2x + 5\tan 2x = 12, \ 0 \le \theta < \pi$ .

Find the solutions of the above trigonometric equation, giving the answers in radians correct to two decimal places.


à				h
2	654622 + 5tan22 = 12 ⇒ 6(1+tan22c) + 5tan22 = 12	Ş	erujel	2x = −0.483 ± T/n 2 = −0.441 ± T/u
1	$\Rightarrow$ $6 \tan^2 \partial \alpha + 5 \tan^2 \alpha - 6 = 0$ BY THE PURPORATIC FORMULA 98 FREEPIZATION	3	02	$21 = 0.388 \pm 17n$ $x = 0.284 \pm 12n$
	$\Rightarrow \tan 2x = \frac{-5 \pm \sqrt{s^2 + 4x(x(-6))}}{2x6}$	Ş	4	341 = 1.08° 341 = 1.08°
	$ \Rightarrow \overline{tay}_{2} = < \frac{-3}{3} $ $ \int arctin(-\frac{3}{2}) = -0.983^{\circ} $	ξ		$\lambda_{3} = 0.29^{\circ}$ $\lambda_{4} = 1.86^{\circ}$
L	Augmy ( ² / ₂ ) ≈ 0.268     Augmy ( ² / ₂ ) ≈ 0.2	5		//

 $x = 0.29^{\circ}, 1.08^{\circ}, 1.86^{\circ}, 2.65^{\circ}$ 

Question 32 (***) Solve the trigonometric equation

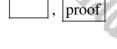
 $4-4\cos 2\theta = \csc \theta$ ,  $0 \le \theta < 2\pi$ ,

giving the answers in terms of  $\pi$ .

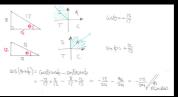


1+

$4 - 4 \cos 2\theta = \cos 2\theta$ $\Rightarrow 4 - 4 (1 - 2 \sin^2 \theta) = \frac{1}{5 m \theta}$	area (F) = IF
$\Rightarrow 4 - 4 + BSin^2 \theta = \frac{1}{Sin\theta}$	
$\Rightarrow BSM^{3}\Theta = 1$	6=至1 益
$\implies$ SM ³ $\theta = \frac{1}{8}$	1/
= SMQ= f	


# 192 STANDARD SUESTIONS 15. 15. STANDAK QUESTIONS

**Question 1** (***+)


$$in \theta = \frac{8}{17} \text{ and } \cos \varphi = \frac{5}{13}.$$

If  $\theta$  is obtuse and  $\varphi$  is acute, show that

$$\cos\left(\theta+\varphi\right)=-\frac{171}{221}.$$



1.



Question 2 (***+)

A curve C is defined by the equation

 $y = -\arcsin(x-1), \ 0 \le x \le 2.$ 

- a) Describe the 2 geometric transformations that map the graph of  $\arcsin x$  onto the graph of C.
- **b**) Sketch the graph of C.

The sketch must include the coordinates of any points where the graph of C meets the coordinate axes and the coordinates of the endpoints of C.

, translation by 1 unit to the right, followed by reflection in the x axis

**Question 3** (***+)

It is given that

F.G.B.

F.C.B.

 $\frac{\sec\theta}{\sec\theta - \cos\theta} \equiv \csc^2\theta, \ \theta \neq \frac{n\pi}{2}, n \in \mathbb{Z}.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence solve the equation

 $\frac{\sec\theta}{\sec\theta-\cos\theta}=4(\csc\theta-1), \ 0\leq\theta<2\pi\,,$ 

giving the answers in terms of  $\pi$ .



20

I.C.B.

COM

G

COM

E.

<u>م</u> )	$U_{+}S = \frac{Sec\theta}{Sec\theta - Cos\theta}$	$\left( 1 - \theta_{330} - \theta_{330} - \theta_{330} - \theta_{330} \right) = 0$
	0200 - 0200 =	$\begin{cases} \Rightarrow \log 2\theta = 4 \log \theta - 4 \\ \Rightarrow \log 2\theta - 4 \log \theta + 4 = 0 \end{cases}$
	05200 - 1 0200 - 1 (1000	$ \begin{array}{c} \Rightarrow (last(b-2)^2 = 0 \\ \Rightarrow \omega set(b = 2 \\ \Rightarrow sm(b = \frac{1}{2} \end{array} $
	= <u>648</u> Good	$arcsm(\underline{\pm}) = \underline{\mp}$ $\begin{pmatrix} \theta = 3g \pm 2n\eta \\ \theta = 3g \pm 2n\eta \\ \pi rcs \pm 2n\eta \\ \eta = c_1 l_1 2 l_2 \\ \theta = 3g \pm 2n\eta \\ \eta = c_1 l_2 l_2 \\ \theta = l_1 l_2 l_2 l_2 \\ \theta = l_1 l_2 l_2 l_2 \\ \theta = l_1 l_2 l_2 \\ \theta = l_1 l_2 l_2 l_2 l_2 \\ \theta = l_1 l_2 l_2 l_2 l_2 \\ \theta = l_1 l_2 l_2 l_2 l_2 l_2 \\ \theta = l_1 l_2 l_2 l_2 l_2 l_2 l_2 l_2 \\ \theta = l_1 l_2 l_2 l_2 l_2 l_2 l_2 l_2 l_2 l_2 l_2$
	= 1046 = 2417	$O_l = \pi l_c$ $O_l = \pi l_c$ $D_z = \pi l_c$
		V2 16

nn

### **Question 4** (***+)

Solve each of the following trigonometric equations.

- i.  $2\sec\theta 1 = 2\sec\theta\sin^2\theta$ ,  $0^\circ \le \theta < 180^\circ$ ,  $\theta \ne 90^\circ$
- ii.  $4\cot^2 x 9\csc x + 6 = 0$ ,  $0^\circ \le x < 360^\circ$ ,  $x \ne 0^\circ, 180^\circ$

$, \theta = 60^{\circ},$	x = 30°,150°
2	0.
	<ul> <li>(1) 4ar²a - 965802 + 6 = 0</li> <li>⇒4(658a² - 1) - 9680a + 6 = 0</li> <li>⇒4(558a² - 4 - 9680a + 6 = 0</li> </ul>
$\Rightarrow 2 - \omega s \theta = 2 s m^2 \theta$ $\Rightarrow 2 - \omega s \theta = 2 (1 - \omega s \theta)$	⇒ 400022-90000 + 2 = 0 ⇒ (40000 - 1)(0000 - 2)=0
$ \begin{array}{l} \begin{array}{l} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$ \begin{array}{c} \Rightarrow & \text{ laster } a_{2} \\ \Rightarrow & \text{ shy}_{\lambda, u} \\ \end{array} $
anccos(0) = 90 anccos(0) = 0	$\operatorname{cm}_{SIN}(\underline{\pm}) \simeq 30^{\circ}$ ( $2 = 30 \pm 360 \mathrm{M}$
$\begin{array}{l} \theta = 90 \pm 360 n \\ \theta = 270 \pm 3600 n \\ \theta = 270 \pm 3600 n \\ \theta = 300^{\circ} \pm 3600 n \\ \eta \simeq 0_1 h_1^3 s_{1} - n \end{array}$	$(3.2 \ 150 \pm 3604 \ M2.91/3)$ . $3_{1} = 30^{\circ}$ $2_{12} = 150^{\circ}$
61=60 (out)	

### **Question 5** (***+)

Prove the validity of each of the following trigonometric identities.

- **a**)  $\frac{1-\tan^2\theta}{1+\tan^2\theta} \equiv \cos 2\theta$ .
- **b**)  $\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} \equiv 2\csc\theta$ .

### proof

6

 $\partial_{\mu\nu}\partial_{\mu}^{\mu}d_{\nu} - d_{\mu\nu} = \frac{\partial_{\mu}^{2}d_{\nu}}{\partial_{\mu}d_{\nu}} - \frac{\partial_{\mu}^{2}d_{\nu}}{\partial_{\mu}d_{\nu}} = \frac{\partial_{\mu}^{2}d_{\nu}}{\partial_{\mu}d_{\nu}} = \frac{\partial_{\mu}^{2}d_{\nu}}{\partial_{\mu}d_{\nu}} = \frac{\partial_{\mu}^{2}d_{\nu}}{\partial_{\mu}d_{\nu}} = -\partial_{\mu\nu}d_{\mu}d_{\nu}$ ((c) There are a solution of the solution

- - Ane(Geo1+1) Ane(Geo1+1)
    - $=\frac{2(1+650)}{3m_{0}(1+650)} = \frac{2}{3m_{0}} = 2m_{0}c_{0} = 2H_{1}$

- Question 6 (***+)
- It is given that

F.G.B.

 $\frac{1+\cos 2\theta}{\sin 2\theta} \equiv \cot \theta, \ \theta \neq \frac{k\pi}{2}, k \in \mathbb{Z}.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence solve the equation

 $\csc 4x + \cot 4x = 1, \ 0 \le x < 2\pi,$ 

K.C.A

giving the answers in terms of  $\pi$ .

Uz.	1120	1 98 m
	$\frac{9\pi}{8}, \frac{13\pi}{8}$	19

COM

·Gh

2012.50

he,

F.G.p.

COM

G

(a)	$LHS = \frac{1 + \cos 2\theta}{\sin 2\theta} = \frac{1}{-1}$	$\frac{+(\chi_{10}\xi_{0}-1)}{\sin^{2}\theta} = \frac{\chi_{10}\xi_{0}}{\sin^{2}\theta} = \frac{\chi_{10}\xi_{0}}{\chi_{20}}$
	$= \theta t \omega = \frac{\theta z \omega}{\theta z} =$	= 243
	$  = c_{1}c_{2}c_{3} + c_{3}c_{3}c_{3}c_{3}$ $  = \frac{c_{1}c_{3}c_{3}}{c_{4}c_{1}c_{2}} + \frac{l}{c_{4}c_{1}c_{2}} \in C$	$ \Rightarrow t_{an(2k \in I} $ $ arctor(t) = \frac{1}{4}$
fie	$\frac{1 + \log l}{\sin 42} = 1$	22 = 華玉 mm h=q1,2, 2 = 董士 部王 2 = 董子 部王 2 = 董子 第,185
-	p at $2a = 1$	1 - BISI 818

### **Question 7** (***+)

 $y \equiv \sqrt{2}\cos\theta - \sqrt{6}\sin\theta$ ,  $0 < \theta < 360^{\circ}$ .

- a) Express y in the form  $R\cos(\theta + \alpha)$ , R > 0,  $0 < \alpha < 90^{\circ}$ .
- **b**) Solve the equation y = 2.

ii.

COM

I.C.P.

Write down the minimum value of ... c)

Inadasman  $\boxed{\min = 0}, \quad \min = \frac{1}{8}$  $y \equiv \sqrt{8}\cos(\theta + 60^\circ)$ ,  $\theta = 255^\circ, 345^\circ$ ,

madasmana Malhs

The Com

F.G.B.

nn

K.C.J.

2011

aths com

I.V.C.B. Madasn

I.V.C.

Created by T. Madas

COM

N.

Question 8 (***+)

$$in A = \frac{12}{13} \quad and \quad \cos B = \frac{4}{5}.$$

If A is obtuse and B is acute, show clearly that

 $\sin\left(A+B\right)=\frac{33}{65}\,.$ 

### **Question 9** (***+)

By considering the compound angle identity for tan(A+B), with suitable values for A and B, show that

 $\cot 75^\circ = 2 - \sqrt{3}$ 

$m(A+B) = \frac{\tan A + \tan B}{1 - \tan A \log B}$
$t^{2}S = \frac{1}{\tan(7S)} = \frac{1}{\tan(4S+30)} = \frac{1}{\frac{\tan(4S+\tan(30))}{\tan(4S)}} = \frac{1}{1+\sqrt{3}/2}$
$= \frac{1 - \eta_{2,3}^{2}}{1 + \eta_{2,3}^{2}} = \frac{3 - \eta_{2,3}^{2}}{3 + \eta_{3,3}^{2}} = \frac{(3 - \eta_{2,3}^{2})(3 - \eta_{3,3}^{2})}{(3 - \eta_{3,3}^{2})(3 - \eta_{3,3}^{2})} = \frac{q - (\eta_{3,3}^{2})}{1 - \eta_{3,3}^{2}}$
$=\frac{12-6\sqrt{3}}{6}=2-\sqrt{3}$

proof

proof

Question 10 (***+)

It is given that

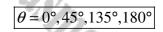
 $\tan \theta + \cot \theta \equiv 2 \operatorname{cosec} 2\theta, \ \theta \neq \frac{k\pi}{2}, \ k \in \mathbb{Z}.$ 

a) Prove the validity of the above trigonometric identity.

**b**) Hence find, in terms of  $\pi$ , the solutions of the equation

 $\tan\theta + \cot\theta = 4, \ 0 \le \theta < 2\pi,$ 

giving the answers in terms of  $\pi$ .


$\theta = \frac{\pi}{5\pi}$	$13\pi$	$17\pi$
$0 - \frac{1}{12}, \frac{1}{12}$	, 12	12
1	<u>n</u>	

$\frac{\partial \omega}{\partial m} + \partial w = zw$ $\frac{\partial \omega}{\partial m^2} + \frac{\partial w}{\partial \omega} = zw$ $\frac{\partial z\omega}{\partial m^2} + \frac{\partial w}{\partial w} = zw$	(b) tan0+6t0=4 → 2004c20=4 → cost20=2 → Sm25=5
$= \frac{1}{\cos \theta \sin \theta}$ $= \frac{2}{2\cos \theta \sin \theta}$	$\begin{array}{c} QV(\mathcal{S}M(\underline{L})) = \frac{1}{20} \\ (2Q = \frac{1}{20} \pm 2mT & H=Q_{1/2}\beta_{1} \\ (2Q = \frac{1}{20} \pm 2mT & H=Q_{1/2}\beta_{1} \\ \end{array}$
= <u>z</u> 	$\begin{pmatrix} \Theta = \frac{1}{2}M_{2} \pm \frac{1}{2}M_{T}^{-1}\\ \Theta = \frac{1}{2}M_{2} \pm \frac{1}{2}M_{T}^{-1}\end{pmatrix}$
= 2.65tc28 = R45	的形式 (12) (12) (12)

### Question 11 (***+)

Solve the following trigonometric equation

 $\sin 2\theta = \tan \theta , \qquad 0 \le \theta \le 180^{\circ} .$ 



1+

51120= tant { =>75110000= 5110	@sn0=0 arcon(6)=0	@ (ccs20= 0 arecos (0) = 90
=) 2smBcosB = SmB	(0=0 ± 3604 0=180± 3604	20 = 90 ± 3804 20 = 20 ± 3604
⇒ 25m0 6030 - 5m0=0	yadı	9 = 45 ± 804 θ = 132 1804
⇒ SM8(2688-1)=0 ) ⇒ SM8(ca28=0	.: O = 0,180°,	
		//

### Question 12 (***+)

It is given that

 $\cos(x+30^\circ)+\cos(x-30^\circ)\equiv\sqrt{3}\cos x\,.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence show that

 $\cos 75^\circ + \cos 15^\circ = \frac{1}{2}\sqrt{6}$ 

proof
-------

### Question 13 (***+)

Prove the validity of each of the following trigonometric identities.

**a**)  $\left(\frac{1+\sin\theta}{\cos\theta}\right)^2 + \left(\frac{1-\sin\theta}{\cos\theta}\right)^2 \equiv 4\tan^2\theta + 2.$ 

**b**)  $\sin^2\left(\theta + \frac{\pi}{4}\right) + \sin^2\left(\theta - \frac{\pi}{4}\right) \equiv 1.$ 

proof

11+

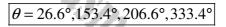
 $\frac{g_{\text{NL}} + g_{\text{mag}} - 1}{\sigma_{\text{cos}}^2} + \frac{g_{\text{NL}} + g_{\text{mag}} + 1}{\sigma_{\text{cos}}^2} = \left(\frac{g_{\text{m2}} - 1}{\sigma_{\text{cos}}}\right) + \left(\frac{g_{\text{m2}} + 1}{\sigma_{\text{cos}}^2}\right) = 2 \left(\frac{g_{\text{m2}}}{g_{\text{cos}}^2}\right) + \frac{g_{\text{m2}} + 1}{\sigma_{\text{cos}}^2} + \frac{g_{\text{m2}} + 1}{\sigma_{\text{cos}}^2}$ 

- $= \frac{2 + 2 \sin^2 \theta}{\cos^2 \theta} = \frac{2}{\cos^2 \theta} + \frac{2 \sin^2 \theta}{\cos^2 \theta} = 2 \sec^2 \theta + 2 \tan^2 \theta$
- $= 2(\tan^2 \theta + 1) + 2\tan^2 \theta = 4\tan^2 \theta + 2 = RHS$
- $\left\lfloor \left( \overline{\varphi} \Theta \right) N^{2} \right)^{2} + \left[ \left( \overline{\varphi} + \overline{\Theta} \right)^{2} N^{2} \right]^{2} = \left[ \overline{\varphi} \Theta \right)^{2} N^{2} + \left( \overline{\varphi} + \Theta \right)^{2} N^{2} = 2 H^{2}$ 
  - $= \left(\frac{\sin\theta}{2}\sin\theta + \frac{\sin\theta}{2}\sin\theta\right)^{2} + \left(\frac{\sin\theta}{2}\sin\theta \frac{\sin\theta}{2}\sin\theta\right)^{2} \\ = \left(\frac{\sqrt{2}}{2}\sin\theta + \frac{\sqrt{2}}{2}\sin\theta\right)^{2} + \left(\frac{\sqrt{2}}{2}\sin\theta \frac{\sqrt{2}}{2}\cos\theta\right)^{2}$
  - $= \frac{1}{2} \left( 2 \cos \theta + 2 \cos \theta \right)^2 + \frac{1}{2} \left( \cos \theta (\cos \theta)^2 = \frac{1}{2} \left[ (\cos \theta + (\cos \theta)^2 + (\sin \theta (\cos \theta)^2) + (\sin \theta (\cos \theta)^2) \right]^2 \right]$
  - $= \frac{1}{2} \left[ sy_{10}^{2} + 2sy_{10} + c_{0} s_{0}^{2} + sy_{10}^{2} 2sy_{10} + c_{0} s_{0}^{2} + c$
- $= \frac{1}{2} \left[ 2 \sin \beta + 2 \cos \theta \right] = \sin \beta + \cos \theta = 1 = R + \frac{1}{2}$  $+ \cos \theta + \cos \theta = 1 = R + \frac{1}{2}$

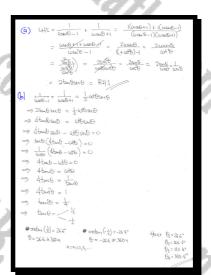
Question 14 (***+)

It is given that

F.G.B.


I.C.B.

$$\frac{1}{\csc \theta - 1} + \frac{1}{\csc \theta + 1} \equiv 2 \tan \theta \sec \theta$$


a) Prove the validity of the above trigonometric identity.

**b**) Hence solve the equation

$$\frac{1}{\csc \theta - 1} + \frac{1}{\csc \theta + 1} = \frac{1}{2} \cot \theta \sec \theta, \quad 0 \le \theta < 360^{\circ}.$$



nn



277

20,

I.C.B.

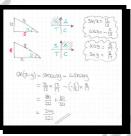
Com

mada

G

Created by T. Madas

0


# Question 15 (***+)

$$\sin x = \frac{12}{13}$$
 and  $\cos y = \frac{15}{17}$ .

If x is obtuse and y is acute, show clearly that

 $\sin\left(x-y\right)=\frac{220}{221}.$ 

,	proof



### Question 16 (***+)

Ins.co

I.C.B.

Solve the following trigonometric equation

 $\frac{2 + \cos 2x}{3 + \sin^2 2x} = \frac{2}{5}, \text{ for } 0^\circ \le x < 360^\circ,$ 

### $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$

$\begin{array}{c} \frac{2+\cos(2x)}{3+\sin(2x)} = \frac{2}{5} \\ \Rightarrow  0  + 5\cos(2x) = 6 + 2\sin^2(2x) \\ \Rightarrow  1  + 5\cos(2x) = 2(1-\cos^2(2x)) \\ \Rightarrow 4 + 5\cos(2x) = 2 - 2\cos^2(2x) \end{array}$	$\begin{split} & \text{arccs}(-\frac{1}{2}) = DD^* \\ & \left( \begin{array}{c} 2x = 120'\pm 360^{\circ} \\ 2z = 240'\pm 360^{\circ} \\ \alpha = 60'\pm 120^{\circ} \\ \alpha = 120'\pm 120^{\circ} \end{split} \right) \\ & \text{ for all } \end{split}$
$\Rightarrow \frac{1}{2} $	$\begin{array}{c} \Im_{t_{1}} = 60^{\circ} \\ \Im_{t_{2}} = 240^{\circ} \\ \Im_{t_{3}} = 120^{\circ} \\ \Im_{t_{4}} = 300^{\circ} \end{array}$

i.G.p.

G

100

Question 17 (***+)

It is given that

 $\frac{2\tan x}{1+\tan^2 x} \equiv \sin 2x \,.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Use part (**a**) to show that

 $\tan 15^\circ = 2 - \sqrt{3} \ .$ 



- (a)  $UI \subseteq \frac{2bm\lambda}{1+bm\lambda} = \frac{2bm\lambda}{skx} = \frac{2}{skx}$  = 3smus = sm2z = sup z = sup z(b)  $UI \subseteq s = sup z = sm2z$  = sm2z = sm2z(c)  $UI \subseteq s = sm2z$   $= \frac{2bm\lambda}{1+bm\lambda} = sm2z$   $= \frac{2bm\lambda}{1+bm\lambda} = sm2z$   $= \frac{2bm\lambda}{1+bm\lambda} = sm2z$   $= \frac{2bm\lambda}{1+bm\lambda} = sm2z$ 
  - $\Rightarrow \frac{2t}{1+t^{\alpha}} = \frac{1}{2} \left( t \cdot t_{\alpha} | t^{\alpha} \right)$  $\Rightarrow 4t = 1 + t^{\alpha}$
- $\Rightarrow 0 = t 4t + 1 \qquad \therefore t = 0 \qquad (bet t = 1)$
- -2 = ± x3 . tom 15"= 2 x3

### Question 18 (***+)

Solve the trigonometric equation

 $\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = 4, \qquad 0 \le x < 360^\circ.$ 

### x = 15°, 75°, 195°, 255°

·		1. A 18 A	
si G T T	$\frac{n\Sigma}{S\lambda} + \frac{\cos \lambda}{\sin \lambda} = 4$ $\frac{\sin^2 \lambda}{\sin \lambda} + \cos^2 \lambda = 4$ $\frac{\sin^2 \lambda}{\sin \lambda} + \cos^2 \lambda = 4$	$Sif(2) = \frac{1}{2}$ $a_{ESIII}(\frac{1}{2}) = 30$ $(\frac{2}{3}) = \frac{3}{2} + \frac{3}{2}G_{2} + \frac{3}{2} + $	
$\Rightarrow$	2. =4	$\begin{pmatrix} \mathcal{X} = 15^{\circ} \pm 1804 \\ \mathcal{X} = 75^{\circ} \pm 1804 \end{pmatrix}$	
î î	$\frac{2}{502a} = 4$ $2 = 4502a$	$D_{1} = 15^{\circ}$ $D_{2} = 75^{\circ}$ $D_{3} = 195^{\circ}$ $D_{4} = 255^{\circ}$	

1.

### Question 19 (***+)

Solve the following trigonometric equation

 $\tan\left(\theta+45^{\circ}\right)=1-2\tan\theta\,,\ 0\leq\theta<360^{\circ}\,.$ 

	-15-
$\Rightarrow \frac{\tan(\theta+\mu S) = 1-2\tan\theta}{1-\tan\theta F} = (-2\tan\theta)$	$ k \ T_{\pm} <_{0}^{2} \ t_{m} \Theta_{\pm} <_{0}^{2}$ $arb_{m}(2) = \Im \cdot t^{2}$
$= \frac{\tan\theta + 1}{1 - \tan\theta} = 1 - 2\tan\theta  ($	9=0±1804 8=63.4±1804
$\Rightarrow \frac{1+T}{1-T} = 1-2T \left( \frac{1}{2} \right)$	) ))=q,(q3, )
$\Rightarrow$ $(+T = (1-2T)(1-T)$	+ Θ ₁ = 0 Θ ₂ =180
$\rightarrow$ (+T = 1-T-2T+2T ² $\rightarrow$ 0 = 2T ² -4T	$\theta_3 = 6.4^\circ$ $\theta_{\Psi} = 263.4^\circ$
$\Rightarrow 0 = 2\Gamma(\tau-2)$	

 $x = 0,180^{\circ},63.4^{\circ},243.4^{\circ}$ 

Question 20 (***+) It is given that

 $\tan x \sec x + \operatorname{cosec} x \equiv \operatorname{cosec} x \sec^2 x, \quad x \neq \frac{n\pi}{2}, n \in \mathbb{Z}.$ 

a) Prove the validity of the above trigonometric identity.

**b**) Hence show that the equation

 $\tan x \sec x + \csc x = \frac{1}{2}\sec^2 x$ 

has no real solutions.



6

$$\begin{split} \prod_{n=1}^{n-1} + \frac{n\pi^2}{\lambda_{nn}^2} &= \frac{1}{n\pi^2} + \frac{1}{k_{nn}} \times \frac{n\pi^2}{k_{nn}} &= x_{n+2} \times n\pi^2 + x_{n+2} \times n\pi^2 = 2\mu^2 \quad (\textbf{0}) \\ n_{n+2} \times n_{n+1} \times n_{n+1} &= \frac{1}{k_{n+1}} = \frac{1}{$$

- tanasta tusta = ±st
- ⇒ 265taseta = 5th ⇒ 265taseta - 5tha =0
- => stà (210402-1)=

### Question 21 (***+)

Solve each of the following trigonometric equations.

- i.  $\sin \varphi + \frac{1}{4} \sec \varphi = 0$ ,  $0 \le \varphi < \pi$ .
- ii.  $\cos 2y 7\cos y + 4 = 0$ ,  $0 \le y < 360^\circ$ .

$\varphi = \frac{7\pi}{12}, \frac{11\pi}{12}, \frac$	$y = 60^\circ$ ,	300°
22		9
(I) $sup_{\phi} + \frac{1}{4}sec_{\phi} = 0$ (I)	I) 652y-7654+4=0	
= 4Smp + Stop = 0	⇒ (2603y-1)-71054+12.	-0
======================================	=> 2654-7654 + 3 =	0
== 4sint asy + 1= 0	=) (Zursy - 1)(cosy -	3)
$\Rightarrow 2\sin 2\phi + 1 = 0$	=> casy = X	
=> 5m2b = -12	arcuos (2)= 600	
$\alpha_{LCSM}\left(-\frac{1}{2}\right) = -\frac{1}{C}$	14 - 00 + 200.	
(20 = - T ± 2174 20 = T ± 2174 highligh	$\begin{pmatrix} 9 = 60^{\circ} \pm 360_{9} \\ 9 = 300^{\circ} \pm 360_{9} \end{pmatrix}$	$p \simeq d^{-1} S^{-1} S^{-1}$
$ \begin{pmatrix} \varphi &= -\frac{\pi \tau}{12} \pm \pi \eta \\ \varphi^{\dagger} &= -\frac{\pi \tau}{12} \pm \pi \eta \end{pmatrix} $	$y_1 = 60^\circ$ $y_2 = 300^\circ$	
1. 2m ITT //		

### Question 22 (***+)

The acute angles  $\alpha$  and  $\beta$  satisfy the relationships

 $7\cot^2 \alpha + 6\cot \alpha = 1$  and  $6\tan \beta = 8 + \sec^2 \beta$ .

21/2sm

a) Determine the value of  $\tan \alpha$  and the value of  $\tan \beta$ .

**b**) Show clearly that

 $\tan(\alpha + \beta) =$ 

 $\tan \alpha = 7$ ,  $\tan \beta = 3$ 

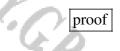
(6)

1+

### Question 23 (***+)

Simplify, showing all steps in the calculation, the following expression

 $\tan(\arctan 3 - \arctan 2)$ ,


giving the final answer as an exact fraction.



 $\frac{1}{7}$ 

**Question 24** (***+) Show clearly that if x > 0

 $\arctan x + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}.$ 



1.4

Left θ = artemp = → z = toul)	MATTION B LET B=ORTONA=> 2=6+0 ch=ORTON1 => 1== 6+1
$\Rightarrow \psi = 0 + \phi$ $\Rightarrow \tan \psi = \tan(0 + d)$	45 270
$\Rightarrow \tan \psi = \frac{\tan \theta + \tan \psi}{1 - \tan \theta \tan \psi}$ $\Rightarrow \tan \psi = \frac{2 + \frac{1}{2}}{2}$	$\frac{\alpha}{2} = \frac{1}{1} c$ But $\tan(\beta A c) = \frac{1}{2c}$
$\Rightarrow \tan \psi = \frac{\alpha + \frac{1}{2}}{0}$	∴ BAc=¢ ∴ ¢+θ= <u>T</u>
$\Rightarrow \Psi = \dots_1 \overline{\Xi}_1 \overline{\Xi}_1 \overline{\Xi}_1 \cdots $ But $\Theta_1 \varphi$ Alt ANDE ANDER	: anton 7 + actions = II
$\therefore \circ < \theta + \phi < \pi$ $\therefore \psi = \frac{\pi}{2}$	
$\therefore$ and $x = \frac{1}{x} = \frac{1}{x}$	

I.V.G.B.

maths.com

I.V.C.B.

ths.com

I.C.B.

### (***+) **Question 25**

1. V.G.

Prove the validity of each of the following trigonometric identities.

- $\frac{\sec^2\theta}{1-\tan^2\theta} \equiv \sec 2\theta.$ a)
- $\frac{\cos 4\theta + \cos 2\theta}{\sin 4\theta \sin 2\theta} \equiv \cot \theta \,.$ b) s Inadasmans.com I.Y.G.B. Madasmans.com I.Y.G.

STRATISCOTT I.Y.C.B. MARASTRATISCOTT I.Y.C.B. MARASTRATISCOTT

Question 26 (***+)

It is given that

$$\frac{\sec^2\theta}{1-\tan^2\theta} \equiv \sec 2\theta.$$

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence, or otherwise, solve the equation

$$\frac{\sec^2 2x}{1 - \tan^2 2x} - 2 = 0, \quad 0 \le x < \frac{\pi}{2}$$

giving the answers in terms of  $\pi$ .



$\frac{d}{dt} = \frac{34c^2\theta}{1-\tan^2\theta}$	(b) $\frac{5t^2 22}{1-t^2 22} = 2 = 0$
$= \frac{1}{0^{2}co^{2}}$ $= 1 - \frac{9^{2}co^{2}}{0^{2}co^{2}}$	->5-c42-2=0 (Party)
AWCTIRY TOP STATEM BY COSO-	=> secta = 2
$=\frac{1}{\omega^2 \theta - sw^2 \theta}$	$\Rightarrow$ secta = 2 $\Rightarrow \cos \varphi = \frac{1}{2}$
= <u> </u>	(上) 20100 (上) 20100
= sec.20	42 = 3 ± 201 0=91(23).
= RHS .	ス * <u>デ</u> キ <u>キャ</u> え = <u>ドナ</u> キ <u>トナ</u>
7	:1 2= 荒1 笠

Ĉ.p.

G

#### Question 27 (***+)

It is given that  $\theta$  is a reflex angle such that

 $\cos\theta = \frac{2}{3}$ 

Find the exact value of  $\sin 2\theta$ .

**Question 28** (***+)

It is given that

$$\frac{\csc\theta}{\csc\theta - \sin\theta} \equiv \sec^2\theta, \ \theta \neq \frac{n\pi}{2}, n \in \mathbb{Z}.$$

a) Prove the validity of the above trigonometric identity.

**b**) Hence solve the equation

$$\frac{\csc\theta}{\csc\theta - \sin\theta} + 4(\sec\theta + 1) = 0, \ 0 \le \theta < 2\pi,$$

giving the answers in terms of  $\pi$ .



1+

 $4\sqrt{5}$ 

 $\sin 2\theta = -$ 

 $s\theta = 2x\left(-\frac{\sqrt{3}}{2}\right)x\frac{2}{2}$ 

cosered-smb	$\alpha R(roz(-\frac{z}{1}) = \frac{3}{2R}$
SECO + 4SECO + 4 = 0	/⊖ = 25 ± 2wtt
$(Sec\theta + 2)^2 = 0$ (	(0 = 3 + 2mg 400,112,3,
Stell = -2	B1= 27/3 //
4.5	Pr. = 4%/

#### Question 29 (***+)

Solve the following trigonometric equation

E.

 $\sin 2\theta = \cot \theta, \qquad 0 \le \theta \le 180^{\circ}.$ 



 $, \theta = 45^{\circ}, 90^{\circ}, 135^{\circ}$ 

Question 30 (***+) It is given that

 $(\operatorname{cosec} \theta - \sin \theta) \operatorname{sec}^2 \theta \equiv \operatorname{cosec} \theta, \ \theta \neq \frac{n\pi}{2}, n \in \mathbb{Z}.$ 

2020

a) Prove the validity of the above trigonometric identity.

**b**) Hence solve the equation

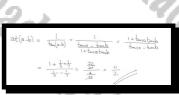
 $(\operatorname{cosec} \theta - \sin \theta) \operatorname{sec}^2 \theta = \sqrt{2}, \quad 0 \le \theta < 2\pi$ 

giving the answers in terms of  $\pi$ .



6

 $\partial^{5}\omega \left( \frac{\partial^{5}\omega - 1}{\partial \omega^{2}} \right) = \partial^{5}\omega \left( \partial_{\sigma}\omega - \frac{1}{\partial \omega} \right) = \partial^{5}\omega \left( \partial_{\sigma}\omega - \partial_{\sigma}\omega \right) = 2H1(\mathbf{0})$   $2H3 = \partial_{\sigma}\omega - \frac{1}{\partial^{5}\omega^{2}} = \partial^{5}\omega \times \frac{\partial^{5}\omega}{\partial \sigma^{2}} = \partial^{5}\omega \left( \partial_{\sigma}\omega - \partial_{\sigma}\omega \right) = 2H1(\mathbf{0})$  $H(\mathbf{0}) = \partial^{5}\omega + \frac{1}{\partial^{5}\omega} = \partial^{5}\omega \left( \partial_{\sigma}\omega - \partial_{\sigma}\omega \right) = 2H1(\mathbf{0})$ 


⇒ Coshc⊖ = NZ	< 10 = 30 ± 24T 40011213, ~~
$\Rightarrow$ Sin $\Theta = \frac{1}{\sqrt{2}}$	€, = 1%,
$\implies \operatorname{erresur}\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{4}$	€z = 3974
	,

#### Question 31 (***+)

The constants a and b are such so that

 $\tan a = \frac{1}{3}$  and  $\tan b = \frac{1}{7}$ .

Determine the exact value of  $\cot(a-b)$ , showing all the steps in the workings.



 $\cot(a-b) = \frac{11}{2}$ 

Question 32 (***+)

 $f(y) = 6 + 3\cos y + 4\sin y, \ 0 < y < 2\pi.$ 

a) Express  $3\cos y + 4\sin y$  in the form  $a\cos(y-b)$ , a > 0,  $0 < b < \frac{\pi}{2}$ 

It is further given that for  $0 < y < 2\pi$ 

 $A \leq 2f(2y) \leq B.$ 

**b**) Determine the value of each of the constants A and B.

,  $|3\cos y + 4\sin y| = 5\cos(y - 0.927^{\circ})|$ , |A = 2|, |B = 22|

(9)	$3\cos y + 4any \equiv a\cos(y-b)$
	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $
(6	• $-S \ll \frac{3(\alpha_{11} + 4Smy)}{(S(\alpha_{1} + \alpha_{2m}))} \leqslant S$ • $2 \ll [2 + (\alpha_{2}\beta_{2}) + Bar(\beta_{1}) \leqslant 2$ (2.4(2a))
1	$\begin{array}{c c} 1 \leq 6 + 3 \log_{2} + 4 \log_{2} \leq 1 \\ (4 \log) \end{array} \qquad $

#### Question 33 (***+)

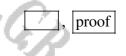
C.P.

Use the compound angle identity for tan(A+B), with suitable values for A and B, to show that

 $\frac{1 + \tan 15^{\circ}}{1 - \tan 15^{\circ}} = \tan 60^{\circ}.$  proof Question 34 (***+)  $f(x) = \csc x - \sin x, \ 0 < x < 180^{\circ}.$ Show that  $f(x) \ge 0$  for the entire domain of the function. proof Question 34 (***+)

for

C.P.


6

#### Question 35 (***+)

Given that  $\cos x^\circ = \sin(x-45)^\circ$ , show that

i GB

 $\tan x^{\circ} = 1 + \sqrt{2} .$ 



$\Rightarrow \cos x = \sin(x-45)$
zipinaczos - Zipizos Krisz = X20) 🥽
$= 100 \Omega = \frac{\sqrt{2}}{2} 0 \eta_{\lambda} = \frac{\sqrt{2}}{2} 0 \eta_{\lambda}$
- 26052 = NEMMA - NECOS
= 210552 = VESIM2 - VELOSA
=> 2 = 12 tan 2 - N2
=> 2+12 = N2 6-12
= tomas 2+ NE
=> toma = NZT +1

Question 36 (***+)

$$f(x) \equiv \sin x + 2\cos x \, .$$

a) Express f(x) in the form  $R\cos(x-\alpha)$ , where R > 0,  $0 < \alpha < \frac{\pi}{2}$ 

**b**) Hence solve the equation

 $1 + 2 \cot x = \csc x$ ,  $0 < x < 2\pi$ .

$$f(x) = \sqrt{5} \cos(x - 0.464^{c}), \quad x = 1.57^{c} \quad \bigcup \quad x = 5.64^{c}$$

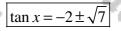
	No-22-47) Lasacase + Remizena x192 (norze) + Casal (norze)
.: Riosa=22 s Issua=1) j ∴ f(a)=√5 ios	appropriate that $ADD = R = \sqrt{2^{3}+1^{2}} \implies R = \sqrt{2^{3}}$ NUDE (quantum tange $\frac{1}{2} \implies \alpha = 0.464^{5}$ (q-0.464^{5})
(b) $1 + 2\alpha t_{\mathcal{X}} = \cos c_{\mathcal{X}}$ $\Rightarrow 1 + \frac{2\alpha t_{\mathcal{X}}}{Sim^2} = \frac{1}{Sim^2}$ $\Rightarrow sim + 2\alpha t_{\mathcal{X}} = 1$ $\Rightarrow sim + 2\alpha t_{\mathcal{X}} = 1$	$\begin{cases} (x - 0.464 = 1.107 \pm 2n_{\rm T} + 2n_{\rm T} + n_{\rm T} \alpha_1 \beta_1 \beta_3 \dots \\ (x - 0.464 = 5.176 \pm 2n_{\rm T} + n_{\rm T} \alpha_1 \beta_1 \beta_3 \dots \\ (x = 1.57 \pm 2n_{\rm T} + n_{\rm T} \alpha_1 \beta_1 \beta_1 \beta_1 \dots \beta_n \beta_n \beta_n \beta_n \beta_n \beta_n \beta_n \beta_n \beta_n \beta_n$
$\implies \cos(3r - 0.494_c) =$	

G

Question 37 (***+)

 $\frac{\sin 2x}{1 - \cos 2x} = \tan x , \ 0 < x < 2\pi .$ 

Find the solutions of the above trigonometric equation, giving the answers in radians in terms of  $\pi$ .


	$x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
20.	
$\frac{SIN2a}{1-\cos 2a} = \tan a$	$\leq = tau_{i}^{2} = 1$
$\Rightarrow \frac{2 \sin \alpha \cos \alpha}{1 - (1 - 2 \sin^2 \alpha)} = ta$	
= 2 <u>Smalesa</u> = bu Zsinža = bu	$\left(\begin{array}{c} \lambda = \frac{\pi}{4} \pm \frac{n\pi}{4} \\ \lambda = -\frac{\pi}{4} \pm \frac{n\pi}{4} \\ \eta = -\frac{\pi}{4} \pm \frac{n\pi}{4} \\ \eta = -\frac{\pi}{4} \\ \eta = -\frac{\pi}{$
$\Rightarrow \frac{\cos x}{\sin x} = \tan x$ $\Rightarrow  \text{int} x = \tan x$	ン 22=売 23=売
= the tense	24 = 7

Question 38 (***+)

Given that

$$\tan\left(x + \frac{\pi}{4}\right) = 4 + \tan x$$

find as an exact surd the exact value of  $\tan x$ .



$\tan\left(2+\frac{\pi}{4}\right) = 4 + \tan 2$	
= two rounts = 4 + tuns (	) ⇒ T²+ 4T-3=0
	$) \implies (T+2)^2 - 7 = 0$
$\Rightarrow \frac{\tan x + 1}{1 - \tan x} = 4 + \tan x$	$\rightarrow (\tau+2)^{L} = 7$
	⇒ T+2 = ±√7
$\rightarrow \frac{T+1}{1-T} = 4 + T  (T=tant)$	-> T=-2±17 //
$\implies$ T+ l = (4+T)(l-T)	: taya = -2± N7

**Question 39** (***+)

 $\frac{1+\tan^2\theta}{1-\tan^2\theta} = 2, \ 0 \le \theta < 360.$ 

Find the solutions of the above trigonometric equation, giving the answers in degrees.

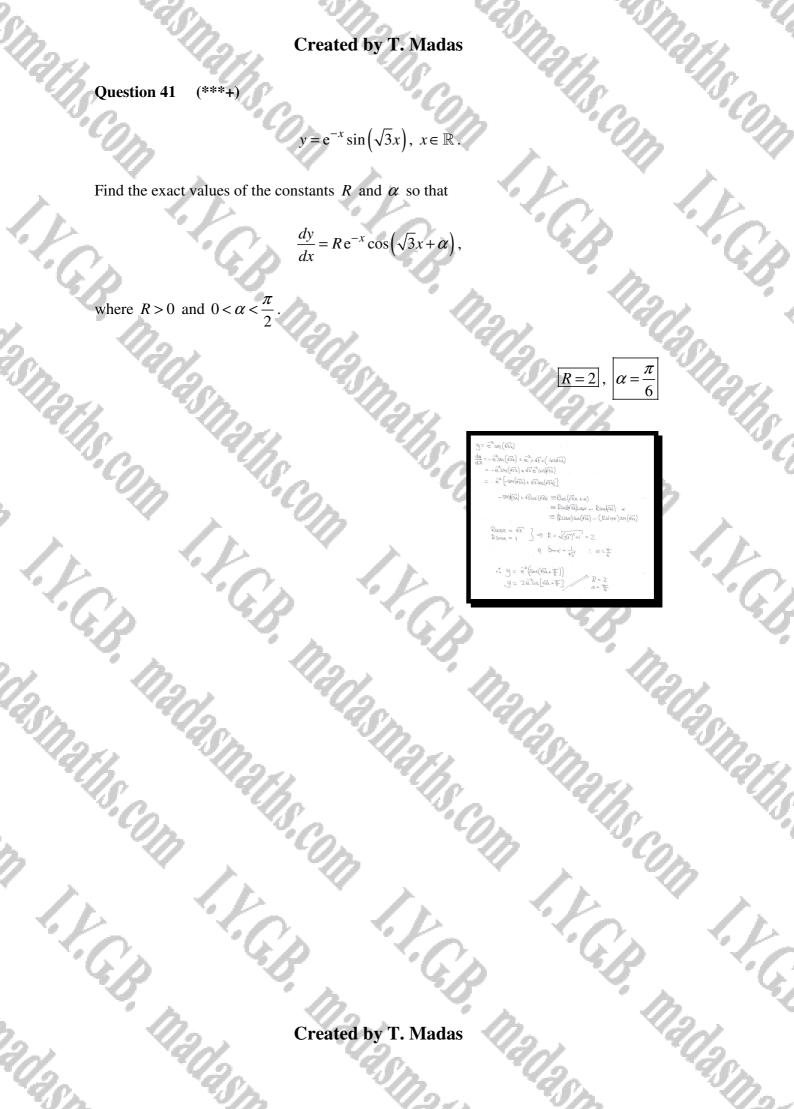
12112SM

$\frac{1 + \tan^2 \theta}{1 - \tan^2 \theta} = 2$	$\left\langle \rightarrow \cos 2\theta = \frac{1}{2} \right\rangle$
$= \frac{1 + \frac{SMB}{Ga^2 \theta}}{1 - \frac{SMB}{Ga^2 \theta}} = 2.$	$\begin{cases} a_{RGG}(\underline{4}) = 60^{\circ} \\ (2\theta = 60 \pm 3001 \\ 2\theta = 300 \pm 3601 \\ M^{\circ}a_{1/2}3 \end{cases}$
MUCTACY TOP & BOTROM OF THE REACTION BY 6030	$\begin{cases} \theta = 30 \pm 180y \\ \theta = 150 \pm 180y \end{cases}$
$\implies \frac{(\alpha S^2\theta + 5M^2\theta}{(\alpha S^2\theta - 5M^2\theta)} = 2$	$\left\langle \begin{array}{c} \theta_1 = 30 \\ \theta_2 = 210 \end{array} \right\rangle$
$\Rightarrow \frac{1}{6520} = 2$	$\theta_3 = 150^{\circ}$ $\theta_4 = 330^{\circ}$

 $\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$ 

**Question 40** (***+)

 $3\sec 2\psi - 2\cot 2\psi = 0, \ 0 \le \psi < 360.$ 


ains

Find the solutions of the above trigonometric equation, giving the answers in degrees.

#### ψ =15°,75°,195°,255°

G

$\begin{array}{l} 3\sec(2\psi) - 2\omega \pm 2\psi = 0 \\ \Rightarrow 3 \sec(2\psi) - 2 \cot(2\psi) \\ \Rightarrow \frac{3}{\cos(2\psi)} = \frac{2\cos(2\psi)}{\sin(2\psi)} \\ \Rightarrow 3 \sin(2\psi) = 2\cos(2\psi) \\ \Rightarrow 3 \sin(2\psi) = 2\cos(2\psi) \\ \Rightarrow 3 \sin(2\psi) = 3(-\sin^2(2\psi)) \\ \Rightarrow 3 \sin(2\psi) = 2 - 2\sin^2(2\psi) \\ \Rightarrow 3 \sin(2\psi) = 2 - 2\sin^2(2\psi) \\ \Rightarrow 3 \sin(2\psi) = 1 \sin(2\psi) - 2 = 0 \\ \Rightarrow (3 \sin(2\psi) - 1)((\sin(2\psi) + 2)) = 0 \end{array}$	$\begin{split} & S_{PM}(2\beta) = \underbrace{ \begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------



>

#### (***+) **Question 42**

asmaths.com

.

12

2

Solve the following trigonometric equation

madasmaths.com

T.C.B. Madasman

Ismanan Com I.V.C.J

I.F.G.B.

$$2 \arctan\left(\frac{1}{2}\right) = \arccos x \, ,$$

showing clearly all the workings.

Madasmans.com

I.C.B.

I. C.B. Madasmarks.Com

The Com

 $x = \frac{3}{5}$ 

0

madasma

I.V.C.B. Madasm

1.4

maths.com

KCA

Created by T. Madas

The Madasman

#### Question 43 (***+)

I.C.B.

20

I.F.C.B.

The functions f and g are defined as

$$f(x) = 2\cos x + \sin x, \ x \in \mathbb{R}.$$

 $g(x) = \frac{5}{x^2 + 5}, \ x \in \mathbb{R}.$ 

a) Express f(x) in the form  $R\sin(x+\alpha)$ , where R > 0 and  $0 < \alpha < \frac{\pi}{2}$ .

**b**) Determine the range of gf(x), showing clearly all the relevant workings.

p.			
9	@	$ \begin{cases} \widehat{U}_{0} = \widehat{J}_{00} \underbrace{c_{X}(w)}_{X} = \underbrace{C_{X}(v)}_{X}(\underbrace{c_{X}(w)}_{X}) = \underbrace{R_{X}(v)}_{X}(\underbrace{c_{X}(w)}_{X}) + \underbrace{R_{X}(x)}_{X}(\underbrace{c_{X}(w)}_{X}) = \underbrace{R_{X}(v)}_{X}(\underbrace{c_{X}(w)}_{X}) + \underbrace{R_{X}(x)}_{X}(\underbrace{c_{X}(w)}_{X}) = \underbrace{R_{X}(v)}_{X}(\underbrace{c_{X}(w)}_{X}) = \underbrace{R_{X}(v)}_{X}(v)} = \underbrace{R_{X}(v)}_{X}(v)} = \underbrace{R_{X}(v)}_{X}(v)} = \underbrace{R_{X}(v)}$	
	(b)	$\frac{\left\{\hat{u}\right\}}{\left\{\hat{u}\right\}} = \frac{\left\{\hat{u}_{1}^{2}\left(\hat{u}_{1}+iu_{1}^{2}\right)\right\}}{\left\{\hat{u}_{1}^{2}\left(\hat{u}_{1}+iu_{1}^{2}\right)\right\}} = \frac{S}{\left\{\hat{u}_{1}^{2}\left(\hat{u}_{1}+iu_{1}^{2}\right)\right\}} = \frac{S}{\left\{\hat{u}_{1}^{2}\left(\hat{u}_{1}^{2}\left(\hat{u}_{1}+iu_{1}^{2}\right)\right\}}} =$	

 $\therefore = \frac{1}{2} \leq \mathfrak{z}(f(0)) \leq 1$ 

I.C.P.

2010

6

],  $f(x) = \sqrt{5} \sin(x+1.107^{\circ})$ ,  $\frac{1}{2} \le gf(x) \le 1$ 

nn

C.P.

I.C.

Created	by T.	Madas
---------	-------	-------

#### Question 44 (***+)

Simplify, showing clearly all the workings, the expression

 $\tan\left[\arctan\frac{1}{3} + \arctan\frac{1}{4}\right],$ 

2012

giving the final answer as an exact fraction.



 $\frac{7}{11}$ 

#### **Question 45** (***+)

Prove the validity of the following trigonometric identity

 $\frac{\sin 2\varphi}{\sin \varphi} - \frac{\cos 2\varphi}{\cos \varphi} \equiv \sec \varphi.$ 



G

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T
$= 2\iota_{00}\phi - \frac{2\iota_{00}\psi}{\epsilon_{00}\phi} + \frac{1}{\epsilon_{00}\phi} $ $= 2\iota_{00}\phi - \frac{2\iota_{00}\psi}{\epsilon_{00}\phi} + \frac{1}{\epsilon_{00}\phi} + 1$	
= $2\log \phi - \frac{2\log w}{\log \phi} + \frac{1}{\log \phi}$ (sin(2\$-\$\phi) cust	
$= 2 \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{1} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} 2$	
- 21984 - 2484 + Loss Simplesd Simplesd	
= Secd	
= 243	

Question 46 (***+)

It is given that

>

ŀ.C.B.

I.C.p

COM

 $u = \sin \theta + \cos \theta$ ,  $v = \sin \theta - \cos \theta$ .

 $u^2 + v^2 = 2.$ 

.GA

200

dasmaths,

nadası,

Ŋ

2017

Use trigonometric identities to show that

Geos + Bruz -Geos - Bruz -

The Com

proof

 $(u+v) = 2 \sin \theta$   $(u-v) = 2 \cos \theta$   $(u+v)^2 = 4 \sin^2 \theta$   $(u-v)^2 = 4 \sin^2 \theta$  $(u-v)^2 = 4 \sin^2 \theta$ 

 $(\mu + v)^2 + (\nu - v)^2 = 4 \sin^2 \theta + 4 \sin^2 \theta +$ 

20

I.C.B.

Com

nadasn.

G

#### Question 47 (***+)

Solve the trigonometric equation

 $(\operatorname{cosec} x - \sin x) \operatorname{sec}^2 x = 2, \ 0 \le x < \pi, \ x \ne \frac{\pi}{2},$ 

2012

giving the answers in terms of  $\pi$ .

Question 48 (***+)

The angle  $\theta$  is such so that

 $\cot\theta = \frac{1}{3}.$ 

Show clearly that

C?

 $\cos\theta = \pm \frac{\sqrt{10}}{10}$ 

proof

 $x = \frac{\pi}{6}, \frac{5\pi}{6}$ 

 $\sin(\frac{1}{2}) = \frac{\pi}{2}$ 

 $\begin{pmatrix} \mathcal{S} = \mathcal{M} \neq \mathcal{S} \mathcal{M} \\ \mathcal{S} = \mathcal{M} \neq \mathcal{S} \mathcal{M} \end{pmatrix}$ 

Sinx) sec2x = Z

 $\begin{array}{c} \varepsilon_{1}^{L} = - \\ \varepsilon_{2}^{L} = - \\ \varepsilon_{1} = \varepsilon_{2} \\ \varepsilon_{2} = \varepsilon_{1}^{L} \\ \varepsilon_{2} = \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{$ 

6

#### Question 49 (***+)

Use a detailed method to show that

 $\arccos\left(5^{-\frac{1}{2}}\right) + \arccos\left(10^{-\frac{1}{2}}\right) = \frac{3\pi}{4}.$ 



, proof

#### Question 50 (***+)

A relationship is defined as

 $x = \sin \theta \cos \theta$ ,  $0 \le \theta < 2\pi$ 

 $y = 4\cos^2\theta$ ,  $0 \le \theta < 2\pi$ .

Use trigonometric identities to show that

 $16x^2 = y(4-y).$ 

proof
-------

G

~~	2
( BROD Br	$\Rightarrow \alpha^2 = \sin^2 \theta \cos^2 \theta$
( 05a)	$\Rightarrow x^2 = (1 - \omega^2 \theta) \omega^2 \Theta$
as	=) (6x2=4(1-620) x 40
	=> 16x2 = 46030(4-460
	$\Rightarrow$ $16x^2 = y(4-y)$

Question 51 (***+)

Show clearly that

 $2 \arccos\left(\frac{4}{5}\right) = \arccos\left(\frac{7}{25}\right).$ 



$\begin{array}{c} z = \frac{7}{2t} \\ \hline z \\ fos \left[ 2 \operatorname{antras} \frac{1}{k} \right] = \alpha \\ \hline cos \left[ 2 \operatorname{antras} \frac{1}{k} \right] = \alpha \end{array}$
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

#### Question 52 (***+)

It is given that

 $\sin 3x \equiv 3\sin x - 4\sin^3 x \, .$ 

202.51

a) Prove the validity of the above trigonometric identity, by writing  $\sin 3x$  as  $\sin(2x+x)$ .

**b)** Given that  $\sin x = \frac{\sqrt{6}}{6}$ , find the exact value of  $\sin 3x$ .

 $\sin 3x = \frac{7\sqrt{6}}{18}$ 

1.

(a)  $(4\beta = 3m\beta z = 3m(2\alpha + \alpha) = 5m(2\alpha z + 1\cos 2z, sm)z$   $= \frac{1}{6}(2\alpha m(\alpha z))(\alpha z + 1(1-2\alpha m_{0}^{2})) mxz,$   $= 2\beta mz(1-3m_{0}^{2}) + smz - 2m_{0}^{2}z,$   $= 2\beta mz(1-3m_{0}^{2}) + smz - 2m_{0}^{2}z,$   $= 2\beta mz(1-3m_{0}^{2}) + smz - 2m_{0}^{2}z,$   $= 3mz(1-3m_{0}^{2}) + smz - 4m_{0}^{2}z,$   $= 3mz(1-3m_{0}^{2}) + smz - 4m_{0}^{2}z,$  $= \frac{1}{2}mz(1-\frac{1}{2}) + \frac{1}{2}mz(1-$ 

Question 53 (***+)

It is given that

 $4\operatorname{cosec}^2 2\theta - \sec^2 \theta \equiv \operatorname{cosec}^2 \theta, \ \theta \neq \frac{n\pi}{2}, n \in \mathbb{Z}.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence show that if

 $4\left(\csc^2 2\theta - 2\right) = \sec^2 \theta - 2\csc \theta,$ 

then either  $\sin \theta = \frac{1}{2}$  or  $\sin \theta = -\frac{1}{4}$ 

Ð	,	proof

(a)  $\begin{bmatrix} H_{2} = \frac{1}{4aac_{2}}g_{2} = g_{2}\frac{A}{2a^{2}} = \frac{4}{2a^{2}a^{2}} = -\frac{1}{a^{2}b^{2}} = \frac{4}{a^{2}b^{2}} = -\frac{1}{a^{2}b^{2}} = -\frac{1}{a^{2}b^{2}} = \frac{1}{a^{2}b^{2}} = a^{2}b^{2} = \frac{1}{a^{2}b^{2}} = \frac{1}{a^{2}} = \frac{1}{a^{$ 

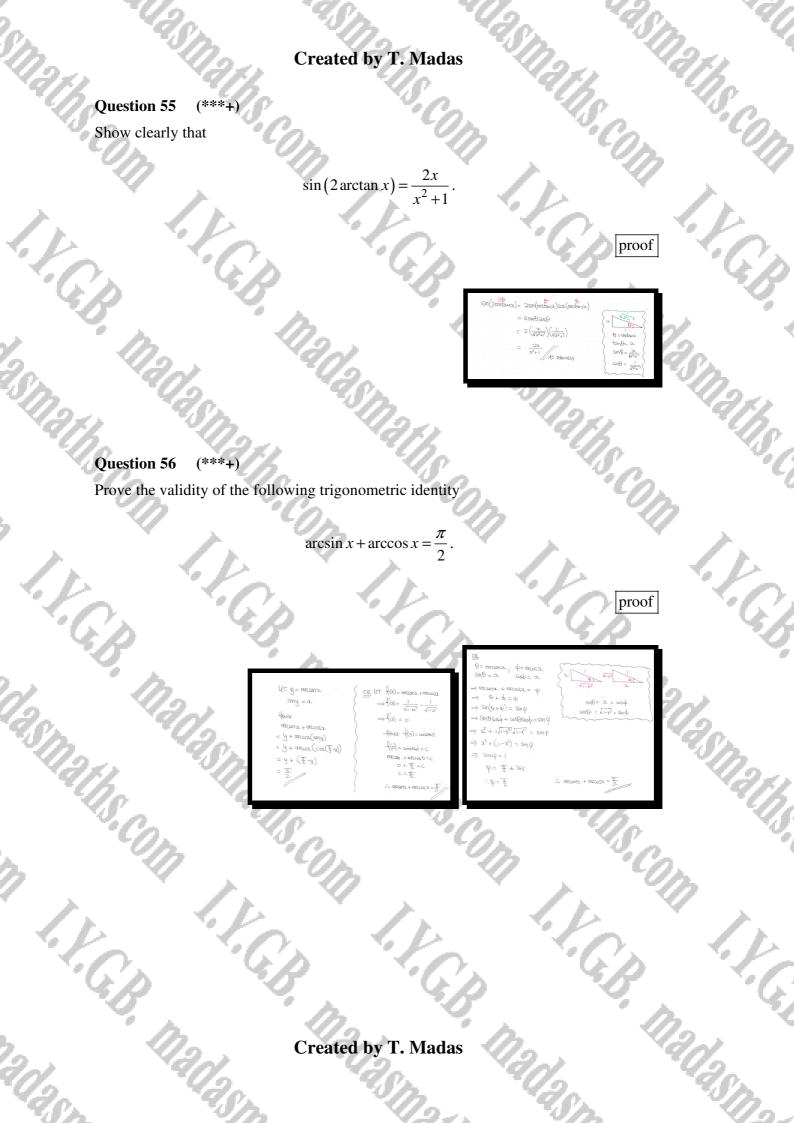
=>	-16036C20-21= SECD -2605ECD
	4 LOSK270-8 = SE20 - 205E20
9	(4 LOSH 20 - SEC 9) +2 LOSEC 9-8
=9	$light^2\theta + 2loued\theta - 8$

(Losec 0-2)(Losec 0+4)=0

Question 54 (***+)

Show clearly that

 $\arctan\frac{2}{3} + \arctan\frac{5}{12} = \arctan\frac{3}{2}$ 


proof

->ar	chang = + antrang = = ~ (tab =
-	the ten a contraction
$\rightarrow$	tay(0+4) = taya {tayb=
7	tona = tono + trans
Ĩ	$\tan \alpha = \frac{\frac{2}{3} + \frac{5}{12}}{1 - \frac{2}{3} \times \frac{6}{12}}$
->	$\tan \alpha = \frac{24 \pm 15}{36 - 10}$
7	$t_{MQ} = \frac{39}{26}$
$\rightarrow$	$\tan \alpha = \frac{3}{2}$
	<= onton 3 AS REANINGED

Created by T. Madas

ALTHBUARDE (3+2i)(12+5i) = 36 + 15i + 24i - 10

 $\arg \left[ (3+2i)(12+5i) \right] = \arg (26+39i)$  $\arg (3+2i) + \arg (12+5i) = \arg (26+39i)$ 



Question 57 (***+)

Show clearly that

. K.G.J

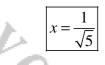
I.Y.C.B.

I.C.P.

 $\arctan \frac{1}{3} + \arctan \frac{4}{3} = \arctan 3$ .



$q' = \Theta +$	- ф	ĩ		
= ant ant	mt + antont	2-	ture §	
	an arthin + +aeton +]	2	tana = 5 1-3	
	tun (anton 1) + tun (anton 1)	(⇒	tama = 15 9-4	
	1 - tan (antan fr) x tan (antan	\$))⇒	tana = 3	
⇒ tana =	1 1 4 4	2	ar= aretimy3	
	1 - 3-3	)		

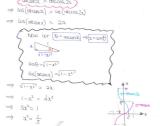

## Question 58 (***+)

Solve the trigonometric equation

F.G.B.

 $\arcsin x = \arccos 2x$ .

Madasn.




F.G.B.

G

17202

#### arcsin x = arccos x



 $\Rightarrow x = + \frac{1}{2}$  (246 ESVINT CID-RUE)



#### Question 59 (***+)

Using a detailed method, show that

 $\arctan\frac{1}{2} + \arctan\frac{1}{3} = \frac{1}{4}\pi$ .

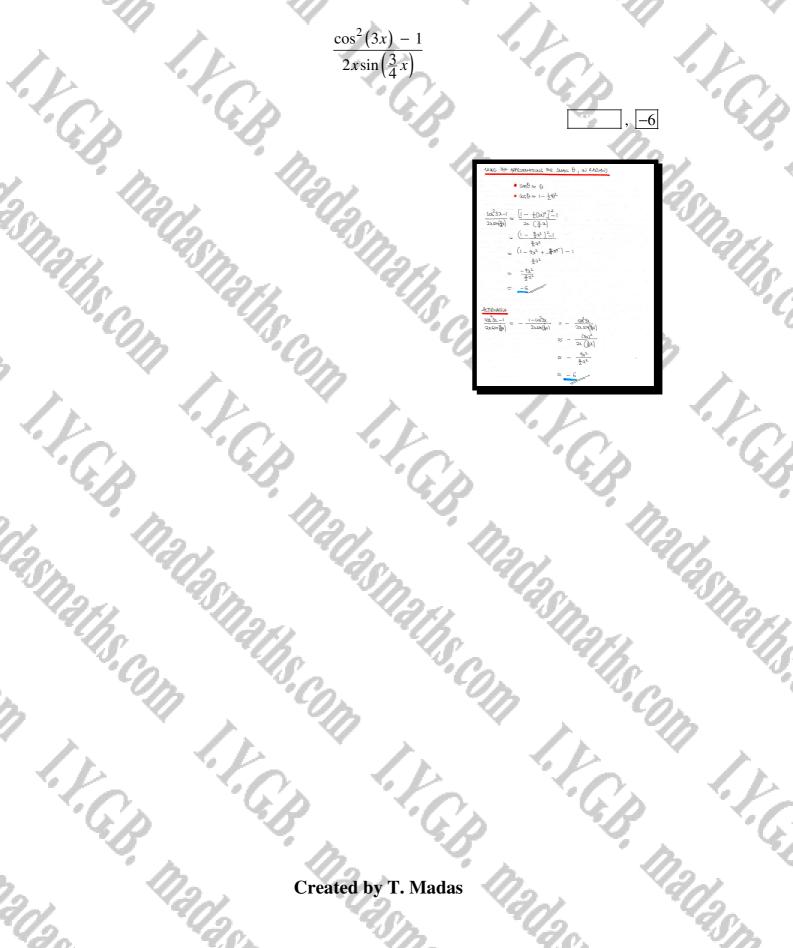


AS PEPLAL



### Question 60 (***+)

Given that x is measured in radians, use small angle approximations to simplify the following expression.


 $\frac{\cos 7x - 1}{x \sin x}$ 

 $\begin{array}{c}
\underbrace{\text{LANKE THE REPRESENTATION LETE SMALL & DE PADIANE}\\
& \cdot \text{ Suffice all } \\
& \cdot \text$ 

1.

#### Question 61 (***+)

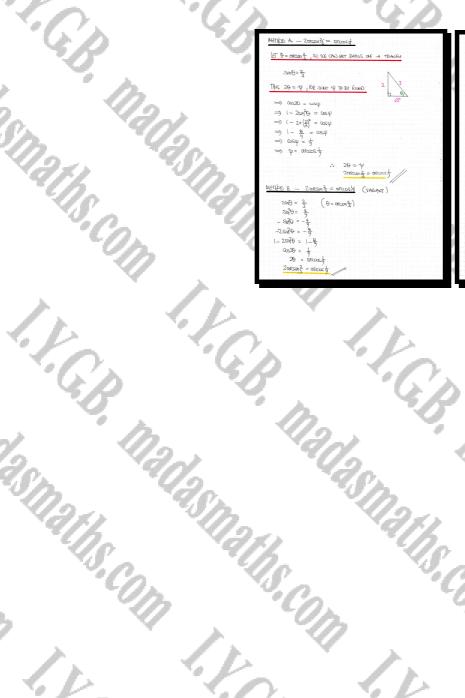
Given that x is measured in radians, use small angle approximations to simplify the following expression.



Question 62 (***+)

Prove that

I.F.G.B.


asmaths.com

asnaths.com

I.F.C.P

Z

 $2 \arcsin\left(\frac{2}{3}\right) = \arccos\left(\frac{1}{9}\right).$ 



FOUNTERCAL  $\alpha r \ll n \frac{2}{3} = 0$ SINO = = = BY THE COSING PULL 1 = 3+3-2×3×3×00 i8cos26 1800520= 2  $\cos 2\theta = \frac{1}{2}$ 20 = an 1 20 Parcsin = = an

F.G.B. Madasman

V

naths.com

proof

asuidins.com

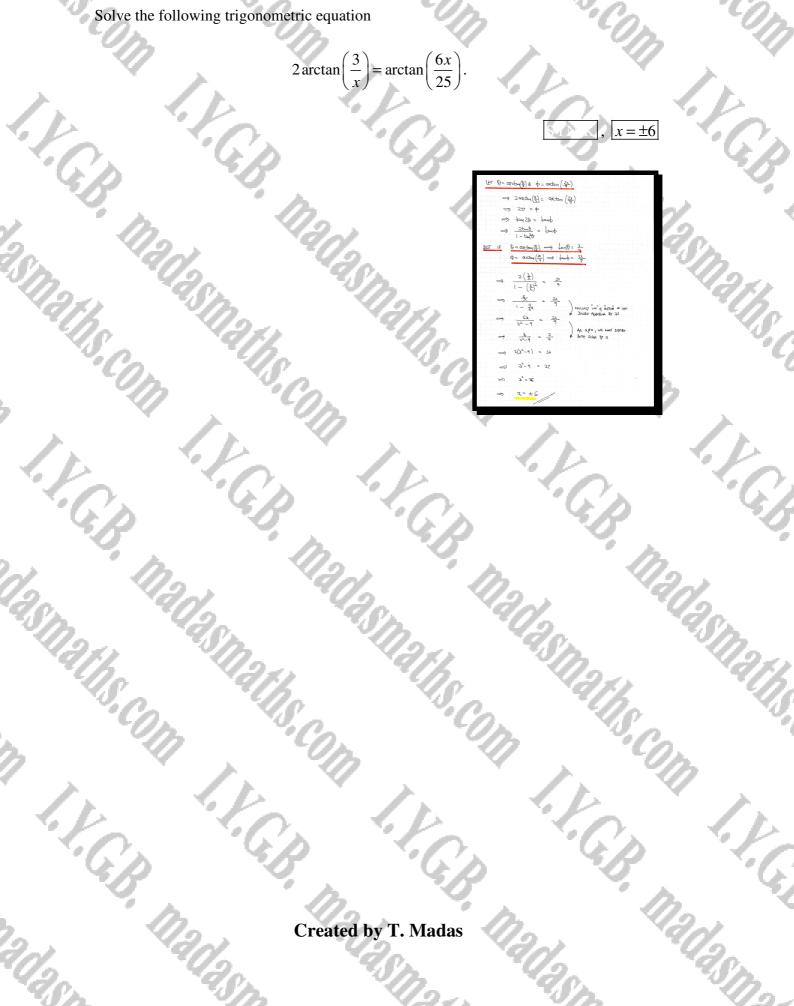
23

I.V.C.

madasma

L.C.B. Mada

Created by T. Madas


I.V.C.B

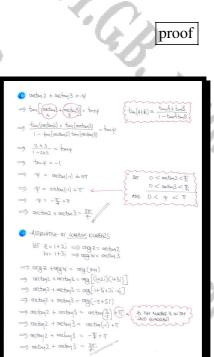
112/12.8/

madasmaths.com

#### (***+) **Question 63**

Solve the following trigonometric equation




naths.com

tsmains.com

#### Question 64 (***+)

Show, by detailed workings, that

 $\arctan 2 + \arctan 3 = \frac{3\pi}{4}$ 



Question 65 (***+)

Find the general solution of the following trigonometric equation

 $2\arctan(\sin x) = \arctan(\sec x)$ .

 $\frac{\pi}{-} + k\pi, \ k \in \mathbb{Z}$ 

1.+

and the second sec		1000
20 th 2 the (sure) = contrary (25402) taking tangents on both sides 1.4 tang20 = tamp	~	
$9 \frac{2 \sin x}{1 - \sin^2 x} = 25602$	~	
$\Rightarrow \frac{2\sin 2}{\cos 2} = 25ca$ $\Rightarrow \sin 2 = \cos 2$		
-) tanz = (	°. U≈	$\frac{1}{4} = \int_{X_{i}=0}^{1} \frac{1}{2} $

Question 66 (****)

$$f(x) = (x^2 + 1)(x - 1), x \in \mathbb{R}.$$

**a**) Simplify f(x).

I.C.B.

I.G.B.

**b**) Prove the validity of the trigonometric identity

 $\frac{\csc\theta - \sin\theta}{\sec\theta - \cos\theta} \equiv \cot^3\theta.$ 

c) Hence, or otherwise, solve the equation

 $\frac{\csc\theta - \sin\theta}{\sec\theta - \cos\theta} + \cot\theta = \csc^2\theta, \ 0 \le x < 2\pi,$ 

giving the answers in terms of  $\pi$ .

 $x^3 - x^2 + x - 1$ ,  $x = \frac{\pi}{4}, \frac{5\pi}{4}$ 

Y.G.B.

·GA

Madasm.

COM

madasn.

G

......

(9)	$(x_{+1})(x_{-1}) = x_{-}x_{+}x_{-1}$
(b)	$ \begin{pmatrix} \frac{g_{Los}}{g_{He}} \\ g_{He} \\ g_{H$
	$= \frac{\partial \delta^2}{\partial t} = \partial \delta \theta = 0$
<b>(</b> )	$\frac{\cos \omega - \Theta}{\sin \omega} = \Theta + \omega + \Theta = \Theta + \Theta + \Theta + \Theta = 0$
	when the wave ( tange 1
	$\omega = 0$ + $\omega = 1 + \omega = 0$
	$\omega t^3 \theta - \omega t^3 \theta + \omega t \theta = 1 = 0$ $\theta = \overline{\xi} \pm n\pi n = 0  _{t^2 t^3 y^{-1}}$
- (	$(d^2 \theta_{-1})(d^2 \theta_{-1}) = 0$
	with -1 we with = 1

m

#### Question 67 (****)

Solve the following trigonometric equation

 $2\cot\theta - 3\csc\theta = 2\sec\theta\csc\theta$ ,  $0 < \theta < 2\pi$ ,  $\theta \neq \frac{k\pi}{2}$ ,  $k \in \mathbb{Z}$ ,

giving the answers in terms of  $\pi$ .

	100	
Juestion	68	(***

(****)

$$f(x) = 2 + 2\sin x, \ -\pi \le x \le \pi$$

- **a**) Find an expression for  $f^{-1}(x)$ .
- **b**) Sketch the graph of  $f^{-1}(x)$ .

The sketch must include the coordinates of any points where the graph of  $f^{-1}(x)$  meet the coordinate axes as well as the coordinates of its endpoints.

$f^{-1}(x) = \arcsin$	$\left(\frac{1}{2}x-1\right)$

 $2\pi 4\pi$ 

 $\theta =$ 

The second secon	
(a fa)= 2+20na ⇒ y= 2+20na ⇒y-z= 25wà ⇒y-z= 5wa	(b) $\xrightarrow{\overline{t}}_{\overline{t}}$
$ \Rightarrow f(x) = \operatorname{otcan}(\frac{1}{2}x-1) $	$\frac{\overline{w_{2}}}{2} \rightarrow 2$

1+

#### Question 69 (****)

Prove the validity of each of the following trigonometric identities.

- a)  $2\cot 2\theta + \tan \theta \equiv \cot \theta$ .
- **b**)  $\frac{\sin 3x}{\sin x} \frac{\cos 3x}{\cos x} \equiv 2$ .

	12
$\begin{array}{l} \left\{ \begin{array}{l} \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & n \\ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & n \\ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & n \end{array} \right. \\ \left\{ \begin{array}{l} \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & n \\ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & n \end{array} \right\} \\ \left\{ \begin{array}{l} \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & n \\ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & n \end{array} \right. \\ \left\{ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & -\frac{\omega}{\partial_{uu} d^{-}} \right\} \\ \left\{ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & \partial_{uu} d \end{array} \right\} \\ \left\{ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & \partial_{uu} d \end{array} \right\} \\ \left\{ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & \partial_{uu} d \end{array} \\ \left\{ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & \partial_{uu} d \end{array} \right\} \\ \left\{ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & \partial_{uu} d \end{array} \right\} \\ \left\{ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & \partial_{uu} d \end{array} \right\} \\ \left\{ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & \partial_{uu} d \end{array} \\ \left\{ \partial_{uu} d + \frac{\omega}{\partial_{uu} d^{-}} & \partial_{uu} d \end{array} \right\} \\ \left\{ \partial_{uu} d + \partial_{uu} d \right\} \\ \left\{ \partial_{uu} d \right\} \\ \left\{ \partial_{uu} d + \partial_{uu} d \right\} \\ \left\{ \partial_{uu} d \right$	$\begin{array}{rcl} \underbrace{\operatorname{ATR}}_{A} \left( \begin{array}{c} \sum_{n \in \mathcal{A}} $
$\frac{1}{2}  \frac{1}{2}  \frac{1}$	$\frac{\sin \beta_{2} \cos 2}{\sin 2 \cos 2} = \frac{\sin (2i - 2i)}{\sin 2 \cos 2}$

proof

Question 70 (****)

Show that the following trigonometric equation

 $\tan 2\theta - 3\cot \theta = 0, \quad 0 < \theta < 2\pi, ,$ 

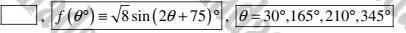
has six solutions in the interval  $0 < \theta < 2\pi$ , giving the answers in terms of  $\pi$ .

$\theta = \frac{1}{3}\pi, \frac{1}{2}$	$\frac{1}{2}\pi, \ \frac{2}{3}\pi, \ \frac{4}{3}\pi, \ \frac{3}{2}\pi, \ \frac{5}{3}\pi$
2	S'S
10	$\frac{M_{\text{AUDUATE AS}}}{\tan^2 2\theta} = \frac{1}{3} \frac{1}{4\pi^2} \frac{1}{2} \frac{1}{4\pi^2} \frac{1}{4$
°C)	$\begin{array}{llllllllllllllllllllllllllllllllllll$
×	->> 3 = taift ->> tango= ±v3 <u>COLLETERS 411 THE RESERVITIES</u> , tango eng tango-v17, tango-v12
L.	$ \begin{array}{c} \theta_{1} & \frac{\pi}{2} \pm \pi i \\ \theta_{2} & \frac{\pi}{2} \pm \pi i \\ \theta_{2} & \frac{\pi}{2} \pm \pi i \\ \theta_{3} & \frac{\pi}{2} \pm \pi i $
$\sim$	: θ= <u>z</u> , <u>a</u> , <u>z</u> , <u>z</u> , <u>z</u> , <u>z</u> , <u>z</u>

1

Question 71 (****)

$$f(\theta^{\circ}) \equiv (\sqrt{3}+1)\cos 2\theta^{\circ} + (\sqrt{3}-1)\sin 2\theta^{\circ}$$


- a) Express  $f(\theta)$  in the form  $R\sin(2\theta + \alpha)$ , R > 0,  $0 \le \theta^{\circ} < 90$ .
- **b**) Solve the equation

21/1s.com

011

I.C.B.

 $f(\theta^{\circ}) = 2, \ 0 \le \theta^{\circ} < 360.$ 



m.	422	= Grie(i-Tai) + G220 (1+Ti) (9) = =	= RS1140+4) = RS112000000 + Rico205140 = (Rico2)5420 + (Rima) 6020-
1211	- Ch.	.: Riasar = VII-1 ] = R RSVAX = VII-1 ] = R R	$ \begin{array}{l} = \left( \frac{1}{10^2 - 1} \right)_{2}^{2} \left( \frac{1}{10^2 + 1} \right)_{2}^{2}  3 - 36\overline{3}^{+} + 1 + \frac{3}{2} + 36\overline{3}^{+} + 1 \\ = \sqrt{83} \\ = \sqrt{83} \\ = \sqrt{10^2 + 1} \qquad \ll = 75^{6} \end{array} $
- 9.0		$\frac{1}{2} + \frac{1}{2} \left[ 0 \right] = \sqrt{8} 2 \ln \left( 20 + 32 \right)$	$\alpha = \frac{\alpha_{2}+1}{\alpha_{2}-1}  \alpha = 22_{0}$
· · · · · ·	-6	(b) -{(θ)=2 VBsw(20+73)=2	$\begin{cases} 20 = -30 \pm 360 \\ 20 = 60 \pm 360 \\ 0 \end{bmatrix}$
. 0	<b>b</b>	$Sm(2D+TS) = \frac{4T}{2}$ $OTCSM(\frac{4T}{2}) = -\frac{4}{4}S^{-1}$ $(TS) = \frac{4}{2}S^{-1}$	$\theta_{l} = l_{l} \xi_{m}^{m}$
/ r		$ \begin{array}{l} & (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 + (20+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ (20+1)^2 = (21+3)^2 \\ ($	$\begin{array}{c} \theta_{\ell} = i\xi 5^{*} \\ \theta_{2} = 345^{*} \\ \theta_{3} = 30 \\ \theta_{f'} = 2j0^{*} \end{array}$
· Ja		10	
16.12	· · ·	1	0.
55	~~~ ()	×	40
	. S/	9	
	5.	- A -	
~ ¹	05	120.	
2	198 h	- 9 <i>0</i> ,	
50	102	9	Pa
1200	977		100
"Ch		P	91%
		Cn.	10
· · · · ·	22	5	~
· .	0	×	<u>}</u>
612	· .	1	1
		10	

madasmaths.com

nadasm.

I.F.G.

I.V.C.B. Madasn

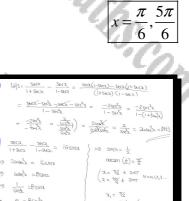
The Com

i.C.p.

The Com

Question 72 (****)

It is given that


C:

 $\frac{\sec x}{1 + \sec x} - \frac{\sec x}{1 - \sec x} \equiv 2\csc^2 x \,.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence, or otherwise, solve the equation

 $\frac{\sec x}{1+\sec x} - \frac{\sec x}{1-\sec x} = 16\sin x, \ 0 \le x < 2\pi,$ 

giving the answers in terms of  $\pi$ .



i.C.B.

G

#### Question 73 (****)

Solve the trigonometric equation

 $\csc \theta - \sin \theta + 2\cos^2 \theta \cot \theta = 0, \quad 0 < \theta < 2\pi, \ \theta \neq \pi,$ 

giving the answers in terms of  $\pi$ .

$\theta = \frac{\pi}{2}, \frac{\pi}{2}$	$\frac{2\pi}{3}, \frac{4\pi}{3}, \frac{3\pi}{2}$
20	
losed - sint + 2658at0=0 <u>1</u> sint - sint + 2620at0=0	630=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$\frac{1-\sin^2\theta}{\sin\theta} + 2\cos^2\theta \sin^2\theta = 0$	$ \begin{array}{l} \bullet \mbox{ arcs} \ 0 = \overline{\Psi_{2}} \\ B = \overline{\Psi_{2}} \ \pm \ 2\pi \eta \\ \theta = \overline{\Psi_{2}} \ \pm \ 2\pi \eta \\ \end{array} \  \  \  \  \  \  \  \  \  \  \  \  \$
1030 + 21030 + 010 = 0	• $\operatorname{chr}(s_1(-\frac{1}{2}) = \frac{2\pi}{3})$ $\theta = \frac{3\pi}{3} \pm 2\pi_1$ $\theta = \frac{4\pi}{3} \pm 2\pi_1$ $h = q_1(z_1) \dots$
630 + 2630 = 0	요=된왕,왕,왕 …

COM

Question 74 (****)

$$\sin\theta = \frac{5}{13}$$
 and  $\sin\varphi = -\frac{7}{25}$ 

If  $\theta$  is obtuse and  $\varphi$  is such so that  $180^\circ < \varphi < 270^\circ$ , show that

nana

 $\sin\left(\theta+\varphi\right)=-\frac{36}{325}$ 



G

Question 75 (****)

It is given that

 $\sin 2\theta = \frac{2\tan\theta}{1+\tan^2\theta}.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) By using  $\theta = 15^{\circ}$  in the above identity, show that

 $\tan 15^\circ = 2 - \sqrt{3} \ .$ 

proof

(C)	$RHS = \frac{2bmg}{1+bm^20}$ $= \frac{2bmg}{2km^20}$	( <b>b</b> )	$\begin{array}{l} (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} & (2+6)^{-1} \\ (2+6)^{-1} $

#### **Question 76** (****)

Prove the validity of each of the following trigonometric identities.

- a)  $\frac{2\sin x \cos x \cos x}{1 \sin x + \sin^2 x \cos^2 x} \equiv \cot x$
- **b**)  $\frac{\sec 2x 1}{\sec 2x + 1} \equiv \tan^2 x$

proof

1.

(a)  $\begin{aligned} H_{\lambda}^{c} &= \frac{2 \operatorname{sim}(d \circ \Sigma_{\lambda} - c \circ \Sigma_{\lambda})}{(1 - \operatorname{sim}_{\lambda} + \operatorname{sin}_{\lambda} - c \circ \Sigma_{\lambda})} &= \frac{\operatorname{cim}(2 \operatorname{sim}_{\lambda} - 1)}{-\operatorname{sim}_{\lambda} + \operatorname{sin}_{\lambda} - \operatorname{sim}_{\lambda} - \operatorname{si$ 

Question 77 (****)

It is given that

 $\cos 3x \equiv 4\cos^3 x - 3\cos x \,.$ 

a) Prove the validity of the above trigonometric identity by writing  $\cos 3x$  as  $\cos(2x+x)$ .

**b**) Hence, or otherwise, solve the trigonometric equation

 $8\cos^3 x - 6\cos x + 1 = 0, \ 0 \le x < 2\pi$ 

giving the answers in terms of  $\pi$ .

	9 '	9	'9'	9'9'9
0				"In
1.00				

 $2\pi$   $4\pi$   $8\pi$   $10\pi$   $14\pi$   $16\pi$ 

<ul> <li>(1)</li> <li>(1)</li></ul>	$ \begin{array}{l} \left( \begin{array}{c} b \\ \end{array} \right) & & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & & \\ \left\{ \begin{array}{c} b \\ \end{array} \right) & \\ \\ \left\{ \begin{array}{c} b \\ \end{array} \right\} & \\ \left\{ \begin{array}{c} b \\ \end{array} \right\} & \\ \\ \left\{ \begin{array}{c} b \\ \end{array} \\ \\ \\ \left\{ \begin{array}{c} b \\ \end{array} \right\} & \\ \\ \left\{ \begin{array}{c} b \\ \end{array} \\ \\ \\ \\ \end{array}\right) & \\ \\ \left\{ \begin{array}{c} b \\ \end{array} \\ \\ \\ \end{array}\right) & \\ \\ \\ \left\{ \begin{array}{c} b \\ \end{array} \\ \\ \\ \end{array}\right) & \\ \\ \\ \\ \end{array}\right\} & \\ \\ \left\{ \begin{array}{c} b \\ \end{array} \\ \\ \\ \end{array}\right) & \\ \end{array}\right\} \\ \\ \\ \left\{ \begin{array}{c} b \\ \end{array} \\ \\ \\ \end{array}\right\} & \\ \\ \\ \\ \end{array}\right\} \\ \\ \\ \end{array} \\ $
= 41032 - 31052	[ ス = ゔ゚゚゚ <del>゚</del> ± ゔ゚゚゚゚゚゚゚゚゚
	$\mathcal{I} = \frac{2\pi}{3} \cdot \frac{8\pi}{3} \cdot \frac{14\pi}{3} \cdot \frac{4\pi}{3} \cdot \frac{16\pi}{3} \cdot \frac{16\pi}{3} \cdot \frac{16\pi}{3}$

**Question 78** (****)

It is given that

 $\cos\theta - \theta\sin\theta = 0.9994.$ 

Given that the above equation has a solution that is numerically small, show by using a quadratic approximation that  $\theta = \pm 0.02^{\circ}$ .



AND ADDRESS AND ADDRESS ADDRES
605A - OSMA = 0.9994
$\left(1-\frac{\Theta^2}{2!}\right)-\theta\left(\Theta\right)\approx 0.9994$
$1-\frac{1}{2}\theta^2-\theta^2\simeq 0.9994$
$-\frac{3}{2}\theta^2 \approx -0.0006$
0° 2 0.0004
0 ~ ± 002 c Borl Southous Are of
2 2000 Constituted for 11


#### Question 79 (****)

- $\sin(A+B) \equiv \sin A \cos B + \cos A \sin B.$
- **a**) Use the above trigonometric identity with suitable values for A and B, to show


 $\sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}$ 

b) Hence by using the trigonometric expansion of  $\cos(75^\circ + \alpha)$  with a suitable value for  $\alpha$ , show that

 $\cos 165^\circ = -\sin 75^\circ.$ 



Use small angle approximations to show that if x is measured in radians then



where A and B are constants to be found.



|A=2|,

B =

proof

12 + 12 = 12+15

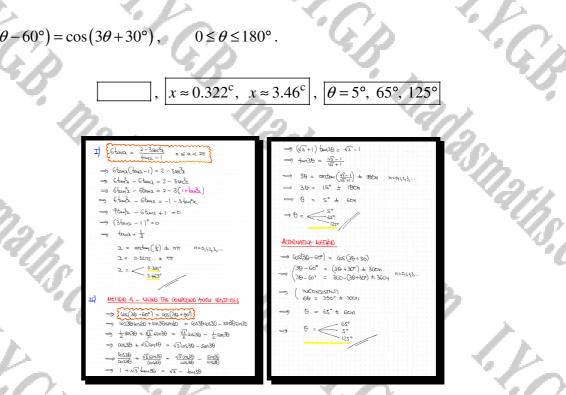
#### (****) **Question 81**

I.F.G.B.

naths,

I.F.G.B.

I.F.G.p


Madas.

00

Solve each of the following trigonometric equations.

i. 
$$6 \tan x = \frac{2 - 3\sec^2 x}{\tan x - 1}, \quad 0 \le x < 2\pi, \ x \ne \frac{\pi}{4}, \frac{5\pi}{4}$$

ii. 
$$\cos(3\theta - 60^\circ) = \cos(3\theta + 30^\circ), \quad 0 \le \theta \le 180^\circ$$



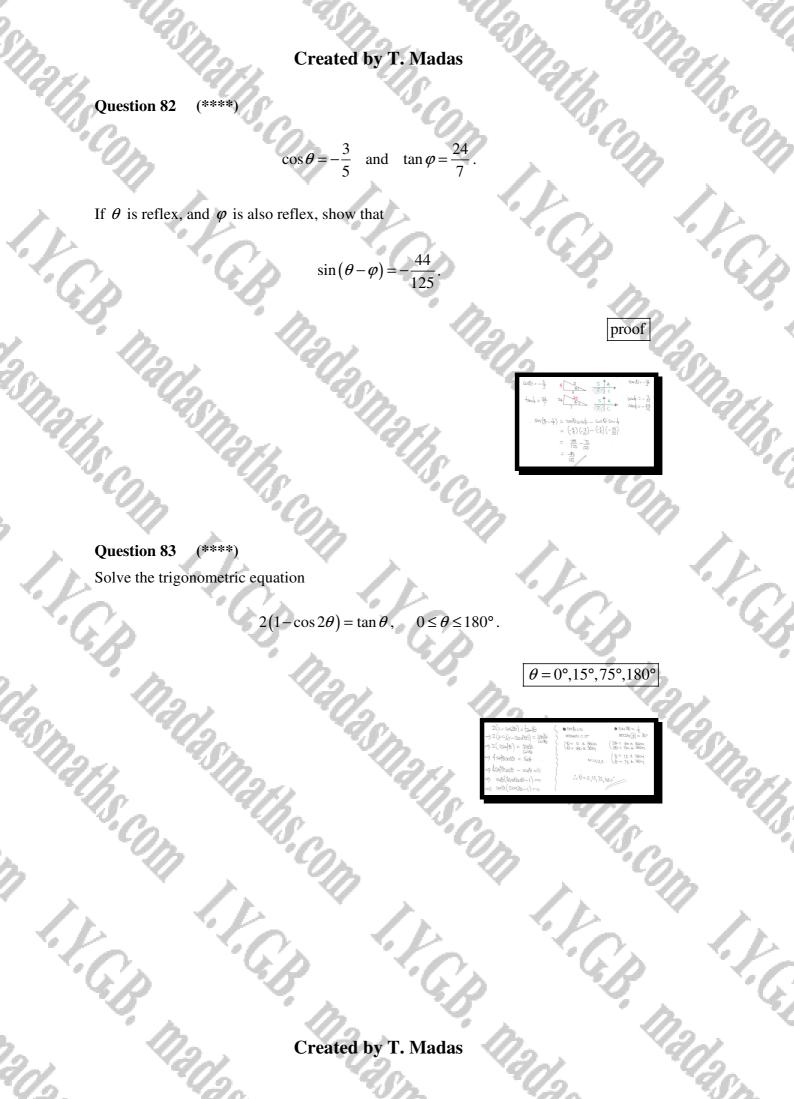
2017

naths,

11202sn

20

COM


I.V.C.

Ths.com

Created by T. Madas

00

I.Y.C.J



- Question 84 (****)
- A curve has equation

 $y = \pi - \arccos(x+1), \ -2 \le x \le 0.$ 

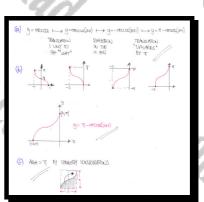
a) Describe geometrically the 3 transformations that map the graph of

 $y = \arccos x \,, \, -1 \le x \le 1 \,,$ 

onto the graph of

- $y = \pi \arccos(x+1), \ -2 \le x \le 0.$
- **b**) Sketch the graph of

 $y = \pi - \arccos(x+1), \ -2 \le x \le 0.$ 


The sketch must include the coordinates of any points where the graph meets the coordinate axes.

c) Use symmetry arguments to find the area of the finite region bounded by

$$y = \pi - \arccos(x+1), \ -2 \le x \le 0,$$

and the coordinate axes.

, translation by 1 unit to the right, followed by reflection in the x axis



area =  $\pi$ 

Question 85 (****)

It is given that

 $\left(\cos x + \sec x\right)^2 \equiv \cos^2 x + \tan^2 x + 3.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence solve the trigonometric equation

 $\cos^2 x + \tan^2 x = \frac{13}{4}, \ 0 \le x < 2\pi$ 

giving the answers in terms of  $\pi$ .

	$\begin{array}{rcl} LHS = (002+4423)^2 = & 002_2 + 2002402 + 302_3 \\ = & 002_3 + 2002(502_3) + (1+4\sqrt{3}) \\ = & 002_3 + 2 + 1 + 4\sqrt{3} \\ = & 002_3 + 4\sqrt{3} + 3 \\ = & 0.4 + 4\sqrt{3} + 3 \\ = & 0.4 + 5 \end{array}$	
P)	CAING THE ABOVE RESULT	
	$\Rightarrow \alpha \alpha \dot{h} + b \dot{h} = \frac{B}{4}$ $\Rightarrow 0 (\alpha \dot{h} + b \dot{h}) + 3 = \frac{B}{4} + 3$ $\Rightarrow (\alpha \dot{h} + \delta \alpha \dot{h})^2 = \frac{A}{4}$ $\Rightarrow (\alpha \dot{h} + \delta \alpha \dot{h})^2 = \frac{A}{4}$ $\Rightarrow (\alpha \dot{h} + \delta \dot{h}) = \frac{A}{4} \frac{A}{4}$ $\Rightarrow (\alpha \dot{h} + \delta \dot{h}) = \frac{A}{4} \frac{A}{4}$ $\Rightarrow (\alpha \dot{h} + \delta \dot{h}) = \frac{A}{4} \frac{A}{4}$ $\Rightarrow 20 \dot{h} + 1 = \frac{A}{4} \frac{A}{4} \frac{A}{4}$ $\Rightarrow 20 \dot{h} + 1 = \frac{A}{4} \frac{A}{4} \frac{A}{4}$ $\Rightarrow 20 \dot{h} + \frac{A}{4} = \frac{A}{4} \frac{A}{4} \frac{A}{4}$	
ff	HERCHIZANON THE GUADRATIC	
	$= \frac{2}{(2\omega_{1} + 1)(\omega_{2} + 2)} = 0$ $= \frac{2}{(2\omega_{1} + 1)(\omega_{2} + 2)} = 0$ $= \frac{2}{(2\omega_{1} + 1)(\omega_{2} - 2)} = 0$ $= \frac{2}{(2\omega_{1} + 1)(\omega_{2} - 2)} = 0$ $= \frac{2}{(2\omega_{1} + 1)(\omega_{2} + 2)} = 0$	

arcus (±	)= 7	ara	≤ (-±) = 2	T J	
$\frac{\pi}{2} = \frac{1}{2}$	± Эп _П ± Эхит	( 2 1	= g + x	ות יד	
	31-0	1,2,3,¥,			
-16.00	7HE PERMIERA				
-These and			1.		
	2=	1,3,3	//		
		11			

 $\pi$   $2\pi$   $4\pi$   $5\pi$ 3

i C.B.

G

3

Question 86 (****)

- $\cos(A+B) \equiv \cos A \cos B \sin A \sin B$  $\cos(A-B) \equiv \cos A \cos B + \sin A \sin B$
- a) By using the above identities show that

$$\cos(A+B)+\cos(A-B)\equiv 2\cos A\cos B.$$

**b**) Hence show that

t  
t
$$\cos P + \cos Q \equiv 2\cos\left(\frac{P+Q}{2}\right)\cos\left(\frac{P-Q}{2}\right).$$

**c**) Deduce that

Madasm

F.G.B.

F.C.B.

 $\frac{\cos 4x + \cos 2x}{2\cos 3x} \equiv \cos x \,.$ 

2028m

proof

Is.com

G

madasn

F.G.B.

nadasm.

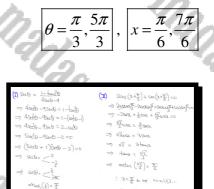
hs.com

nn

 $\frac{(\alpha(A+B) = \alpha + \alpha + \alpha + B)}{(\alpha(A+B) = \frac{\alpha + \alpha + \alpha + B}{\alpha + B} + \frac{\alpha + \alpha + B}{\alpha + B} +$ 

(b) Let P=A+B <u>400</u> P+qr=2A <u>NOTCAR</u> P-qr=2Q=A-B  $A=\frac{P+q}{2}$   $B=\frac{P-q}{2}$ 

Sign (a)  $\Rightarrow$  (a)  $\Rightarrow$  (b)  $P + \log Q = 2\log(\frac{P+q_1}{2})(d(\frac{P-q_2}{2}))$ 


#### Question 87 (****)

!.Y.G.

Solve each of the following trigonometric equations.

i. 
$$\sec\theta = \frac{1 - \tan^2\theta}{4\sec\theta - 9}, \quad 0 \le \theta < 2\pi.$$

ii. 
$$2\cos\left(x+\frac{\pi}{2}\right) + \sin\left(x+\frac{\pi}{3}\right) = 0$$
,  $0 \le x < 2\pi$ 



#### Question 88 (****)

10

I.C.B.

Prove the validity of each of the following trigonometric identities.

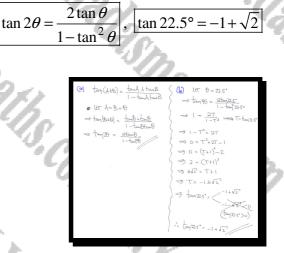
a) 
$$\frac{\cos 2x - \cos x + 1}{\sin 2x - \sin x} \equiv \cot x \,.$$

**b**) 
$$\tan\left(\theta + \frac{\pi}{4}\right) + \tan\left(\theta - \frac{\pi}{4}\right) \equiv 2\tan 2\theta$$
.

#### proof

S,

G


- (b)  $\frac{1}{2m^2 \theta^{m^2}} + \frac{1}{2m^2} \frac{1}{\theta^{m^2}} = (\overline{T} \theta)^{m^2} + (\overline{T} + \theta)^{m^2} + \frac{1}{(\overline{T} + \theta)^{m^2}} + \frac{1}{(\overline{T} + \theta)^{m^2}}$ 
  - $= \frac{\tan \theta + 1}{1 \tan \theta} + \frac{\tan \theta 1}{1 + \tan \theta} = \frac{(\tan \theta + 1)^2 + (\tan \theta 1)(1 \tan \theta)}{(1 \tan \theta)(1 + \tan \theta)}$
  - = tago + 2000 + + + bar tago 1 + tano = 4bar 0 1-tago - 1 + tano = 4bar 0 1 - tago
  - = 2 [ 2 tanto ] = 2 tan 20 = 2HJ

Question 89 (****)

It is given that

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}.$$

- a) Use the above trigonometric identity to express  $\tan 2\theta$  in terms of  $\tan \theta$ .
- **b**) Hence determine the exact value of tan 22.5°, showing clearly all the relevant workings.



#### **Question 90** (****)

Prove the validity of the trigonometric identity

 $\frac{1-\cos 2x+\sin 2x}{1+\cos 2x+\sin 2x} \equiv \tan x \,.$ 

proof

1.+

$$\begin{split} & [S = \frac{1 - (\alpha_{23} + s_{10})2_{1}}{1 + (\alpha_{23} + s_{10})2_{2}} = \frac{1 - (1 - 2s_{1}\beta_{1}) + s_{10}}{1 + (2\alpha_{23}\beta_{-}) + s_{10})2_{3}} = \frac{2s_{1}\beta_{1} + s_{10}(2s_{1})}{2s_{2}\beta_{1}^{2} + s_{10}(2s_{1})} = \frac{2s_{1}\beta_{1} + s_{10}(2s_{1})}{2s_{2}\beta_{1}^{2} + s_{10}(2s_{1})} = \frac{2s_{1}\beta_{1} + s_{10}(2s_{1})}{2s_{2}\beta_{1}^{2} + s_{10}(2s_{1})} = \frac{2s_{1}\beta_{1} + s_{10}(2s_{1})}{2s_{1}\beta_{1}^{2} + s_{10}(2s_{1})} =$$

 $2 \cos x + 2 \sin x \cos x - 2 \cos x (\cos x + \sin x) = 5 \sin x = 24.5$ 

#### **Question 91** (****)

In this question it is given that the exact value of  $\tan 20^\circ = t$ .

- a) Express  $\tan 25^\circ$  in terms of t.
- **b**) By using the result of part (**a**) show that

 $\tan 25^\circ \tan 65^\circ = 1$ 

c) Show further that if

 $2\cos(\theta^{\circ}+20^{\circ})=5\sin(\theta^{\circ}-20^{\circ}),$ 

then

 $\tan\theta = \frac{2+5t}{5+2t}$ 

tan 25° = 1 + t

G

(a)  $\tan 35 = \tan(45, 20) = \frac{\tan 45 - \tan 20}{1 + \tan 45 + \tan 20} = \frac{1 - \frac{1}{2}}{1 + \tan^2} = \frac{1 + \frac{1}{2}}{1 + \tan^2} = \frac{1 + \frac{1}{2}}{1 - \frac{1}{2}}$ 

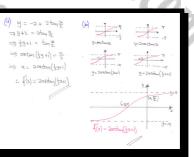
#### (a) $2\omega s(\theta + 2\sigma) = Scon(\theta - 2\sigma)$

- -> 2008 Crazo 2500 Sem 20 = 500 Brazo 500 Branzo
- 24500000 20mBin15 20mBin26 Support
- 2 2000 taylor = Stanl - 2 - 2t taylor = 5taylor - St
- ⇒ 2 + 5t = 5tm0 + 2t but ⇒ (2+5t) = (5+2t) taut
- =  $\frac{52+52}{5+22} = 0$  mpt (=

Question 92 (****)

F.C.B.

 $f(x) = -2 + 2 \tan\left(\frac{1}{2}x\right), \ -\pi \le x \le \pi.$ 


- **a**) Find an expression for  $f^{-1}(x)$ .
- **b**) Sketch the graph of  $f^{-1}(x)$ .

The sketch must include ...

• ... the equations of the asymptotes of  $f^{-1}(x)$ 

• ... the coordinates of any points where the graph of  $f^{-1}(x)$  meets the coordinate axes.

 $f^{-1}(x) = 2\arctan\left(\frac{1}{2}x + 1\right)$ 



F.C.B.

G

mana,

#### **Question 93** (****)

The function f is defined as

$$f(x) = \frac{1}{1 + \tan x}, \ 0 \le x < \frac{\pi}{2}.$$

- a) Use differentiation to show that f is a one to one function.
- **b**) Find a simplified expression for the inverse of f.
- **c**) Determine the range of *j*

<u>(a)</u>	$f(a) = \frac{1}{1 + \tan a} = (1 + \tan a)^{-1}$	(b) y= 1+bra
	$f(a) = -(1 + \tan^2 x \operatorname{stell}_2)$	1+ tava = 1
	$f(\alpha) = -\frac{Stex}{(1+bua)^2}$	
	SING \$ (G) <0 FOR THE (STIGE DOWNAL, THE FANOTION	$ \begin{aligned} z &= \operatorname{credum}\left(\frac{1-y}{y}\right) \\ &\stackrel{\circ}{\longrightarrow} \lambda^{-1}(x) = \operatorname{arcbun}\left(\frac{1-x}{x}\right) \end{aligned} $
	OSTILLE DOWARD, THE FANOROD IS DECLEASING, SO THE FUNCTION IS ONE TO ONE	(c) The DESICE tamazo
		1+ taya_>1
		0 - 1+tona = 1 .: RANGE 0 < fax = 1
		** KINUE 0 < f(0) < 1

 $0 < f(x) \le 1$ 

1.4

 $f^{-1}(x) = \arctan\left(\frac{1-x}{x}\right)$ 

Question 94 (****)

 $\frac{\cos\left(\frac{1}{2}x\right)}{1+\sin x} = 0.925.$ 

Given that the above equation has a solution that is numerically small, find this solution by using a quadratic approximation.

No credit will be given for solving a trigonometric equation.

$ , x \approx 0.08$
200
00
USING- APPROXIMATIONS FOR SUMAL ANOILES"
$\approx \theta \approx \theta$
$los \theta \simeq 1 - \frac{\theta^2}{2}$
$\cos(\frac{1}{2}\theta) \simeq 1 - \frac{(\frac{1}{2}\theta)^2}{2}$
$\simeq 1 - \frac{1}{8} \Theta^2$
Attrace we thave
$2SPO = \frac{\zeta_{2}^{2}}{\varsigma m z + i} \stackrel{ZO}{\leftarrow} =$
$=\frac{1-\frac{1}{6}r^2}{2} = -\frac{1}{2} = -\frac{1}{2}$
$= \frac{8-3^2}{8+8^2} = 0.925$
$\implies 7.4 + 7.4 \times 8 - 2^{2}$
$ = \mathcal{D}^2 + 7 \mathcal{H}_2 - \mathcal{O}\mathcal{L} = 0 $
QUADRATIC FORMULA OR COMPLETING THE SPUNCE
→ (2+37) ² - 37 ² -0% = 0
$\implies (\pi + 3 \cdot 7)^2 = 14.29$
$\alpha + 37 = -37602$
2 2=
=) 2 =

1.+

5

Question 95 (****)

It is given that

 $\sin 3x \equiv 3\sin x - 4\sin^3 x \,.$ 

- a) Prove the validity of the above trigonometric identity, by writing  $\sin 3x$  as  $\sin(2x+x)$ .
- **b**) Hence, or otherwise, find the exact value of

 $\int_0^{\frac{\pi}{2}} \sin^3 x \ dx.$ 

6	LHS= SIMBA= SIM(2x+2)= SIMBLOODX+COSESSIMX
	= (25m21002) 1002 + (1-2511/2) 51M2
	= 281121052 + SIM2 - 25432
	$= 2 \sin (1 - \sin^2 a) + \sin a - 2 \sin^2 a$
	= 25m2 - 25m2 + 5m2 - 25m2
	= 3sm2 - 48432
	= 2+15
0.5	E
6	$\int_{0}^{T} \sin^{2} d\lambda = \dots \dots \sin \sin 2 = 3 \sin 2 - 4 \sin^{2} \lambda$
	$= \dots \int_{0}^{\infty} \frac{s_{0}h_{\infty}}{4} = \frac{1}{4} s_{0}h_{0}s_{1} d_{1}$
	1, 4
	$= \left[-\frac{3}{4}\omega_{S2} + \frac{1}{12}\omega_{S3}\alpha_{s}\right]^{\frac{11}{2}} =$
	$= \left[-\frac{2}{3}\log \frac{2\pi}{2} + \frac{1}{2}\log \frac{2\pi}{2}\right] - \left[-\frac{2}{3}\log \frac{2\pi}{2} + \frac{2\pi}{2}\log \frac{2\pi}{2}\right] =$
	$C = -(-\frac{3}{4} + \frac{1}{12}) = \frac{2}{3}$
	./

 $\frac{2}{3}$ 

Question 96 (****)

Solve the trigonometric equation

 $7\sin^2 x + \sin x \cos x = 6$ ,  $0^\circ \le x \le 360^\circ$ ,

giving the answers to the nearest degree.

$\begin{array}{c} 7(a_{1}^{2}+5)(a_{1}(a_{1})=6 \\ \hline (a_{1}^{2}a_{1}+5)(a_{2}(a_{1})=a_{1}^{2}a_{1}^{2} \\ \hline (a_{2}^{2}a_{1}+a_{2})(a_{1}^{2}a_{1})=a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{1}^{2}a_{$	$\begin{array}{c} {{{\left  {{{{\left  {{{{\left  {{{{\left  {{{{\left  {{{\left  {{{}}}}}}}} \right.}}} \right.}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
$(t_{MN} - 2)(t_{MN} + 3) = 0$		-

	1	100
ALTHINATIUL		
75m2 + SWQ.cosa =-6	5	meut
1451/2.x + 251/20052 = 12	)	4
$  f  \left(\frac{1}{2} - \frac{1}{2}\log(2)\right) + \left(2\log(2) - \frac{1}{2}\right) + 1$	1	
$7 - 7\omega s_{2} + s_{1}\eta_{2} = 12$	(	
01.0		

 $x \approx 63^{\circ}, 108^{\circ}, 243^{\circ}, 288^{\circ}$ 

**Question 97** (****)

 $f(x) = \sqrt{3}\cos x - \sin x, \ x \in \mathbb{R}.$ 

- a) Express f(x) in the form  $R\cos(x+\alpha)$ , R > 0,  $0 < \alpha < \frac{\pi}{2}$
- **b**) State the maximum value of f(x) and find the smallest positive value of x for which this maximum occurs.

The depth of the water, D metres, in a harbour is modelled by the equation

$$D = 13 + \sqrt{3}\cos\left(\frac{\pi t}{6}\right) - \sin\left(\frac{\pi t}{6}\right), \quad 0 \le t < 24$$

where t is the time in hours measured since midnight.

- c) State the maximum depth of the water in the harbour and a time when this maximum depth occurs.
- d) Find the times when the depth of the water in the harbour is 12 metres.

 $\boxed{}, \sqrt{3}\cos x - \sin x \equiv 2\cos\left(x + \frac{\pi}{6}\right), \boxed{\max = 2}, \boxed{x = \frac{11\pi}{6}}, \boxed{D_{\max} = 15}$ 

11:00/23:00, 03:00/07:00/15:00/19:00

		The second second
@)	fa)= same = line(2+~)	
	= Russian - Ramasma	
	= (Reaser) Lasz - (Remer) SMD	
Ś	Roman = 13 A=N(17+12= N 2 = 2 Roma = 13 toma = 15 toma = 2	
0	RSWa=13 tawa= to tawa= I	
	13. E	
	: fa)=15002-54x = 2005(x+Z)	
6	$f = (\frac{1}{2} + c) \cos \omega $ with LINO TI $S = (c)$	
	NAX III =0	
	3E .	10 25
	2= 5	/
	°//	
(0)	D= B+ 15 cos (=)-Sm (=)	
÷.	$D = B + 2 \log\left(\frac{\Psi}{h} + \frac{\Psi}{h}\right)$	
	: D _{MAX} = 13+2 = 15	
	$l = \left(\frac{\pi}{2} + \frac{j\pi}{2}\right)_{20} \oplus$	
	(m, m = 0 + 2mm) (t+1=0 + 0	n2
	$\begin{pmatrix} \underline{\mathbb{T}}_{0}^{+} + \underline{\mathbb{T}}_{0}^{-} = 0 \pm 2m \\ \underline{\mathbb{T}}_{0}^{+} + \underline{\mathbb{T}}_{0}^{-} = 2\pi + 2m \\ \underline{\mathbb{T}}_{0}^{+} + 2$	an)
	C.S. + B Meantry	
	$t = -1 \pm 12n$ $t = -1 \pm 12n$ $t = -1 \pm 12n$ t = -12n t = -12n	∞ //
0.0		°°//
9	$12 = 13 + 2 \log(\frac{\pi E}{6} + \frac{\pi}{6})$ ( $H_{WAG}$	
	$-\frac{1}{2} = \log(\frac{\pi t}{6} + \frac{\pi t}{4})$ $\left(\begin{array}{c} t+1 = 4 \pm 12n \\ t+1 = 8 \pm 12n \end{array}\right)$ t = 1	= { 25
		27
		17
	(世+晋士毎+2017) (七=7±124 1600	100
	4=91,23	:00 //
	[9]	00//

Question 98 (****)

$$nP = \frac{8}{17}$$
 and  $\tan Q = \frac{4}{3}$ .

If P is obtuse and Q is reflex, show that

$$\cos(P-Q)=\frac{13}{85}.$$

202.81

**Question 99** (****)

Prove the validity of each of the following trigonometric identities.

- **a)**  $2-2\tan x \frac{2\tan x}{\tan 2x} = (1-\tan x)^2$ .
- **b**)  $\frac{1-\cos x}{1+\cos x} \equiv \cot^2\left(\frac{x}{2}\right).$



1.

proof

à)	Uffs= 2-2tours - 2tours
	$= 2 - 2 \tan 2 - \frac{2 \tan 2}{1 - \tan^2} = 2 - 2 \tan 2 - (1 - \tan^2)$
	= 1-2tay2 + tay2 = (1-tay2) = 245
6)	$U_{1}^{LS} = \frac{1+\zeta_{2N}}{1-\zeta_{2N}} = \frac{1+\zeta_{2N}}{1-\zeta_{2N}} = \frac{2\zeta_{2N}}{(\zeta_{2N}-\zeta_{2N})} = \frac{2\zeta_{2N}}{2\zeta_{2N}} = C_{1}^{LZ} = RH_{1}^{LZ}$
	(624 = 2624 - 1) (624 = 2624 - 1) (654 = 2624 - 1) (654 = 2624 - 1) (654 = 2644 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 - 25444 - 2544 - 2544 - 2544 - 2544 - 2544 - 2544 -

Question 100 (****)

 $\cos\left(x+\frac{\pi}{6}\right) = 4\cos\left(x-\frac{\pi}{6}\right).$ 

Show by using an appropriate compound angle identity that

 $\tan x = -\frac{3}{5}\sqrt{3} \; .$ 

· (否) = 4(cs. (正-否)
est-smasmy= = 40000 cot+ 40102 sont
a - 25ma = 2/3/052 + 25ma
a - sava = 4x52000 + 451002
BLOSE = SSIM2 (INVIE BY GS2)

proof

Question 101 (****)

Show clearly that ...

a) ...  $\cot A \equiv \frac{\sin(A+B) - \sin(A-B)}{\cos(A-B) - \cos(A+B)}$ 

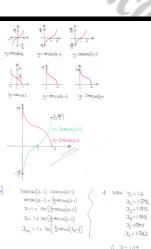
**b**) ...  $\cot 75^\circ = 2 - \sqrt{3}$ , (use part (a) with suitable values of A and B)

proof

1.

 $\begin{array}{rcl} \frac{g_{AA}g_{AA}}{g_{AA}} = \frac{g_{AA}g_{AA}g_{AA}}{g_{AA}} & \frac{g_{AA}g_{AA}g_{AA}}{g_{AA}} & \frac{g_{AA}g_{AA}g_{AA}}{g_{AA}} & \frac{g_{AA}g_{AA}}{g_{AA}} & \frac{g_{AA}g_{AA}}{g$ 

#### Question 102 (****)


The curves  $C_1$  and  $C_2$  have respective equations

 $y_1 = 3 \arcsin(x-1)$  and  $y_1 = 2 \arccos(x-1)$ .

**a**) Sketch in the same diagram the graph of  $C_1$  and the graph of  $C_2$ .

The sketch must include the coordinates of any points where the graphs of  $C_1$  and  $C_2$  meet the coordinate axes as well as the coordinates of the endpoints of the curves.

**b**) Use a suitable iteration formula of the form  $x_{n+1} = f(x_n)$  with  $x_1 = 1.6$  to find the *x* coordinate of the point of intersection between the graph of  $C_1$  and the graph of  $C_2$ .



*x* ≈ 1.59

(****) Question 103

It is given that

$$\sin P + \sin Q \equiv 2\sin\left(\frac{P+Q}{2}\right)\cos\left(\frac{P-Q}{2}\right).$$

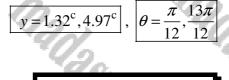
- a) Prove the validity of the above trigonometric identity by using the compound angle identities for  $\sin(A+B)$  and  $\sin(A-B)$ .
- **b**) Hence, or otherwise, solve the trigonometric equation

 $\sin 7x + \sin x = 0, \ 0 \le x < \pi,$ 

giving the answers in terms of  $\pi$ .

$\boxed{\qquad}, \ x=0, \ \frac{\pi}{6},$	$\frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{6}$
(a) STRETING FROM THE GOMPOOND ANDRE LIDINITIES $Sm(A+B) = SmAcceB + cochamB? \frac{1}{400006}Sm(A+B) = SmAcceB - cochamB? \frac{1}{400006}\Rightarrow Sm(A+B) + Sm(A-B) = 2SmAcceBNow Let WITHE LASS OF THE BODE EXPERSIONA+B = P P = A+BA = B = Q Q = A = B$	$\begin{array}{cccc} Sn(b_{1}=0 & & & & & & \\ OCSMO=0 & & & & & & & \\ OCSMO=0 & & & & & & & \\ (\frac{d_{2}}{d_{2}}=0\pm 2nT & & & & & \\ (\frac{d_{2}}{d_{2}}=0\pm 2nT & & & & & \\ & & & & & & & \\ & & & & & $
$\frac{ASENCY THE ABOVE }{\Rightarrow 2A = P+Q}$ $\Rightarrow 2A = P+Q = 2B = P-Q$ $\Rightarrow A = P+Q = B = \frac{P-Q}{2}$ $\frac{P+Q}{P+Q} = \frac{P+Q}{2} = \frac{P+Q}{2}$ $\frac{P+Q}{P+Q} = \frac{P+Q}{2} = \frac{P+Q}{2}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ $
$Sin(A+ty) + sin(A+z) - 2in(A+ty)(2x)$ $Sin(P + Sin(Q = 2zin(\frac{P+q}{2})) ox(\frac{P-q}{2}) + 44enedo$ $(A)n(e Phot (A) with P = 7a e Q = z)$ $\Rightarrow Sin(2e + Sin(z = 0))$ $\Rightarrow 2sin(2e + 2in(\frac{2e+z}{2})) ox(\frac{1e+z}{2}) = 0$ $\Rightarrow 2sin(4z) ox((3z) = 0)$	$ \begin{array}{c} \rightarrow  \mathrm{SN}[\Sigma_{1}=-\mathrm{SN}\Sigma_{1}] \\ \rightarrow  \mathrm{SN}[\Sigma_{2}=\mathrm{SN}[\tau_{-2}] \\ \rightarrow  \left(\begin{array}{c} 7\alpha z -\alpha \pm 2\pi \pi \\ 7\alpha z -\pi -(\alpha) \pm 2\pi \pi \\ 7\alpha z -\pi -(\alpha) \pm 2\pi \pi \\ \rightarrow  \left(\begin{array}{c} 6\alpha z -\alpha \pm 2\pi \pi \\ \alpha z -\alpha \pm 2\pi \pi \\ \alpha z -\alpha \pm 2\pi \\ \alpha z -\alpha \pm 2\pi \\ \alpha z -\alpha \pm 2\pi \\ \end{array}\right) $
ettlelen un or case	WHAT YITLES THE STAT. SAUTURE AS DEDRE

#### Question 104 (****)


K.C.

Solve each of the following trigonometric equations.

i.  $\frac{5 + \tan^2 y}{\sec y} = 9 - \sec y$ ,  $0 \le y < 2\pi$ ,  $y \ne \frac{\pi}{2}, \frac{3\pi}{2}$ .

**ii.** 
$$\sqrt{2}\cos\left(\theta + \frac{\pi}{4}\right) = \sin\left(\theta + \frac{\pi}{6}\right), \quad 0 \le \theta < 2\pi$$

Inada



·C.

G

	$\frac{(1)}{S+\tan^2 u} = 9-\sin u$	$(\Xi_{+\theta})_{\theta \in \Xi} = (\Theta_{+} = \Theta_{0})_{\theta \in \Xi}$
	= S+tanty = 9sey-secy	→ NZoollean Forder Soular + 40000 F
	- 5 - Carl - 1969-9629	= cose - site = from + to cose
	⇒ 5+(82y-1)=9200y-sizy	$\Rightarrow 2\cos\theta - 2\sin\theta = \sqrt{3}\sin\theta + \cos\theta$
	=> 5+ story -1 = 9 story - story	Ome (EVHS)= CEOV 🥽
	> 25ely-9secy+4=0	$\Rightarrow 1 = (2+45) \frac{aub}{cosb}$
	=) (2secy - 1) (secy - 4)=0	⇒ 1 = (2+NS) tamθ
	⇒ seg = <4	
		anton (2-NS) = II-
6	=) (casy = 4</th <th>· D= 1/2 ± MT = 4=0(1/2))</th>	· D= 1/2 ± MT = 4=0(1/2))
۰.	arcues ( 1) = 1.32 C	• 12 - • • • • • • • • • • • •
đ	( y=1.32c ± 2mp y=4.97c ± 2mm 4=90%.	: 0= TE 1 12
1	y= 132', 4.970	

#### Question 105 (****)

Y.G.B.

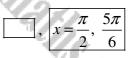
Prove the validity of each of the following trigonometric identities.

- a)  $(\cos x + \sin x)(\csc x \sec x) \equiv 2\cot 2x$ .
- **b**)  $\frac{\cos x}{1-\sin x} + \frac{1-\sin x}{\cos x} \equiv \sec x$ .

#### proof

- (a)  $\mu_{s} = (\omega_{a} + sm_{s})(\omega_{a}\omega_{a} s\omega_{a}) = \omega_{a}(\omega_{a}\omega_{a} \omega_{a}\omega_{a}) + sm_{a}(\omega_{a} sm_{a})$   $= \omega_{a} \frac{1}{\omega_{a}} - (+ + -sm_{a}) \frac{1}{\omega_{a}} - \frac{sm_{a}}{\omega_{a}} - \frac{sm_{a}}{\omega_{a}} - \frac{sm_{a}}{sm_{a}} - \frac{sm_{a}}{sm_{a}}$  $= \frac{\omega_{a}\omega_{a}}{sm_{a}} - \frac{s\omega_{a}\omega_{a}}{sm_{a}} - \frac{s\omega_{a}\omega_{a}}{sm_{a}} - \frac{s\omega_{a}\omega_{a}}{sm_{a}} + \frac{s\omega_{a}\omega_{a}}{sm_{a}} - \frac{s\omega_{a}\omega_{a}}{sm_{a}}$
- $\begin{array}{l} (\underline{b}) \quad |\underline{b}|_{S} = \underbrace{\operatorname{Gost}}_{1 \operatorname{Sup}_{2}} + \underbrace{1 \operatorname{Sup}_{2}}_{0 + \operatorname{Sup}_{2}} = \underbrace{\operatorname{Gost}}_{(1 \operatorname{Sup}_{2}) \operatorname{Gost}} + \underbrace{\operatorname{Gost}}_{(1 \operatorname{Sup}_{2}) \operatorname{Gost}} = \underbrace{\operatorname{Gost}}_{(1 \operatorname{Sup}_{2}) \operatorname{Gost}} + \underbrace{\operatorname{Gost}}_{(1 \operatorname{Sup}_{2}) \operatorname{Gost}} = \underbrace{\operatorname{Gost}}_{2 + \operatorname{Gost}} = \operatorname{Gost}_{2 + \operatorname{Gost}} = \operatorname{Gost}_{2$

Question 106 (****)


It is given that

K.C.B.

- $\cos(A+B) + \cos(A-B) \equiv 2\cos A\cos B.$
- a) Prove the validity of the above trigonometric identity.
- **b**) Hence, or otherwise, solve the trigonometric equation

 $2\cos\left(x+\frac{\pi}{6}\right) = \sec\left(x+\frac{\pi}{2}\right), \ 0 \le x \le \pi,$ 

giving the answers in terms of  $\pi$ .



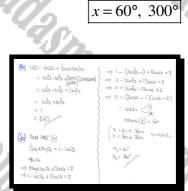
Com

G

I.C.p

E.

(9) LOS (A+B) + LOS (A-B) = USALORB-SINASHB + LOSALOB + SINAKENB
= Reachcoss
$\therefore \cos(A+B) + \cos(A-B) \equiv 2 \tan(\cos B)$
(b) $2\log(\pi + \frac{\pi}{6}) = Sec(\pi + \frac{\pi}{2})$ (increase) $\int \cos(\pi + \frac{\pi}{6}) = \frac{\pi}{6}$
$\implies 2\log(n+\overline{n}) = \frac{1}{\log(n+\overline{n})} \left\{ \begin{array}{c} 2n+\overline{n} = \overline{1} \pm 2nn \\ 2n+\overline{n} = \overline{1} \pm 2nn \end{array} \right\}$
$\rightarrow 2\cos(\alpha_{+}\pi)\cos(\alpha_{+}\pi)$ $()$ $(\alpha_{+}\pi)$ $()$ $(\alpha_{+}\pi)$ $()$ $(\alpha_{+}\pi)$ $()$ $()$ $(\alpha_{+}\pi)$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $($
$\begin{cases} 2\lambda = -\frac{\pi}{3} \pm 2n\eta \\ 2\lambda = -\pi \pm 2n\eta \\ 2\lambda = -\pi \pm 2n\eta \end{cases}$
⇒ Ga(2a+晋+至) + Ga(晋-至)=1 { (2= -晋业町
$\Rightarrow \cos(2\lambda + \mathcal{F}) + \cos(\mathcal{F}) = 1$ $\begin{cases} \lambda = \mathcal{F} \pm m \end{cases}$
⇒ cos(22+3)+之=1 } 345 至,
$ \Rightarrow \omega_{2}(2t+3) + 2 = 1 $ $ \Rightarrow \omega_{3}(2t+3) = 1 $ $ \Rightarrow \omega_{3}(2t+3) = 1 $ $ \Rightarrow \chi_{1} = 3 $ $ \Rightarrow \chi_{2} = 3 $


m

Question 107 (****)

It is given that

- $\cos 2x + \tan x \sin 2x \equiv 1, \quad x \neq 90^{\circ}(n+1), n \in \mathbb{Z}.$
- a) Prove the validity of the above trigonometric identity.
- **b**) Use the above result to solve the trigonometric equation

 $\tan x \sin 2x + 13 \cos x = 8$ ,  $0 \le x < 360^\circ$ .



G

nana

Question 108 (****)

 $3\cos^2 x - \cos x = 1.99375$ .

It is given that the above trigonometric equation has a solution that is numerically small.

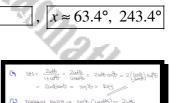
Use small angle approximations to find this solution.

No credit will be given for standard solution methods.

	$\qquad \qquad $
2 ¹⁹	0.
Mental A	METHO B
{3652622 = 1.99575}	36052 - 6052 = 1.99375 56052 - 6052 - 1.98275 = 0
WING THE DOUBLE HART RELIGE 20 = 2620-1	B/ THE QUADRATIC FORMULA
25(44) = 220) - (220) + ±) € (-	$\frac{1}{27209(-)\times Z \times P - 1} \sqrt{\frac{\pm 1}{2}} = C 20^{-1}$
$\implies 3 + 3\cos 2 - 2\cos 2 = 1.94575 \times 2$	$(0 \not\in \mathcal{J} = \frac{Q}{1 \neq \sqrt{27 \cdot 452_1}}$
USANG 4 GUNDRATTIC -APPENNIATION) FOR LOSSI & LOSSI	had white + quitepartic Approximation for and
$ \begin{aligned} \omega_{5,2} &\simeq 1 - \frac{\alpha_{2}^{2}}{2} \\ (\omega_{5,2} &\simeq 1 - \frac{(\alpha_{2})^{2}}{2} \\ &\approx 1 - \frac{(\alpha_{2})^{2}}{2} \\ &\approx 1 - \frac{(\alpha_{2})^{2}}{2} \\ \end{aligned} $	$-\frac{3}{35} = -1 + \frac{1}{7 + \sqrt{2\pi 452}}$ $1 - \frac{5}{35} = \frac{1}{7 + \sqrt{2\pi 452}}$
frace we obtains	$n^2 - 2\left[1 - \frac{1 \pm \sqrt{24 \cdot 925^2}}{6}\right]$
$ \Rightarrow 3 + 3(1-2x^2) - 2(1-\frac{x^2}{2x}) = 1.41375 \times 2 $ $ \Rightarrow 3 + 3 - 6x^2 - 2 + x^2 = 1.41375 \times 2 $	$\mathfrak{L}^{2}$ $\sim$ $\begin{array}{c} \mathfrak{o} \cdot \mathfrak{o} \circ \mathfrak{o} \mathfrak{s} \mathfrak{o} \mathfrak{l} \mathfrak{s} \mathfrak{l} \mathfrak{s} \mathfrak{s} \mathfrak{s} \mathfrak{o} \mathfrak{s} \mathfrak{s} \mathfrak{l} \mathfrak{s} \mathfrak{s} \mathfrak{s} \mathfrak{s} \mathfrak{s} \mathfrak{s} \mathfrak{s} s$
$\rightarrow$ 4 -2x12 = 2x2 $\rightarrow$ 5x2 = 0.0125	α = <u> - </u> - - - - - - - - - -
$\Rightarrow \lambda^{2} = 0.0025$ $\Rightarrow \lambda = \pm 0.05$	[x +49 to BL SWALLY]
BATH OPT OK & WSOL IS OWN	

6

100


Question 109 (****)

It is given that

 $\frac{2\cot\theta}{1+\cot^2\theta} \equiv \sin 2\theta.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Use the above result to solve the trigonometric equation

 $4\cot^2\theta + 1 = 2\sin 2\theta (1 + \cot^2\theta), \quad 0 \le \theta < 360^\circ.$ 



**Question 110** (****)

If  $\sin(\theta + \alpha) = 2\sin\theta$ , show clearly that

 $\frac{\sin\alpha}{2-\cos\alpha}$  $\tan \theta =$ 

proof

6

∴ Θ₁ = 63.4° Θ₂ = 243.4°

#### Question 111 (****)

Given that the exact value of  $\tan 20^\circ = t$ , show that

12

$\tan 10^\circ = -$	$1 + \sqrt{t^2 + 1}$	
	h. +	•

	, proof
	4 h
PROLED AS POUNTS	
Lam 20° = Lay (2×10°) =	
t = 2tom 10° 1 - tof 10°	$\frac{1}{1-\frac{2\tan\theta}{1-\frac{1}{2}}}$
$t = \frac{2a}{1-a^2}$	
where $x = taylo°$	
READERANSING	
⇒ t(1-22)= 22	
$\Rightarrow$ t-ti ² = 22	
$= 0 = tx^2 + 2x - t$	
$\implies 3^2 + \frac{2}{t} - 1 = 0$	
BY THE QUADRATIC FORMULA OR BY	/ CAMPLETING THE SPORKE
$\rightarrow$ $\left(2+\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 - 1 = 0$	1000 -1- J+2+1 <0
$\Rightarrow \left(2 + \frac{1}{4}\right)^2 = 1 + \frac{1}{42}$	AND I = by 10°>0
$\Rightarrow (2 + \frac{1}{2})^2 = \frac{\frac{1}{2} + 1}{\frac{1}{2}}$	
$\rightarrow$ $3+\frac{1}{2} = \pm \sqrt{\frac{1}{1+1}}$	$\therefore 2 = \frac{-1 + \sqrt{t^2 + 1}}{t}$
$\rightarrow \alpha = -\frac{1}{t} \pm \frac{\sqrt{t^2 + 1}}{t}$	$\therefore \frac{1}{4} \ln \left  0^{\circ} = \frac{-1 + \sqrt{\frac{1}{2}}}{\frac{1}{2}} \right $
-) 2 = -1 ± V++1	A 210-010

Question 112 (****)

2

Use trigonometric algebra to solve the equation

 $\sin\left[\arcsin\frac{1}{4} + \arccos x\right] = 1.$ 



⇒ sm(arcsm≠+arcccs2) = 1

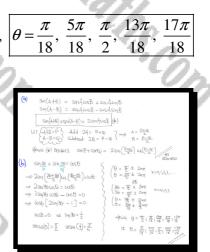
 $x = \frac{1}{4}$ 

0971

G

- $\Rightarrow \operatorname{arcsn}\left[\operatorname{sn}(\operatorname{arcsn}_{\pm}+\operatorname{arcsc}_{2})\right] = \operatorname{arcsn}\left[\pm 2\operatorname{nn}\left(\operatorname{arcsn}_{\pm}+\operatorname{arcsc}_{2}\right)\right] = \operatorname{arcsn}\left[\pm 2\operatorname{nn}\left(\operatorname{arcsn}_{\pm}+\operatorname{arcsc}_{2}\right)\right]$
- $\Rightarrow \operatorname{arcsm}_{\pm}^{\pm} + \operatorname{arcsos}_{2} = \pm \pm 2\pi\pi$  $\Rightarrow \operatorname{arcssn}_{\pm}^{\pm} = \pm \operatorname{arcssn}_{\pm}^{\pm} \pm 2\pi\pi$
- ⇒ ancusa = II ancon⊥
- ±τ cos(∓-φ) = .
- $\Rightarrow 2 = Sin(arcsin \ddagger)$

Question 113 (****)


It is given that

$$\sin P + \sin Q \equiv 2\sin\left(\frac{P+Q}{2}\right)\cos\left(\frac{P-Q}{2}\right).$$

- a) Prove the validity of the above trigonometric identity, by using the compound angle identities for sin(A+B) and sin(A-B).
- **b**) Hence, or otherwise, solve the trigonometric equation

 $\sin 4\theta + \sin 2\theta = \cos \theta \,, \ 0 \le \theta < \pi \,,$ 

giving the answers in terms of  $\pi$ .



1.+

Question 114 (****)

$$\sin\theta = \frac{24}{25}$$
 and  $\cos\varphi = \frac{15}{17}$ .

If  $\theta$  is obtuse and  $\varphi$  is reflex, show clearly that

$$\sec(\theta+\varphi)=\frac{425}{87}.$$

Question 115 (****)

Solve each of the following trigonometric equations.

i.  $\frac{\sec^2 x - 2}{\tan x} = \frac{\tan x - 1}{2}, \quad 0 \le x < 2\pi, \ x \ne \frac{\pi}{2}, \frac{3\pi}{2}.$ 

ii.  $2\cos 2\theta = 4\cos \theta - 3$ ,  $0 \le \theta < 360^\circ$ .

,  $x = 0.785^{\circ}$ ,  $2.03^{\circ}$ ,  $3.93^{\circ}$ ,  $5.18^{\circ}$ ,  $\theta = 60^{\circ}$ ,  $300^{\circ}$ 

# Created by T. Madas

6

 $4 \int_{1}^{2d} \frac{3}{T} \int_{1}^{T} \frac{3}{T} \int_{1}^{2d} \frac{4}{T} \int_{1}^{2d} \frac{1}{T} \int_{1}^{2d}$ 

proof

*)

11303.81

Question 116 (****)

 $x = \arccos\left(-\frac{5}{13}\right).$ 

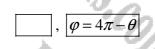
Determine the exact value of  $\csc 2x$ .



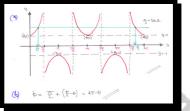


Question 117 (****)

#### $f(x) = \sec x, \ x \in \mathbb{R}, \ 0 \le x \le 4\pi.$


a) Sketch the graph of f(x), showing clearly the coordinates of any stationary points and equations of asymptotes.

It is now given that


 $\sec\theta = \sec\varphi$ ,

where  $0 < \theta < \frac{\pi}{2}$  and  $\frac{7\pi}{2} < \phi < 4\pi$ .

**b**) Express  $\varphi$  in terms of  $\theta$ .



1.+



#### (****) **Question 118**

If  $\cos x = \frac{1}{3}$ , show by detailed workings that

Smarns.com i.v. T.X.C.R. III.2135112115.COM T.X.C.R. III.2135112115.COM T.X.C. IN THE MARKEN AND THE TSHAILS COM I. Y. C.P. MARASHAILS COM I.Y. C.P. MARASHAILS COM I.Y. C.P. MARASHAILS COM I.Y. C.P. MARASAN,

1.1.6.1

Question 119 (****)

$$4\sin\theta + \cos\theta = 2$$
,  $0 \le \theta < 360^\circ$ .

a) Show that the above trigonometric equation can be written as

$$16\sin^2\theta = 4 - 4\cos\theta + \cos^2\theta.$$

**b**) Show further that

 $\cos\theta = \frac{2\pm 4\sqrt{13}}{17}$ 

c) Hence, or otherwise, find the two values of  $\theta$  that satisfy the equation

 $4\sin\theta + \cos\theta = 2, \ 0 \le \theta < 360^\circ.$ 

#### (a) 4906 + 1006 = 2 $\Rightarrow 45006 = 2 - 1006$ $\Rightarrow 15006 = (2 - 1006)^2$ $\Rightarrow 15006 - 1006 + 1006 + 1006$ $\Rightarrow 16 - 1006 - 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006 + 1006$

*θ* ≈15.0°, 136.9°

Ĉ.Ŗ

G

100

12.sm

Question 120 (****)

It is given that

F.G.B.

I.G.B.

COM

 $\frac{\sin 2x + \sin x}{\cos 2x + \cos x + 1} \equiv \tan x \,.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence, or otherwise, solve for  $0 \le x < 360^{\circ}$

 $\frac{\sin 2x + \sin x}{\cos 2x + \cos x + 1} = 3\cot x \,.$ 

F.G.B.

2017



he,

I.C.p

COM

Mada

G

nn,

Question 121 (****)

It is given that

$$\sin P + \sin Q \equiv 2\sin\left(\frac{P+Q}{2}\right)\cos\left(\frac{P-Q}{2}\right)$$

a) Prove the validity of the above trigonometric identity, by using the compound angle identities for sin(A+B) and sin(A-B).

**b**) Hence, or otherwise, solve the trigonometric equation

 $\sin\theta - \sin 3\theta + \sin 5\theta = 0, \quad 0 \le \theta \le 180^\circ.$ 

,	$\theta = 0^{\circ},$	30°,	60°, 120°,	150°, 180°
_				1 h

(a) Sim (4+B) = Sim 4 cos B + cos A sim B } by addition Sim (A-B) = Sim 4 cos B - cos A sim B } by addition
Sm(A+B)+Sm(A-B) = 2smAcosB (He)
Let $A+B=P$ $A-B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $B=P-\varphi$ $B=P-\varphi$ $B=P-\varphi$ $B=P-\varphi$ $B=P-\varphi$ $B=P-\varphi$ $B=P-\varphi$ $B=P-\varphi$ $B=P-\varphi$ $B=P-\varphi$ $B=P-\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$ $A=B=\varphi$
HINCE (R) BELEMATE A = HERE Z B = P-4P Z
SMP HEINER = 2 SH (PLQ) COS (P-Q) +5 REPURIO
(b) SMB - SM3B + SM3B = 0
$\Rightarrow$ SMB + smSP $\rightarrow$ sm30 = 0
$\Rightarrow 2 \sin\left(\frac{6+50}{2}\right) \cos\left(\frac{6-50}{2}\right) - \sin 30 = 0$
$\Rightarrow 2 \operatorname{SM} 3\Theta \cos(-2\theta) - \operatorname{SM} 3\theta = 0 \qquad \text{NOTF} \cos(-4) \equiv \cos(-4)$ $\Rightarrow \operatorname{SM} 3\theta \left[ 2\cos_2\theta - 1 \right] = 0$
• c= 952m2 • Q= 95M2 •
$\alpha_{ICRIV}(0) = 0$ $\alpha_{ICROV}(\frac{1}{2}) = 6a_0$
$\begin{pmatrix} 3\theta \in \mathcal{O} \pm 3604 & u = a_1/r_\beta \\ 3\theta \Rightarrow (B_0 \pm 3604 & \\ 2\theta \equiv 3605 + 3604 & \\ \end{pmatrix}$ $\begin{pmatrix} 2\theta \in c_0 \pm 3604 & u = a_1/r_\beta \\ 2\theta \equiv 3605 \pm 3604 & \\ 2\theta \equiv 3605 \pm 3604 & \\ \end{pmatrix}$
$\begin{pmatrix} \theta = 0 \pm 1204 \\ \theta = 0 \pm 1204 \end{pmatrix}$ $\begin{pmatrix} \theta = 0 \pm 1804 \\ \theta = 1004 \\ \theta = 1004 \end{pmatrix}$
$\rightarrow \ll$
$\Rightarrow \Theta = q_1 so_1 cs_1 so_2 so_1 so_1 so_1 \cdots$
- t-algol (201 (301 (30

1+

Question 122 (****)

It is given that

 $\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} \equiv \csc x \,.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence, or otherwise, solve for  $0 \le x < 180^{\circ}$

 $\frac{\cos 6x}{\sin 3x} + \frac{\sin 6x}{\cos 3x} = 2.$ 

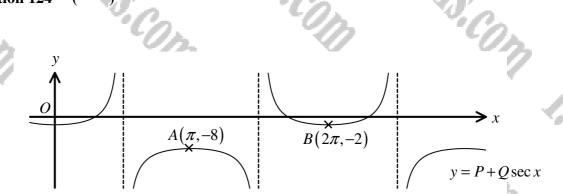
[	<i>x</i> =	:10°	°, 50	0°,	130	)°,	170	0
		X	ų,	9	K,	•		
(9)	LL <del>]</del> S=	+ <u>scro)</u> Suiz	oer =	<u>(0024</u> 1	scyle + seo	sint a	<u>(bs(21-2)</u>	
	=	600	= 1 =				SIMUCOS	

0 ± 1204

#### Question 123 (****)

Solve the following trigonometric equation

 $\sin 4y = \sin 2y, \quad 0 \le y < 180^\circ.$ 


# $y = 0^{\circ}, 30^{\circ}, 90^{\circ}, 150^{\circ}$

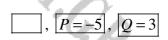
ット

1.+

51044 = 51124 ==514(2x2) = 5124 =2514(2x2) = 5124 ==2514(2402) = 5124 ==25424 (02) = 5124 ==55424 (2002) = 1 = 0	$\begin{array}{c} y_{1} \eta_{2}^{2} y_{2} = 0 \\ \text{ord}(y_{1}(y_{1}) = 0 \\ \text{ord}(y_{1}(y_{1}) = 0 \\ (y_{2} = y_{1} \otimes y_{2} \otimes y_{2} \otimes y_{1} \\ (y_{3} = y_{1} \otimes y_{2} \otimes y_{2} \otimes y_{1} \\ (y_{3} = y_{1} \otimes y_{1} \otimes y_{2} \otimes y_{2} \otimes y_{1} \otimes y_{1} \\ (y_{3} = y_{1} \otimes y_{1} \otimes y_{2} \\ (y_{3} = y_{1} \otimes y_{2} \\ (y_{3} = y_{1} \otimes y_{2} \\ (y_{3} = y_{3} \otimes $	$\begin{array}{c} c_{0} \leq y_{1} \leq y_{2} \leq$
SM4y = SM2y ⇒(4y = 2g ± 360n u: 4y = (180-2g)±360n ≠ (2g = 0 ± 360n ≠ (2g = 180 ± 360n	=011,23 ··· → (y = 0) y = 0)	± 1804 ± 604 301°901°150°






The figure above shows part of the curve with equation

$$y = P + Q \sec x \,,$$

where P and Q are non zero constants.

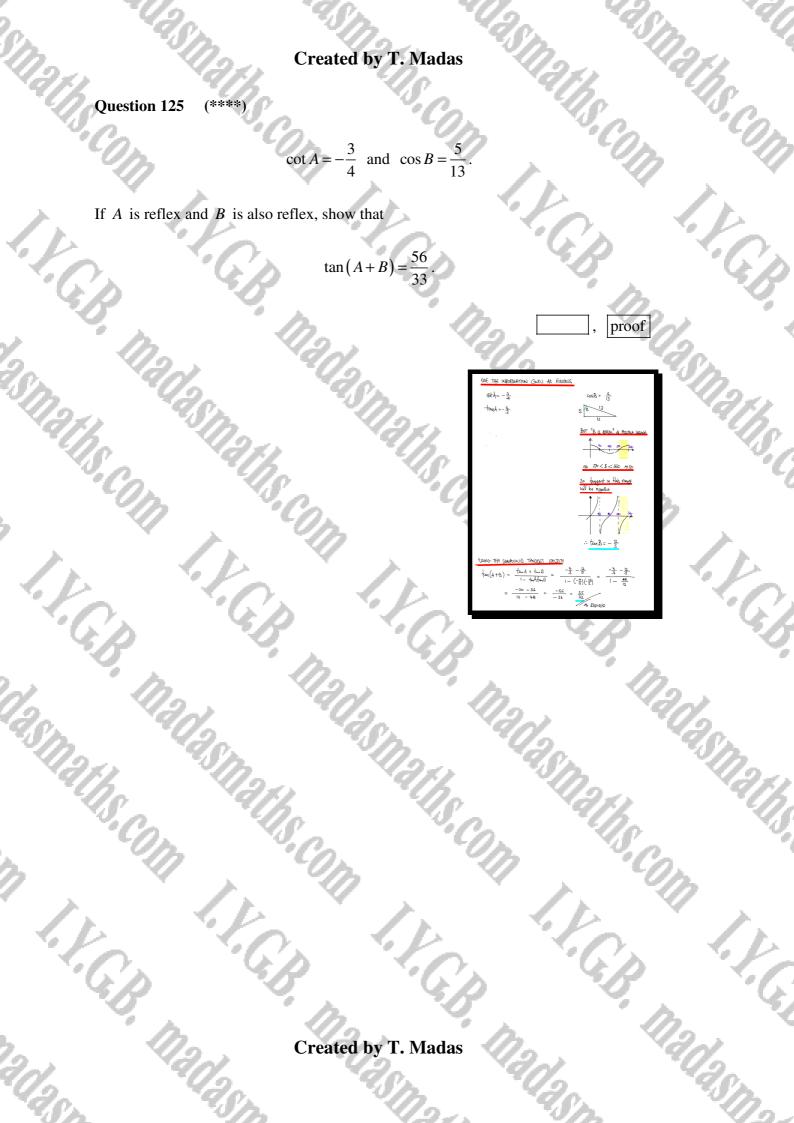
The curve has turning points at  $A(\pi, -8)$  and  $B(2\pi, -2)$ .

Determine the value of P and the value of Q.



#### y= P+Qseca

 $\begin{array}{c} (\pi_1 - 8) \Rightarrow -8 = 1 + \varphi_{\text{sec}} \pi \\ (2\pi_1 - 2) \Rightarrow -2 = P + \varphi_{\text{sec}} \pi \end{array} \right\} \xrightarrow{-8} \begin{array}{c} -8 = P - \varphi \\ = -2 = P + \varphi \end{array} \right\}$ 


 $40D \Rightarrow 2P = -10$  SUBTRACT -6 = -2pP = -5 Q = 3

-ALITERNAMIN

- Secon exist between -1 a 1, 10 4 GAP" OF 2 • THU RAPPING A GOP OF & CTOM -2 to -x), SO IT W
- MAL KUMPE-MIS & GRE OF & CLEW -2 B. -8), SO IT WU HAVE SEEN STREETED BY FREETE OF 3 IN THE Y DIRECTION
   BUT THIS KIMPE IT SHOULD HAVE A GAP BITUREN -3 & 3
  - TITHER A GH BECOMEN -S & SOUTH SOUTH STATE

5

#### : y=-s+3sea



nn

proof

I.C.B

#### (****) **Question 126**

2017

I.V.G.p

Prove the validity of each of the following trigonometric identities.

12/2

200

2017

(a) 445 =

2017

Gotta - Costa - 1 =

(12-10503-1-210500-1)  $= \frac{2(\log \omega - 1)}{\omega t_{1}(\log \omega - 1)} = \frac{2}{\omega t_{1}} = 2^{d}$ 

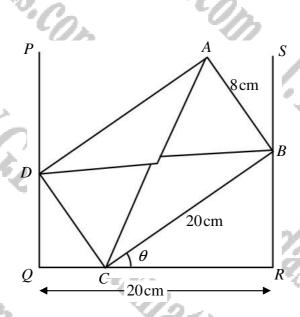
10+2-6

I.C.B.

Madasm.

l.y.C.

haths.com


I.V.C.B. Madasm

 $\frac{\partial S_{200}}{\partial m} = \frac{\partial S_{200}}{\partial m} = \frac{\partial S_{200}}{\partial m} = \frac{\partial S_{200}}{\partial m} = \frac{\partial S_{200}}{\partial m}$ 

- $\frac{\csc x 1}{=} 2 \tan x \, .$  $\cot x$ a)  $\csc x - 1$  $\cot x$
- $\frac{\sin 3\theta}{\cos \theta} + \frac{\cos 3\theta}{\sin \theta} \equiv 2 \cot 2\theta \,.$ b)

Com I. V.C.J

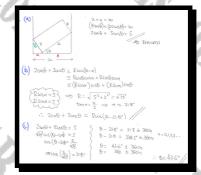
#### Question 127 (****)



The figure above shows the cross section of a letter inside a filling slot.

The letter ABCD is modelled as a rectangle with |AB| = 8 cm and |BC| = 20 cm.

The width of the filling slot QR is also 20 cm and the angle *BCR* is  $\theta$ .


a) Show clearly that

 $5\cos\theta + 2\sin\theta = 5$ .

**b**) Express  $5\cos\theta + 2\sin\theta$  in the form  $R\cos(\theta - \alpha)$ , R > 0,  $0 < a < 90^{\circ}$ .

c) Hence, determine the value of  $\theta$ .

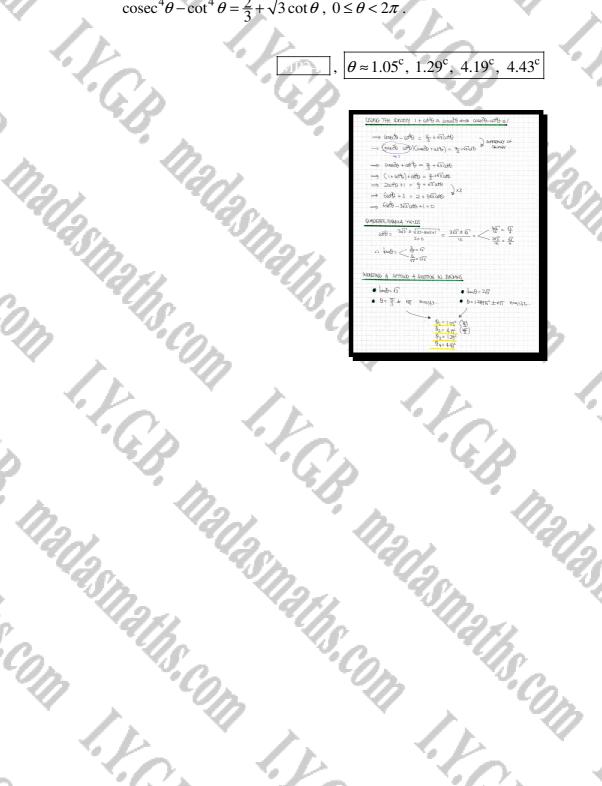
],  $5\cos\theta + 2\sin\theta = \sqrt{29}\cos(\theta - 21.8^\circ)$ ,  $\theta \approx 43.6^\circ$ 



6

#### (****) **Question 128**

I.F.G.B.


asmaths.com

Smalls Com I.K.

I.V.G.B.

Solve the following trigonometric equation

 $\csc^4\theta - \cot^4\theta = \frac{2}{3} + \sqrt{3}\cot\theta , \ 0 \le \theta < 2\pi .$ 

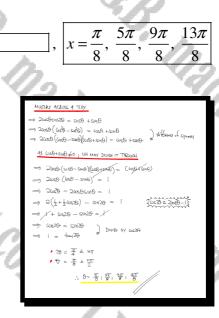


maths.com

i.G.s.

1.4

Madasma


I.V.C.B. Madasm

ins.com

Question 129 (****)

 $\frac{\cos\theta\cos2\theta}{\cos\theta+\sin\theta} = \frac{1}{2}, \ 0 \le x < 2\pi.$ 

Given that  $\cos\theta + \sin\theta \neq 0$ , find the solutions of the above trigonometric equation, giving the answers in radians in terms of  $\pi$ .



Question 130 (****)

Solve in degrees the following trigonometric equation

 $\tan 2x + \tan x = 0, \ 0 \le x < 360.$ 

 $x = 0^{\circ}, 60^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, 300^{\circ}$ 

	and allow the second
$\begin{array}{c} b_{1}2_{2}+b_{1}a_{2}=0\\ \Rightarrow \frac{3t_{0}a_{1}}{1-t_{0}t_{1}}+b_{1}a_{2}=0\\ \Rightarrow \frac{3t_{1}-t_{0}t_{1}}{1-t_{0}^{2}}+T=0  (T=b_{1}t_{1})\\ \Rightarrow 3T+T(I)-t^{3}=0\\ \Rightarrow 3T+T-T^{3}=0\\ \Rightarrow 3T-T^{2}=0\\ \Rightarrow T(3-T^{2})=0 \end{array}$	$\begin{array}{l} \underbrace{\text{ITRNATUL}}_{\text{targat}} \\ & \text{targat} + \frac{1}{2} \text{targat} = 0 \\ \Rightarrow & \text{targat} = -\frac{1}{2} \text{targat} \\ \Rightarrow & \text{targat} = \frac{1}{2} \text{targat} \\ \Rightarrow & \left(2x = -x \pm \frac{1}{2} \text{Cost}\right) \\ \Rightarrow & \left(2x = -x \pm \frac{1}{2} \text{Cost}\right) \\ \Rightarrow & \left(3x = 0 \pm \frac{1}{2} \text{Cost}\right) \\ \Rightarrow & \left(3x = 0 \pm \frac{1}{2} \text{Cost}\right) \\ \Rightarrow & \left(x = 0 \pm \frac{1}{2} \text{Cost}\right) \end{array}$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$3^{2} = 300$ $3^{2} = 300$ $3^{2} = 100$ , $3^{2} = 100$ ,

#### Question 131 (****)

It is given that

#### $2\cot 2x + \tan x \equiv \cot x \, .$

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence solve the following trigonometric equation

 $\cot x - \tan x = \frac{1}{2} \tan 2x$ ,  $0 \le x < 180^\circ$ .


# $x \approx 31.7^{\circ}, 58.3^{\circ}, 121.7^{\circ}, 148.3^{\circ}$ (c) life 2 dot 2 + f_{22} = $\frac{2(x_{22}^{\circ} + \frac{y_{22}}{2})}{2(x_{22}^{\circ} + \frac{y_{22}}{2})} = \frac{2(x_{22}^{\circ} + \frac{y_{22}}{2})}{2(x_{22}^{\circ} + \frac{y_{22}}{2})}$ $= \frac{c_{21}^{\circ} x_{2}}{3(x_{22}^{\circ} + \frac{y_{22}}{2})} + \frac{y_{22}^{\circ} + c_{22}^{\circ}}{2(x_{22}^{\circ} + \frac{y_{22}^{\circ}}{2})} + \frac{y_{22}^{\circ} + c_{22}^{\circ}}{2(x_{22}^{\circ} + \frac{y_{22}^{\circ}}{2})} + \frac{y_{22}^{\circ} + c_{22}^{\circ}}{2(x_{22}^{\circ} + \frac{y_{22}^{\circ}}{2})} + \frac{y_{22}^{\circ} + c_{22}^{\circ} + \frac{y_{22}^{\circ}}{2(x_{22}^{\circ} + \frac{y_{22}^{\circ}}{2})} + \frac{y_{22}^{\circ} + \frac{y_{22}^{\circ}}{2}} + \frac{y_{22}^{\circ} + \frac{y_{22}^{\circ}}{2(x_{22}^{\circ} + \frac{y_{22}^{\circ}}{2})} + \frac{y_{22}^{\circ} + \frac{y_{22}^{\circ}}{2(x_{22}^{\circ} + \frac{y_{22}^{\circ}}{2})} + \frac{y_{22}^{\circ}}{2(x_{22}^{\circ} + \frac{y_{22}^{\circ}}{2})} + \frac{y_{22}^{\circ} + \frac{y_{22}^{\circ}}{2}} + \frac{y_{22}^{\circ}}}{2(x_{22}^{\circ} + \frac{y_{22}^{\circ}}{2})} + \frac{y_{22}^{\circ}} + \frac{y_{22}^{\circ}}{2(x_{22}^{\circ} + \frac{y_{22}^{\circ}}{2})} + \frac{y_{22}^{\circ}} + \frac{y_{22}^{\circ}}}{2(x_{22}^{\circ} + \frac{y_{22}^{\circ}}{2})} + \frac{y_{22}^{\circ}} + \frac{y_{22}^{\circ}}}{2(x_{22}^{\circ} + \frac{y_{22}^{\circ}}{2})} + \frac{y_{22}^{\circ}} + \frac{y_{22}^{\circ}} + \frac{y_{22}^{\circ}} + \frac{y_{22}^{\circ}}}{2(x_{22$

#### Question 132 (****)

If  $\cot \theta = 2$ , use the tangent double angle identity to show

 $\tan\theta\cot 2\theta\tan 4\theta = -\frac{2}{2}$ 

You must show detailed workings in this question



tand at 20 tan 10 = tan 0 1 2 tan 20 (tan 21 = 2 tan 1)	
$= \frac{2 \tan \theta}{1 - \tan^2 2\theta} = \frac{2 \tan \theta}{1 - \left(\frac{2 \tan \theta}{1 - \tan^2 \theta}\right)^2} = \cdots \text{ sut } \text{ and } \frac{1}{2}$	
$\Xi \cdots \frac{2 \times \frac{1}{2}}{\left(-\frac{2 \times \frac{1}{2}}{(1-\frac{1}{2})^2}\right)^2} = \frac{1}{\left(-\frac{1}{(1-\frac{1}{2})^2}\right)^2} = \frac{1}{(1-\frac{16}{2})} = \frac{q}{q-16} = -\frac{q}{7}$	

Question 133 (****)

It is given that

 $(\sec\theta - \cos\theta)(\csc\theta - \sin\theta) \equiv \sin\theta\cos\theta$ .

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence solve the trigonometric equation

$$(\sec\theta - \cos\theta)(\csc\theta - \sin\theta) = -\frac{1}{4}, \ 0 \le \theta < 360^{\circ}.$$

$\theta = 105^{\circ}, 165^{\circ},$	285°,	345°
· · · · · ·		

(a) 145 = (200 - 1020) (00000 - 244)	$\left(\theta_{H} 2 - \frac{1}{\theta_{H} 2}\right) \left(\theta_{2} \omega - \frac{1}{\theta_{U} \omega_{1}}\right) = \left(\theta_{1}\right)$
$= \frac{\Theta_{\mu\nu}^{2} - 1}{\Theta_{\mu\nu}^{2} - 1} \times \frac{\Theta_{\mu\nu}^{2} - 1}{\Theta_{\mu\nu}^{2} - 1} = \frac{1}{2} = \frac{1}{2} + $	STAR × COLO = SHOLON = EHH
$(b)  (Sec \Theta - cos \Theta)(cose e \Theta - sm \Theta) = -\frac{1}{4}$ $\Rightarrow Sm \Theta \cos \Theta = -\frac{1}{4}$	(21 ~ -30* ± 3604 (21 = 210* ± 3604 H=91/23     H=91/23     H=91/23
=> 2ambios0= -{	$\begin{cases} (x = -i\zeta + 180n) \\ (x = -i\zeta + 180n) \end{cases}$
$\Rightarrow$ SM20 = $-\frac{L}{2}$	a = 165° 395° 105° 285°
$\operatorname{Catching}\left(-\frac{1}{2}\right) \approx -30^{\circ}$	(

#### Question 134 (****)

The three angles of a triangle are denoted by  $\alpha$ ,  $\beta$  and  $\gamma$ .

Show clearly that ...

- **a**) ...  $\sin(\alpha + \beta) = \sin \gamma$ .
- **b**) ...  $\sin\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\gamma}{2}\right)$ .

1.1	
(a) (1) $\alpha + \beta + \gamma = \overline{\eta}$	(I) . x+8+y= T
$\alpha + \beta = \pi - \chi$	a+B= 1-2.
$Sm(\alpha+\beta) = Sm(\pi-\sigma)$	X+B = T-X
SM(44B) = SMTF 6557-655T SMY	Sh(((1)= Sh(王-王)
$\sin(\alpha + \beta) = -\sin\beta$	$Sin\left(\frac{\alpha_{1}L_{0}}{2}\right) = Sin_{2}^{T}cos_{2}^{T} - cos_{2}^{T}Sin_{2}^{T}$
As. Diguieno	$Sim\left(\frac{\alpha+\theta}{2}\right) = GSX$
	Provieno

proof

6

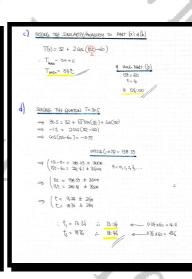
Question 135 (****)

 $f(x) = \sqrt{3}\sin x + \cos x, \ x \in \mathbb{R}.$ 

- a) Express f(x) in the form  $R\cos(x-\alpha)$ , R > 0,  $0 < \alpha < 90^{\circ}$ .
- **b**) State the maximum value of f(x) and find the smallest positive value of x for which this maximum occurs.

The temperature of the water  $T \,^{\circ}C$  in a tropical fish tank is modelled by the equation

 $T = 32 + \sqrt{3}\sin(15t)^\circ + \cos(15t)^\circ, \ 0 \le t < 24,$ 


where t is the time in hours measured since midnight.

- c) State the maximum temperature of the water in the tank and the time when this maximum temperature occurs.
- d) Show that the temperature of the water in the tank reaches 30.5 °C at 13:14 and at 18:46.

[You may not verify the answers in this part]

 $, \ \sqrt{3}\sin x + \cos x \equiv 2\cos(x - 60^{\circ}) , \ \underline{\max = 2} , \ \underline{x = 60^{\circ}} , \ \overline{T_{\max} = 34}$ 

	- 10 M - 10 M
9	USING THE COMPOUND ANGLI LENSIGTY FOR COC(A-B)
	$43$ smation = $2icc(a-\alpha)$
	DOWLSZANDER + READERED =
	= (BSIMH)SMDL + (BCOSH)COSDL
	• $\mathbb{E}_{\text{SMM}} = \sqrt{5}^{4}$ $\frac{2}{5}$ $\frac{250006}{61} = 400 \text{ metric}$ ; $\mathbb{R} = \sqrt{(61)^{2}/^{2}}$
	<ul> <li>Brow = 1 ] THOUGH &amp; HOD AHADT. K = Y(ALIJ+15,</li> </ul>
	₽= 2_
	DWANYA SIDE BY SIDE: POWAR US
	N= 600
	$\therefore f(x) = 2\cos(x - c)^{2}$
8	ALTHONATION BY MANIPOLIATION MILLING
3	$\sqrt{3} \sin \alpha x + \cos x = 2 \left[ \frac{1}{2} \sin \alpha + \frac{1}{2} \cos x \right] = 2 \left[ \frac{1}{2} \cos x + \frac{1}{2} \sin x \right]$
3	+ +
5	$= 2 \left[ \omega(\omega)\omega_{2} + \omega(0,\omega_{2}) - 2 \omega_{3}(\omega - 2) \right]$
1	[
1	(680 21 HURD) (60-6)2035 5
w	······
6	$M_{1X} = 2 \cos(3 - 60^{\circ}) = 2 \cos(3 - 60^{\circ}) = 2$
1	$(t_1 - 1 \leq \cos(t_2 - \cos^2) \leq 1)$
	TO GET THIS MAX VALUE OF 2, LOS(2-60)=+1
	$(-(\omega-c)_{2\alpha}) \leftarrow$
	2-60 = 0 (PEMAR/ (AWUE)
	Que 60



04:00

Question 136 (****)

It is given that

 $\tan\theta(1+\sec 2\theta)\equiv\tan 2\theta\,.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence, or otherwise, solve for  $0 \le \theta < 180^{\circ}$

 $\tan\theta(1+\sec 2\theta)=4\tan\theta.$ 

$\theta = 0^{\circ}  \theta \approx$	35.3°, 144.7°
(a) LHS = tano (1+5xe20) = t	$\left[\frac{1+g_{233}}{-g_{233}}\right)\partial_{10}d^{2}=\left(\frac{1}{g_{233}}+1\right)\partial_{10}d^{2}$
$= \frac{2\alpha \sigma \theta}{\alpha \sigma \tau} + \frac{2\alpha \sigma \theta}{\alpha \sigma \tau} + \frac{1}{2}$ $= \frac{2\alpha \sigma \sigma}{\alpha \sigma \tau} = \frac{1}{2} + \frac{1}$	$= \frac{StuB}{cost} \times \frac{3cE}{cost0} = \frac{23uBcost0}{cost0}$
(0) ting(1+2020)=4toy0	) • arctauDe o
= tay20= 4 tan0	• anton (1=)= 35.26°
= 2bm0 = 4bm0	$\left\langle \bullet \alpha_{15} \varphi_{rd}\left(-\frac{4}{r_{rd}}\right) = -37 \cdot \Sigma_{rd}$
⇒ 25m0=45m0-45m70 ⇒ 45m70-25m0=0	$\Theta = 0 \pm 0.00 \mu$ $\Theta = 35.35 \pm 0.00 \mu$ $H = 0.1, v_{1}, v_{2}, \dots$
= 22000(22010=0)=0	$\Theta = -32.5C + 0.004$
- ten 0=0 2tuig0=1	. Θ=0,35.26, H4.740
tingo = ± tino = ±1/2	}

Question 137 (****)

By twice applying the identity

 $\sin 2\theta = 2\sin\theta\cos\theta,$ 

solve the trigonometric equation

 $\sin x \cos x \cos 2x = \frac{1}{8}, \ 0 \le x < \pi \,.$ 

en.				1.11	# P	
		$\pi$	$5\pi$	13 <b>π</b>	$17\pi$	
Ç	x =	$\overline{24}'$	24,	24,	24	2
- 3						μ.

$ \Rightarrow SM1(as2(as2) = \frac{1}{6} $ $ \Rightarrow 2sm2(as2(as2) = \frac{1}{4} $ $ \Rightarrow SM2(as2) = \frac{1}{4} $ $ \Rightarrow 2sm2(as2) = \frac{1}{2} $	$\begin{aligned} &\operatorname{arcs} \mathfrak{M}(\underline{L}) = \overline{\underline{L}} \\ & \left( \begin{array}{c} 4 \chi_{-} \cdot \overline{\underline{L}} + \Delta \eta \\ 4 \chi_{-} \cdot \overline{\underline{L}} + \Delta \eta \\ - \chi_{-} \cdot \overline{\underline{L}} + \lambda \eta \\ \chi_{-} \cdot \underline{L} + \lambda \eta \\ \chi_{-} - \lambda \\ \chi_{-} \cdot \underline{L} + \lambda \eta \\ \chi_{-} - \lambda \\ \chi_{-}$
$\Rightarrow 2 \sin \beta a \cos a = \frac{1}{2}$ $\Rightarrow \sin \beta a = \frac{1}{2}$	(王 - 亚 - 亚

1.4

Question 138 (****)

- $f(x) = 2.5\sin 2x + 6\cos 2x, \ 0 < x < 2\pi.$
- a) Express f(x) in the form  $R\sin(2x+\alpha)$ , R > 0,  $0 < \alpha < \frac{\pi}{2}$ .
- **b**) Determine the value of the constant A so that

 $5\sin x \cos x + 12\cos^2 x \equiv f(x) + A.$ 

c) Hence, or otherwise, find the minimum and the maximum value of

### $5\sin x \cos x + 12\cos^2 x \,.$

## $f(x) = 6.5 \sin(2x + 1.176^{\circ})$ , A = 6, max = 12.5, min = -0.5

(a) = 25sin2x + Gueszx = RSIM(2a+K)
= RSM22COSA + RCOS22SMA
= (Plosa) sup2+ (PSIMa) cos22
2005x = 2.52 • R = N 2.5 4 c2 = 6.5
25ma=6 2 • tomo= 4 = = = = = = = = = = = = = = = = = =
+(a)= 6.5 sin(2x+ 1.1764)
$Ssim2cos2 + 12cos^22 = \frac{5}{2}(sim2cos2) + 6(2cos^22)$
$= \frac{5}{2} \operatorname{SM}(2x + 6(\cos 2x + 1))$
= \$ 54422+660522 46
= \$6)+6 : t=6
UNWATU
$Ssim x \cos x + 12 \ln \sin x = f(x) + A$
$SIMXLOSA + 12co_{SR} \equiv 2.5 SM2x + 6co_{SR} + A$
$Sim (c_1 + 1) = 2 \cdot S(2 \cdot 1) + 6(2 \cdot 2 \cdot 1) + A$
$SSM2 \cos 4 12 \cos 7 \equiv SSM2 \cos 2 + 12 \cos 2 - 6 + A$
Mott Br Zhuo
·: +=6
manna 1
$S_{SIM2COSA} + 1210R = 7(1) + 6$
= (2.5 SINZ2 + 6 COV22) +C
= 6:5 sm (22 + 1. 1714) + 6
1. MAX = 6.5 +6 = 12.5
MIN = -65 + 6 = -0.5

i G.B.

G

#### Question 139 (****)

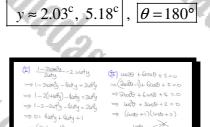
Find the **two** solutions of the trigonometric equation

 $(1 + \sec y)(1 - \cos y) = \tan y, \qquad 0 \le y < 2\pi,$ 

giving the answers in terms of  $\pi$ .



(1+500y)(1-605y)=tany ⇒ 1-605y+580y-500guosye bany	arcus(o) = 0 arcus(1)= T
= 1-605y+stery-1 = tony	) (y=0 ± 2114 (y=1 ± 2114 4=0423
A Losy - Losy = Say	$ \left( \begin{array}{c} (\underline{y} \in \underline{\mathcal{T}} \pm 2\pi y \\ \underline{y} \in \underline{\mathcal{T}} \pm 2\pi y \end{array} \right) _{U = \Theta_1 I_2 I_1 I_1 \cdots I_n I_n I_n I_n I_n I_n \cdots I_n I_n I_n I_n I_n \cdots I_n I_n I_n I_n \cdots I_n I_n I_n I_n \cdots I_n I_n I_n \cdots I_n \cdots I_n I_n \cdots I_n I_n \cdots I_n \cdots I_n I_n \cdots I_n$
$\Rightarrow$ 1 - $\cos^2 t_1 = \sin t_1$ $\Rightarrow$ 1 - (1 - $\cos^2 t_1$ ) = $\sin t_2$ (	Sus - 4 = 0, TT OUCY
=> 1-1+ Sung = Sung (	王 NOT 4 SOUTHIN
⇒ shig - sny =0 : ⇒ sny (sny-1) =0	As seegiting Alte INPINIT
-) sug= < 1	


#### **Question 140** (****)

Solve each of the following trigonometric equations.

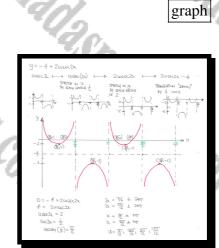
i.  $\frac{1 - 2 \operatorname{cosec}^2 y}{2 \operatorname{cot} y} - 2 = \operatorname{cot} y$ ,  $0 < y < 2\pi$ ,  $y \neq \pi$ .

ii.  $\cos 2\theta + 6\cos \theta + 5 = 0$ ,

 $0 \le \theta < 360^{\circ}$ .



1.+


Question 141 (****)

Sketch the graph of

 $y = -4 + 2\operatorname{cosec} 2x, \quad 0 \le x \le 2\pi.$ 

The sketch must include

- the equations of any asymptotes to the curve
- the exact coordinates of any stationary points.
- the exact coordinates of any points where the curve crosses the coordinate axes.



#### (****) **Question 142**

Prove the validity of each of the trigonometric identities.

nadas,

The Com

[.¥.G.]

**a**) 
$$\operatorname{cosec} \theta - \cot \theta \equiv \tan\left(\frac{\theta}{2}\right)$$
.

 $2\tan 2x$  $\frac{1}{\tan 2x - \sin 2x} \equiv \csc^2 x \, .$ b)

nadasma,

aths.com

Smarns.com

I.F.G.B.

Z



I.C.P.

Madasmaths.com

I.V.C.B. Madasm

1.4.6

ths.com

proof

aths com

I.C.B.

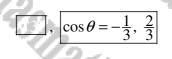
Created by T. Madas

The management of the second

Question 143 (****)

 $f(x) \equiv 27x^3 - 9x - 2, \ x \in \mathbb{R}.$ 

a) Show that (3x+1) is a factor of f(x).


It is further given that

ŀG.B.

Y.G.B.

 $36\cos 2\theta\cos\theta + 9\sin 2\theta\sin\theta = 4.$ 

**b**) Find the possible values of  $\cos \theta$ .



ths.com

nn

- (a)  $\frac{1}{2}(x) = 2\pi/3^{-1}, q_{X-2}$   $\frac{1}{1}(-\frac{1}{3}) = 2\pi(-\frac{1}{3})^{-2}(-\frac{1}{3})^{-2} = 2\pi(-\frac{1}{3\pi}) + 3 - 2 = 0$   $\frac{1}{1}(-\frac{1}{3}) + 3 - 2 = 0$   $\frac{1}{1}(-\frac{1}{3}) + 3 - 2 = 0$   $\frac{1}{1}(-\frac{1}{3}) + 3 - 2 = 0$   $\frac{1}{3}(-\frac{1}{3}) + 3 - 2 = 0$   $\frac{1}{3}$ 
  - ⇒ (26590-36650+186505496=4 ⇒ 72659-36650+18650(1-683)
  - 3 721090 36080 + 180080 18103 ∋ 541030 - 181080 - 4 =0
  - 82019 820176 (= 820177 (=

n

- let x=6059 ⇒ 273³ - 92 - 2 = 0
- $= (3x+1)(9a^2-3x-2) = 0$ = (3x+1)(3a+1)(3a-2)=0
- $\exists = <_{-\frac{1}{2}}^{\frac{2}{3}} \quad \therefore \quad \omega s \theta = <_{-\frac{1}{3}}^{\frac{2}{3}} /$

The.

F.G.B.

COM

adasm.

madasn.

G

Created by T. Madas

adasmaths

(****) **Question 144** 

It is given that

21/1S.COM

N.G.B. Madasm

Paths.com

I.F.G.B.

•

$$\frac{1-\tan^2\theta}{1+\tan^2\theta} \equiv \cos 2\theta.$$

a) Prove the validity of the above trigonometric identity.

**b**) Given that  $\cos 36^\circ = \frac{1+\sqrt{5}}{4}$ , show clearly that

I.C.B.

I.F.C.J

 $\tan^2 18^\circ = \frac{5 - 2\sqrt{5}}{5}.$ 



Smaths.com

L.Y.C.B. Madasm

ths.com

ths.com

I.C.B.

¥.G.5.

1.1.6

(a) $U_{15} = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1 - \tan^2 \theta}{320} = \frac{1}{320}$ $= \cos^2 \theta - \tan^2 \theta \cos^2 \theta = \cos^2 \theta$	
	2011
= 62200 = 6 M2 - 6200 =	543
(b) $\frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos 2\theta$	⇒ 3-15°= (5+15°)r
(47 B= 18*	$T = \frac{3-\sqrt{2}}{2\chi + 2}$ $T = -T$
$\Rightarrow \frac{1-\tan^2_1  \theta_0 }{1+\tan^2_1  \theta_0 } = \cos 3\theta^*$	$\implies \Box = \frac{2 + N_{L_{1}}}{3 - N_{L_{1}}} \sqrt{\frac{2 - N_{L_{1}}}{2 - N_{L_{1}}}}$
$\Rightarrow \frac{1-T}{1+T} = \frac{1+\sqrt{5}}{4}$ $(T=b_{1}^{2}(B))$	$S = \frac{1}{2} S = \frac{1}{2} S = \frac{1}{2} S = \frac{1}{2} S = \frac{1}{2}$
$\Rightarrow 4 - 4T = (1+T)(HKT)$	$\Rightarrow T = \frac{20 - B\sqrt{5}}{20}$
⇒ 4-4T = 1+x5+T+TS	$\Rightarrow T = \frac{S - 2AF}{S}$
⇒ 3-47= ST+785	5 At Elpuilio

I.C.B.

Created by T. Madas

COM

madasmaths.com

I.C.P.

Question 145 (****)

$$f(\theta) \equiv 5\cos\theta - 12\sin\theta, \ \theta \in \mathbb{R}$$

- a) Express  $f(\theta)$  in the form  $R\cos(\theta + \alpha)$ , R > 0,  $0 < \alpha <$ Give the value of  $\alpha$  correct to 3 decimal places.
- **b**) State the maximum value of  $f(\theta)$  and find the smallest positive value of  $\theta$  for which this maximum occurs.

The pressure P, in suitable units, in a nuclear plant is modelled by the equation

$$P = 20 + 5\cos\left(\frac{4\pi t}{25}\right) - 12\sin\left(\frac{4\pi t}{25}\right), \ 0 \le t < 12,$$

where *t* is the time in hours measured from midnight.

- c) State the maximum pressure in the plant and the value of t when this maximum pressure occurs.
- **d**) Find the times, to the nearest minute, when P = 15.

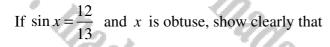
$5\cos\theta - 12\sin\theta \equiv 13\cos(\theta - \theta)$	$(+1.176^{\circ})$ , $max = 13$ , $\theta = 5.107^{\circ}$ ,
$P_{\rm max} = 3$	$\overline{t_{\text{max}}} = 10.16$ , $01:34/06:15$
a) $\frac{1}{2} \frac{1}{2} \frac$	$ = \oint \left( \frac{4\pi t}{4\pi} + i\pi c \cdot a \left( \frac{4\pi c}{2\pi} + 2\pi m \right) \right) $ $ = \oint \left( \frac{4\pi t}{4\pi} + i\pi c \cdot a \left( \frac{4\pi c}{2\pi} + 2\pi m \right) \right) $ $ = \oint \left( \frac{4\pi c}{4\pi} = -i\pi \right) = 2\pi m $ $ = \oint \left( \frac{4\pi c}{4\pi} = -i\pi \right) = 2\pi m $ $ = \oint \left( \frac{4\pi c}{2\pi} + 2\pi m \right) = 2\pi m $ $ = \oint \left( \frac{4\pi c}{2\pi} + 2\pi m \right) = 2\pi m $

Question 146 (****)

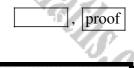
It is given that

 $\frac{\tan 2x - \sin 2x}{\tan 2x} \equiv 2\sin^2 x, \ \tan 2x \neq 0.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence find, in terms of  $\pi$ , the solutions of the trigonometric equation


 $\frac{\tan 2x - \sin 2x}{\tan 2x} = 1, \quad 0 \le x < 2\pi$ 




 $5\pi$ 

 $7\pi$ 

### Question 147 (****)



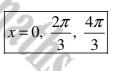




6

SMZ=	12 6 OPP 13 6 HYP			
12	B	· = x2α)		HOVE NEFFETIVE CORINE
	A Primessans Sta			
ater -	$\frac{100084}{54023} = \frac{1}{2}$	~ 251/2	$\frac{1-2\left(\frac{1+2}{3}\right)^2}{2\times\frac{12}{14}\times\left(\frac{5}{3}\right)}$	$\frac{1-\frac{213}{169}}{-\frac{120}{169}}$
	169 - 288 120	= <u>288-469</u> 120	= <u>119</u> 120	

Question 148 (****)


It is given that

 $\cos x + \sin x \tan 2x \equiv \frac{\cos x}{\cos 2x}.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence find, in terms of  $\pi$ , the solutions of the trigonometric equation

 $\cos x + \sin x \tan 2x = 1, \quad 0 \le x < 2\pi$ 

giving the answers in terms of  $\pi$ .



G

(a) Uts = constants + sea = constants + sea = 2+U
$\frac{1}{1+3} = \frac{1}{100} = \frac{(6-10)}{100} = \frac{(6-10)}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}$
$\frac{d^2}{dt} = \frac{d^2}{dt} = d$
$= \cos_1 + \frac{2\sin(\cos_2)}{\cos(\cos_2)} = \frac{\cos(\cos_2)}{\cos(\cos_2)}$
$= \frac{\cos(2)}{\cos(2)} = \frac{\cos(2)}{\cos($
$(c_{2}, t_{1})$ $(c_{3}, t_{1})$ $(c_{3}, t_{2})$ $(c_{3}, t_{3})$ $(c_{3}, t_{3})$ $(c_{3}, t_{3})$ $(c_{3}, t_{3})$
$\Rightarrow \underbrace{\cos 2z}_{\cos 2z} = 1 \cdot \begin{cases} z = 2\pi i \pm 2z \\ z =$
$\Rightarrow$ losa = losa { $(n=q_{1/2}, s_{1,})$
= con = 2002-1 = 0= 2002-( 2002-( 2002-1)
= 0 = (200 + 1)(100 - 1)

Question 149 (****)

It is given that

F.G.B.

F.C.B.

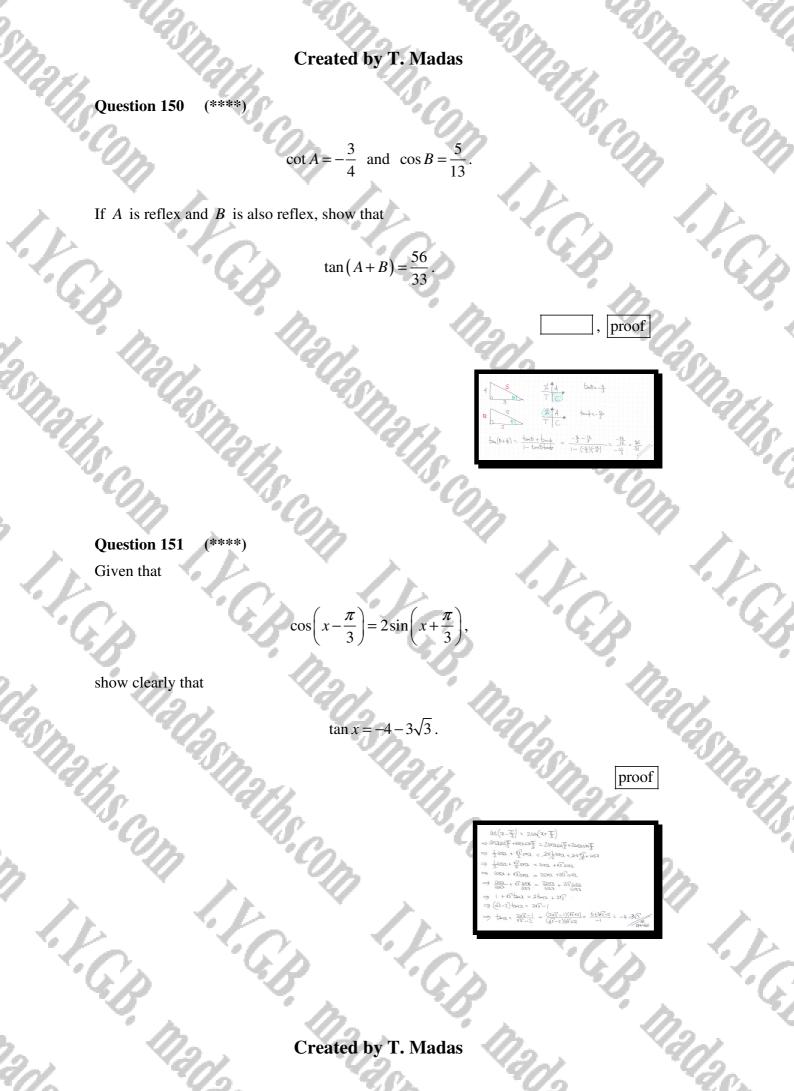
 $\frac{\csc x}{1 + \csc x} - \frac{\csc x}{1 - \csc x} \equiv 2\sec^2 x, \quad \csc x \neq \pm 1.$ 

a) Prove the validity of the above trigonometric identity.

**b**) Hence find the solutions of the trigonometric equation

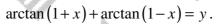
 $\frac{\csc x}{1 + \csc x} - \frac{\csc x}{1 - \csc x} = 5\tan x, \ 0 \le x < 2\pi.$ 

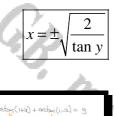
F.G.B.

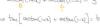

G

Ma(12)

207


 $x \approx 0.464^{\circ}, 1.11^{\circ}, 3.61^{\circ}, 4.25^{\circ}$ 


m




#### Question 152 (****)

Make x the subject of the equation









- $\frac{2}{\sqrt{2}} = \tan q$
- $\Rightarrow \frac{z}{\tan y} = a^2$

### Question 153 (****)

It is given that

 $\sin(x+y)\sin(x-y) \equiv \cos^2 y - \cos^2 x \, .$ 

a) Prove the validity of the above trigonometric identity.

**b**) Hence, show that

# $\sin\left(\frac{7\pi}{12}\right)\sin\left(\frac{\pi}{12}\right) = \frac{1}{4}.$

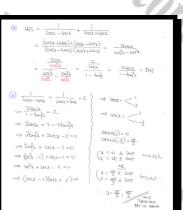
proof

6

- ts = Sim (2+4) Sim(x-4) = [simzucey +coexemy][simzucey - coexemy]
- $= \sin^2 \cos^2 y \cos^2 y + \sin^2 y$
- ( eros 1) x201 1/201 (201-1) = 1501 + 1201 - 1/2012-0/2013 - 1/2013 =
- = cagy-cags = RHS
- $\begin{array}{c} (t_{T}, \lambda_{T} = \frac{T}{T}, y_{T} = \frac{T}{T}) \\ \xrightarrow{\rightarrow} Sm(\frac{T}{T} + \frac{T}{T}) sm(\frac{T}{T} \frac{T}{T}) = cod^{2}\frac{T}{T} cod^{2}\frac{T}{T} \\ \xrightarrow{\rightarrow} Sm(\frac{T}{T}) sm(\frac{T}{T} = \frac{1}{2} \frac{1}{4}) \end{array}$

Question 154 (****)

It is given that


Ka,

 $\frac{1}{\cos x - \sin x} + \frac{1}{\cos x + \sin x} \equiv \frac{2 \sec x}{1 - \tan^2 x}.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence solve the trigonometric equation

 $\frac{1}{\cos x - \sin x} + \frac{1}{\cos x + \sin x} = 2, \ 0 < x < 2\pi,$ 

giving the answers in terms of  $\pi$ .



F.C.P.

G

2

 $2\pi$ 

 $\frac{4\pi}{3}$ 

Question 155 (****)

$$f(x) = \frac{6}{2\cos x + 2\sin x} \text{ for } 0 < x < \pi, \ x \neq \beta.$$

a) Express  $2\cos x + 2\sin x$  in the form  $R\cos(x-\alpha)$ , R > 0,  $0 < a < \frac{\pi}{2}$ 

The curve with equation y = f(x) has a vertical asymptote at  $x = \beta$ .

- **b**) Determine the value of  $\beta$ .
- c) Solve the equation

COM

I.G.B.

$$f(3x)-\sqrt{6}=0,$$

giving the answers in terms of  $\pi$ .

b) Determine the value of 
$$\beta$$
.  
c) Solve the equation  

$$f(3x) - \sqrt{6} = 0,$$
giving the answers in terms of  $\pi$ .  

$$\left[ 1, 2\cos x + 2\sin x \equiv 2\sqrt{2}\cos\left(x - \frac{\pi}{4}\right) \right], \beta = \frac{3\pi}{4}, x = \frac{\pi}{30}, \frac{5\pi}{30}, \frac{25\pi}{36}, \frac{29\pi}{30} \right]$$

C) by cm who may	
(a) BY STANDARD TEALNIQUES OR	
21052 + 25142 = 242 ( + 12502 + 12502)	
True Free	
= 262 ( LOSALOS =+ SIMA SIME)	
= 212 ca(2- #)	
() there (notice) = Devousting = 0	
=) (a(2-F)=0	
→ ユモニモ …らに平	
$(c) \left\{ \frac{1}{2(a)} = \frac{c}{2\log_2 + 2\sin_2} = \frac{c}{2\sqrt{2}\log(a-\frac{1}{2})} \right\}$	
-(32)-16=0 (32= 515 + 2000	
$\frac{63}{104} - 46 = 0$ $3x = \frac{3x}{12} \pm 2\pi t$	
20265(3)-平	
$ = \frac{3}{\sqrt{1-1}} = \sqrt{4} \qquad (\chi_{\pm} \frac{\chi_{\pm}}{\chi_{\pm}} + \frac{2\eta_{\pm}}{\chi_{\pm}}) $	
=) Vitala-II = NE (2 = 201 201	
$\rightarrow \frac{\sqrt{2}(\alpha_2(\underline{a_1},\underline{a_2}))}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ , $\beta_1 = \frac{1}{26}$	
$\Box_2 = \frac{29\pi}{30}$	
$=$ $(\alpha_1(3e^{-\frac{1}{2}}) = \sqrt{e^2}$ $= \sqrt{e^2}$ $(\alpha_2 = \sqrt{e^2})$	
· accos(2)= 2 - Ig	
(3)-年= モ ± 2mt	
3 - 年 - モ エ 2011 3 - 年 - モ エ 2011 3 - 年 - モ エ 2011	
4=01112131- 36 36	

i G.B.

G

Madasn,

The Com

COM

2013SM

Question 156 (****)

It is given that

F.G.B.

Y.G.B.

20

$$\tan(x+60^{\circ})\tan(x-60^{\circ}) \equiv \frac{\tan^2 x - 3}{1 - 3\tan^2 x}$$

a) Prove the validity of the above trigonometric identity.

**b**) Hence, or otherwise, solve the trigonometric equation

$$\tan(x+60^\circ)\tan(x-60^\circ)+11=0, \ 0 \le x < 360^\circ$$

. Gp

2017

$= \frac{(2\pi^{2}\sqrt{2})^{1/2}}{(2\pi^{2}\sqrt{2})^{1/2}} = \frac{(2\pi^{2}\sqrt{2})^{1/2}}{(2\pi^{2}\sqrt{2})^{1/2}} =$	$\frac{\tan x + \tan b}{1 - \tan t \tan b} \times \frac{\tan x - \tan b}{1 + \tan t \tan b}$ $= \frac{\tan x - 3}{1 - 24 \cdot 3} = $445$
(b) tom (2+60) tun (2-60) + 11=0	$e \operatorname{dispart}(F) = 300$
$ = \frac{\tan (2 - 3)}{1 - 3 \tan (2 - 3)} + 11 = 0 $ $ = \frac{\tan (2 - 3)}{1 - 3 \tan (2 - 3)} + 11(1 - 3 \tan (2 - 3)) = 0 $ $ = \frac{\tan (2 - 3)}{1 - 3 - 3} + 11 - 33 \tan (2 - 3) = 0 $	• $ard_{24}\left(\frac{-1}{2}\right) = -3.6$ $3c = 26.6 \pm 180.4$ $4c = 2 = -26.6 \pm 180.4$ 4c = 0.1 + 3.2
-> 8 = 32tay2	∞1 = 366° , 22 = 2066°
$= \tan \alpha = < \frac{\frac{1}{2}}{-\frac{1}{2}}$	$X_3 = 153.4^{\circ}$ $X_7 = 333.4$

 $x \approx 26.6^{\circ}, 153.4^{\circ}, 186.6^{\circ}, 333.4^{\circ}$ 

nn

202.sm

Madasn

G

20

F.C.B.

Question 157 (****)

I.C.B.

 $f(x) \equiv \cos x + \sqrt{3} \sin x, \ x \in \mathbb{R}.$ 

- a) Express f(x) in the form  $R\cos(x-\alpha)$ , where R > 0 and  $0 < \alpha < \frac{\pi}{2}$
- **b**) Hence solve the equation

 $\cos 2\theta + \sqrt{3}\sin 2\theta = 2\cos\theta$ ,  $0 \le \theta < 2\pi$ .

 $f(x) = 2\cos\left(x - \frac{\pi}{3}\right), \quad \theta = \frac{\pi}{3}, \quad \frac{7\pi}{9}, \quad \frac{13\pi}{9}$ 

m

- Carlos
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Pos = 1 $p sinx = \sqrt{3}$ $\Rightarrow$ spunct of the $p = \sqrt{1^2 + (g^2)}$ P = 2
DIVIDE - Famme AZ
$\therefore f(x) = 2\cos(x - \frac{\pi}{2})$
$G_{202} = G_{CM2} \widehat{\mathcal{L}}_{H} + G_{202}$ $G_{202} \sum_{m} = \left(\frac{1}{2T} - G_{2}\right) 2^{n/2} \sum_{m} G_{2m}$ $G_{2m} = \left(\frac{1}{2T} - G_{2}\right) 2^{n/2}$
$ \begin{pmatrix} 2\theta - \frac{\pi}{3} = \begin{pmatrix} \theta \\ 2\theta - \frac{\pi}{3} \end{pmatrix} \neq 2\pi \\ 2\theta - \frac{\pi}{3} = \begin{pmatrix} 2\pi \langle \theta \rangle \neq 2\pi \\ \theta \end{pmatrix} \neq 2\pi \\ \end{pmatrix} \stackrel{h=o(123)-1}{\longrightarrow} , $
$ \begin{pmatrix} \Theta = \frac{\pi}{3} \pm 2m \\ \Theta = \frac{\pi}$
$ \begin{pmatrix} \theta & = \frac{15}{2} \pm \frac{20\pi}{3} \\ \theta & = \frac{2\pi}{3} \pm \frac{20\pi}{3} \end{cases} $
€[=_ <u>∓</u> ⊖ ₂ = <del>3</del> 7

he

I.C.P.

nn

mada

G

Created by T. Madas

11202

Question 158 (****)

It is given that

13ths.com

>

0

 $\frac{\csc x - \sin x}{\sin x} \equiv \sec x.$  $\cot x \cos^2 x$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence, or otherwise, solve the trigonometric equation

COM

I.G.B.

 $\frac{\csc x - \sin x}{2\cot x \cos^2 x}$  $\tan^2 x - \sec x =$  $0 \le x < 360^\circ \, .$ 

I.C.p

Madasmaths.com



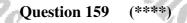
nadasmans.com

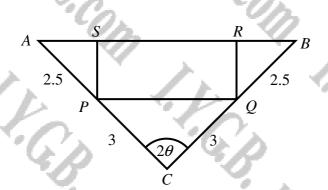
11₂₀₂₈₁

Ths.com

naths.com

Y.C.B.


Ż


1.1.6

nadasm.

L.C.B. Mada

250	nau	2	×30	Sm.	1
12	is .	NII AL	20		P
	-On	<u>у</u>	.COM		0
1.1		·	2	1.1	2
	15 	2.	Created	by T. Mada	as





The figure above shows an isosceles triangle ABC where the angle  $ACB = 2\theta$ .

A rectangle PQRS is drawn inside ABC, so that S and R lie on AB, P lies on AC and Q lies on BC.

It is further given that |AP| = |BQ| = 2.5 and |PC| = |QC| = 3.

a) Show clearly that the perimeter of *PQRS* is

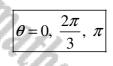
 $5\cos\theta + 12\sin\theta$ .

- **b**) Express  $5\cos\theta + 12\sin\theta$  in the form  $R\sin(\theta + \alpha)$ , R > 0,  $0 < \alpha < 90^{\circ}$ .
- c) Find the value of  $\theta$ , given that the perimeter of *PQRS* is 10.

 $5\cos\theta + 12\sin\theta \cong 13\sin(\theta + 22.62)^{\circ}$  $\theta \approx 27.7^{\circ}$ SETTING P=10  $oi = \theta_{m2SI} + \theta_{2oiSZ} =$ 13,54 (B+ 22-62") = Sm ((9 + 22.62°) = 15 ⇒ ( 0 + 22.62 = 50.20 ± 300 0 + 22.62 = 129.72 ± 300 =  $\begin{pmatrix} \theta = 27.7 \pm 360 M \\ \theta = 107.10 \pm 360 M \end{pmatrix}$ 0= 27.7 (12500 + (Slost) = (Ridsa) Sont + (CRSMA) lost 6 STRIARE & 400 D. = J1221 52 R=B 125m0 + 51cs0 = 135m(0+22-62"

Question 160 (****)

F.G.B.


00

 $f(\theta) \equiv \sqrt{3}\sin\theta + \sin\theta, \ 0 \le \theta < 2\pi.$ 

- a) Express  $f(\theta)$  in the form  $R\cos(\theta \alpha)$ , R > 0,  $0 < \alpha < \frac{\pi}{2}$ .

 $\sqrt{3} + \sin 2\theta = \sqrt{3}\cos 2\theta + 2\sin \theta$ ,  $0 \le \theta < 2\pi$ ,

giving the answers in radians in terms of  $\pi$ .



COM

·GA

(a) $\sqrt{3} \sin \theta + \cos \theta = 2 \cos (\theta - \pi)$ $\Rightarrow 2 \cos \theta \cos \pi + 2 \sin \theta \sin \pi$ $\Rightarrow 2 \cos \theta \cos \pi + 2 \sin \theta \sin \pi$ $\Rightarrow 2 \cos \theta \cos \pi + 2 \sin \theta \sin \pi$ $\Rightarrow 2 \cos \theta \sin \theta + \cos \theta \sin \pi$ $\Rightarrow 2 \cos \theta \sin \theta + \cos \theta \sin \pi$ $\Rightarrow 2 \cos \theta \sin \theta + \cos \theta \sin \pi$ $\Rightarrow 2 \cos \theta \sin \theta + \cos \theta \sin \pi$ $\Rightarrow 2 \cos \theta \sin \theta + \cos \theta \sin \pi$ $\Rightarrow 2 \cos \theta \sin \theta + \cos \theta \sin \pi$ $\Rightarrow 2 \cos \theta \sin \theta + \cos \theta \sin \pi$
$ \begin{array}{l} { \left( { { { { { { { { { { { { { { { { { $
$ \begin{array}{c} & \varphi (\alpha ) = 0 \\ \varphi (\alpha ) =$

Is.com

mada.

I.C.

I.C.P.

Created by T. Madas

madasmaths,

nn,

(****) Question 161

It is given that

$$\cos P - \cos Q \equiv -2\sin\left(\frac{P+Q}{2}\right)\sin\left(\frac{P-Q}{2}\right).$$

- a) Prove the validity of the above trigonometric identity by using the compound angle identities for  $\cos(A+B)$  and  $\cos(A-B)$ .
- **b**) Hence, or otherwise, solve the trigonometric equation

 $\cos 6x + \sin 4x = \cos 2x, \ 0 \le x \le \frac{\pi}{2}$ 

giving the answers in terms of  $\pi$ .



 $\frac{\pi}{12}$ ,

x = 0,

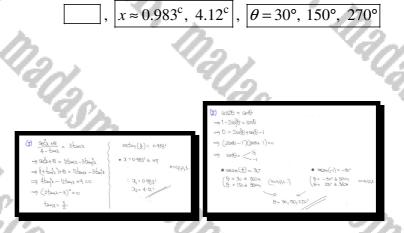
π

4

π

2

1+


#### Question 162 (****)

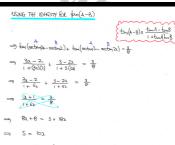
Solve each of the following trigonometric equations.

i.  $\frac{\sec^2 x + 8}{4 - \tan x} = 3\tan x$ ,  $0 \le x < 2\pi$ ,  $\tan x \ne 4$ .

**ii.**  $\cos 2\theta = \sin \theta$ ,

 $0 \le \theta < 360^\circ$ .




### Question 163 (****)

Solve the following trigonometric equation

 $\tan(\arctan 3x - \arctan 2) + \tan(\arctan 3 - \arctan 2x) = \frac{3}{8}.$ 

 $\boxed{\qquad}, \boxed{x = \frac{1}{2}}$ 

G



 $\Rightarrow \frac{\lambda = \frac{1}{2}}{2}$ 

Question 164 (****)

It is given that

 $\cos(A+B) \equiv \cos A \cos B - \sin A \sin B$  $\cos(A-B) \equiv \cos A \cos B + \sin A \sin B$ 

a) Use the above trigonometric identities show that

$$\cos(A+B) + \cos(A-B) \equiv 2\cos A\cos B.$$

**b**) Hence show further that

$$\cos P + \cos Q \equiv 2\cos\left(\frac{P+Q}{2}\right)\cos\left(\frac{P-Q}{2}\right).$$

It is further given that

$$\sin P + \sin Q \equiv 2\sin\left(\frac{P+Q}{2}\right)\cos\left(\frac{P-Q}{2}\right)$$

c) Show clearly that

 $\frac{\cos 2x + \cos 2y}{\sin 2x + \sin 2y} \equiv \cot(x+y).$ 

**d**) Use the above results to show that

$$\cot(52.5^{\circ}) = \sqrt{6} + \sqrt{3} - \sqrt{2} - 2$$



1.+

	1000 100
(a)	$\cos(4+8) = \cosh\cos 8 - \sin4\cos 8$ $\cos(4-8) = \cos4\cos 8 - \sin4\sin 8$
	(cs(f+B)+cos(A-B) = 2 cost cosB < Add the quation
b)	Let $P = A + B$ $A \downarrow A \implies \frac{P + \varphi}{2} = A$ $Q = A - B$ subtract $\Rightarrow \frac{P - \varphi}{2} = B$
	there $\cos P + \cos Q = 2 \cos \left( \frac{P \cdot Q}{Z} \right) \cos \left( \frac{P - Q}{Z} \right)$
૯)	$U_{4}S = \frac{\cos 2i + \cos 2i}{\sin 2i + \sin 2i} = \frac{2 \cos \left(\frac{2i + 2i}{2i}\right) \cos \left(\frac{2i + 2i}{2i}\right) \sqrt{1 + \cos 2i}}{2 \cos \left(\frac{2i + 2i}{2i}\right) \cos \left(\frac{2i + 2i}{2i}\right) \sqrt{1 + \cos 2i}}$
	$= \frac{los(x+y)}{Sw(x+y)} = lot(x+y) = lats$
(d)	$\frac{\cos_{2x} + \cos_{2y}}{\sin_{1}^{2}x + \sin_{2y}} \simeq \cot_{1}(x+y)  \leq  \Rightarrow \cot_{1}(s_{2}s) = \frac{1+\sqrt{2}}{\sqrt{2}+\sqrt{2}}$
	• Let $\alpha = 3\delta^{\circ}$ $y = 22.5^{\circ}$ $\Rightarrow \omega^{1}(\alpha, j) = \frac{(1+i2)(\kappa^{2}, i2)}{(\sqrt{2}+i2)(\kappa^{2}-i2)}$
	$\Rightarrow \frac{2i\theta \varphi o + e^{i\theta} \pi^2}{10^2 (2\pi^2 + 6)^2} = 0 \pi (2\pi^2 + 6) = \frac{1}{2\pi^2 + 6^2 - 4\pi^2 - 5}$
	$ = \frac{\frac{1}{2} + \frac{\sqrt{2}}{2}}{\sqrt{2}} = \omega t(s_{2}s^{*}) \qquad (=) \omega t(s_{2}s^{*}) = \sqrt{6} + \sqrt{3} - \sqrt{2} - 2$
	5 2 + 2 + 5 8/ANRAD

#### Question 165 (****)

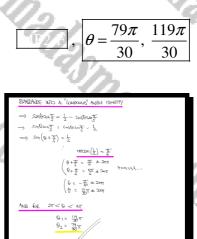
Solve the trigonometric equation

 $\ln(\operatorname{cosec} \theta) = \ln 4 - \ln(\operatorname{sec} \theta), \quad 0 < \theta < \frac{\pi}{2},$ 

giving the answers in terms of  $\pi$ .



ly (losed) = M4 - ln(seco)	{ SIN20 = 4	
$\ln(\log \theta) + \ln(\log \theta) = \ln \theta$	S arzin(f) = F	
h (weed seco) = h4	20 = F ± 2mm 20 = F ± 2mm	4091,27
$\ln\left(\frac{L}{\sin\theta\cos\theta}\right) = \ln 4$	{         (         θ =          世 ± m         θ =          世 ± m         /         θ =          世 ± m         /         /         θ =          /         /         /	
$\ln\left(\frac{2}{2s_{10}6c_{0}s_{0}}\right) = \ln t_{1}$	€ \$(=].	
$\ln\left(\frac{2}{suy2\theta}\right) = \ln 4$	$\theta_2 = \frac{\pi}{12}$	
$\frac{2}{su/2\theta} = 4$		


Question 166 (****)

Solve the trigonometric equation

 $\sin\theta\cos\frac{\pi}{5} = \frac{1}{2} - \cos\theta\sin\frac{\pi}{5}, \ 2\pi < \theta < 4\pi,$ 

3

giving the answers in terms of  $\pi$ .



6

В

### Question 167 (****) non calculator

 $A \xrightarrow{\qquad x \qquad 45^{\circ}}_{2\sqrt{3}} \xrightarrow{\qquad \theta \qquad C}_{C}$ 

The figure above shows a triangle ABC where  $|AC| = 2\sqrt{3}$  and |AB| = x.

The angles ABC, CAB and BCA are 45°, 30° and  $\theta^{\circ}$ , respectively.

a) By using a suitable compound angle identity show clearly that

$$\sin 105^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}$$

**b)** Show without the use of a calculating aid that the exact length of AB, is

 $3+\sqrt{3}$ .

proof

1+

E.O= 105?  $\frac{|\frac{1}{2}\sqrt{3}|}{\sqrt{2}} \times \frac{\sqrt{6} + \sqrt{2}}{46}$ 

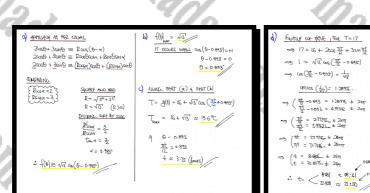
Question 168 (****)

$$f(\theta) = 2\cos\theta + 3\sin\theta, \ \theta \in \mathbb{R}$$

- a) Express  $f(\theta)$  in the form  $R\cos(\theta \alpha)$ , R > 0,  $0 < \alpha <$ Give the value of  $\alpha$  correct to 3 decimal places.
- **b**) State the maximum value of  $f(\theta)$  and find the smallest positive value of  $\theta$  for which this maximum occurs.

The temperature T °C in a warehouse is modelled by the equation

$$T = 16 + 2\cos\left(\frac{\pi t}{12}\right) + 3\sin\left(\frac{\pi t}{12}\right), \ 0 \le t < 24,$$


where t is the time in hours measured since midnight.

- c) State the maximum temperature in the warehouse and a value of t when this maximum temperature occurs.
- **d**) Find the times, to the nearest minute using 24 hour clock notation, when the temperature in the warehouse is 17 °C.

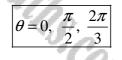
 $, \left| 2\cos\theta + 3\sin\theta \equiv \sqrt{13}\cos\left(\theta - 0.983^{c}\right) \right|, \left| \max = \sqrt{13} \right|, \left| \theta = 0.983^{c} \right|, \left| \theta =$ 

 $|T_{\text{max}} \approx 19.6|,$ 

 $t_{\text{max}} = \overline{3.75}$ , 08:41/22:50



Question 169 (****)


It is given that

$$\sin P + \sin Q \equiv 2\sin\left(\frac{P+Q}{2}\right)\cos\left(\frac{P-Q}{2}\right).$$

- a) Prove the validity of the above trigonometric identity by using the compound angle identities for sin(A+B) and sin(A-B).
- **b**) Hence, or otherwise, solve the equation

 $\sin\theta + \sin 2\theta + \sin 3\theta = 0, \quad 0 \le \theta < \pi$ 

giving the answers in terms of  $\pi$ .



- Sim (4+B) = SimAracB+corAsmB <u>Sim (4+B) = SimAracB-corAsmB</u> Sim(A+B) = SimAracB (By adding)
- $\begin{array}{c|c} \mbox{tr} P=A+B & \mbox{shift} P=A+B \\ Q=A-B & \mbox{shift} P=\Phi=2B \\ A=P_{2Q} & P_{2Q} \\ \mbox{three} \mbox{three} \mbox{three} P=P_{2Q} = 2B \\ \mbox{three} \mbox{three} \mbox{three} \mbox{three} P=P_{2Q} = 2B \\ \mbox{three} \mbox$
- SMB + SM20 + SM30 = 0
- $\Rightarrow SM_{P}^{(30+6)} + SM_{Q}^{(30-6)} + SM_{Q}^{$
- ⇒ 2am20cos0 + am20=0

 $M2\Theta(2LOSO+1) < C$ 3m20=0 20 = 0 ± 2mm 20 = m ± 2mm ( $\theta = 0 \pm W + \theta = \frac{1}{2} \pm h = 0$ ●=0,東,2車

1+

#### (****) Question 170

Given that

21/15.COM

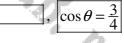
I.F.G.B.

>

 $64\cos 2\theta\cos\theta + 32\sin 2\theta\sin\theta = 27,$ 

Madası

The Com


find the value of  $\cos \theta$ .

madasma

INadasm

011

I.F.G.p



ŀ.G.p.

Madasmaths.com

I.C.B.

Madasm

G

The Com

aths com

- $GU_{1002} \otimes G + 32 \otimes M \otimes G = 27$ 64 (20050-1) Cast + 32 (25mb)
- 1280029 64059 + 6450000 = 27
- $128\cos^2\theta = 64\cos\theta + 64(1-\cos^2\theta)\cos\theta = 27$
- 1280020 640000 + 64000 440020 = 27
- $(\omega_{a}^{2}\theta = \frac{27}{64})$

KGB.

m

Created by T. Madas

COM

.C.

madasmaths,

(****) Question 171

$$f(x) = 2\sin x + 2\cos x, \ x \in \mathbb{R}$$

- a) Express f(x) in the form  $R\sin(x+\alpha)$ , R > 0,  $0 < \alpha < \frac{\pi}{2}$ .

i. ... 
$$y = f\left(x - \frac{\pi}{2}\right)$$
.

**ii.** ... y = 2f(x) + 1.

**iii.** ...  $y = [f(x)]^2$ .

I.C.B.

Smaths.com

I.C.p

**v.** ... 
$$y = \frac{10}{f(x) + 3\sqrt{2}}$$
.

madasmaths,

N.C.

2

Mada

COM

.. 
$$y = f\left(x - \frac{\pi}{2}\right)$$
  
..  $y = 2f(x) + 1$ .  
..  $y = \left[f(x)\right]^2$ .  
..  $y = \frac{10}{f(x) + 3\sqrt{2}}$ .  
 $\left[ \sqrt{2}, \sqrt{8} \sin\left(\theta + \frac{\pi}{4}\right)\right], \left[-\sqrt{8}, \sqrt{8}\right], \left[-2\sqrt{8} + 1, 2\sqrt{8} + 1\right], \left[0, 8\right], \left[\sqrt{2}, \sqrt{2}\right]$ 

Smaths.col



Y.C.B.

maths.com

·GA

Ż

G

madasm

madasman

The Com

- Question 172 (****)
- It is given that  $\theta$  and  $\varphi$  are such so that

 $\tan \theta = t$  and  $\tan \varphi = t - 1$ ,

where t is a constant.

It is further given that

$$\frac{1}{\cos^2\theta} - \frac{1}{\cos^2\varphi} = 3.$$

- **a**) Show clearly that t = 2.
- **b**) Determine the exact value of  $tan(\theta + \varphi)$ , showing clearly all the steps in the workings.

a) working the bucks
$= \frac{1}{\phi_1^{2}\omega} - \frac{1}{\phi_2^{2}\omega} = 3$
$\Rightarrow$ $2c\theta - 3c\theta = 3$
$= (1 + build ) - (1 + tuild ) = 3 \qquad (1 + build = acd)$
=> truto = truto = 2
$\implies t^{\lambda} - (t-i)^{\lambda} = 3$
$= 9 + 2 - (t^2 - 2t + 1) = 3$
⇒ tr-tr+2t-1=3
$\Rightarrow$ t=2
D
6) USING THE THNIGED COMPOUND IDNILITY
$\Rightarrow \tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{(-\tan \theta + \tan \phi)} = \frac{t + t (t-1)}{1 - t (t-1)}$
$= \frac{2t-l}{1-t^{\alpha}+t} = \frac{2t-1}{l-2^{\alpha}+2} = \frac{2x2-l}{3-2^{\alpha}}$
= 3 = -3
n se

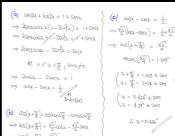
 $\tan(\theta + \varphi) =$ 

#### Question 173 (****)

$$\sin 2x + \cos 2x = 1 + \sin x$$
,  $0 < x < \frac{\pi}{2}$ 

a) Show that the above trigonometric equation can be written as

$$\cos x - \sin x = \frac{1}{2}.$$


- **b**) Express  $\cos\left(x + \frac{\pi}{4}\right)$  in the form  $R(A\cos x + B\sin x)$ , where *R*, *A* and *B* are constants to be found.
- c) Use the results of part (a) and (b) to solve the trigonometric equation

 $\sin 2x + \cos 2x = 1 + \sin x, \quad 0 < x < \frac{\pi}{2}.$ 

 $R = \frac{\sqrt{2}}{2}$ , A=1, B=-1

Ĉ.Ŗ.

G



(****) Question 174

$$f(x) = \sin 2x, \quad x \in \mathbb{R}$$

$$g(x) = f\left(x + \frac{\pi}{4}\right) - f\left(x - \frac{\pi}{4}\right), \ x \in \mathbb{R}.$$

$$g(x) = 2\cos 2x.$$

a) Show clearly that

>

I.F.G.B.

2011

I.F.G.p

$$g(x) = 2\cos 2x$$

**b**) Express g'(x) in terms of f(x)

Ŋ

00

K.C.

~	
	m.
2. 10	AN.
15.	282
S'A	· · · · · · · · · · · · · · · · · · ·
g'(x) =	-4f(x)

~

20

I.C.p

They

F.G.B.

COM

·GA

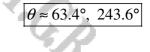
G

Madasn

#### a) ga) & fa) MAD while Sim(A±B) FOM THE DIFF to GOTTIN

- $g(x) = f(x + \overline{x}) f(x \overline{x})$
- $\Rightarrow g(0) = Sm[2(2+m] Sm[2(2-m)]$
- $g(i) = \sin \left[2i + \frac{\pi}{2}\right] \sin \left[2i \frac{\pi}{2}\right]$ ⇒ f(i) = suprest +usesmit - [suprest -usesmit]
- ±urzerose = (0 € ← ESHT=1)
- ⇒ 30) = 20023 +3 Stephero

#### b) DIFFERENSIINTING ACL)


g'(x) = -4sm2x g'(x) = -4-f(x)

27

#### Question 175 (****)

Solve the trigonometric equation

 $\sec\theta - \cos\theta = 8(\csc\theta - \sin\theta), \ 0 \le \theta < 360^\circ.$ 



### Question 176 (****)

It is given that

 $\sin 3\theta \equiv 3\sin \theta - 4\sin^3 \theta \, .$ 

a) Prove the validity of the above trigonometric identity by writing  $3\theta$  as  $2\theta + \theta$ .

**b**) Hence solve the trigonometric equation

 $12\sin^3\theta - 9\sin\theta = 1.5, \quad 0 \le \theta < 360^\circ.$ 

 $\theta = 70^{\circ}, 110^{\circ}, 190^{\circ}, 230^{\circ}, 310^{\circ}, 350^{\circ}$ 

$\Theta S_{MR} = (\Theta + \Theta S)_{MR} = \Theta S_{MR} = 244 \text{ (p)}$	- Otwa (1520) + Ozo)
$= (2 \sin \theta \cos \theta) + \theta \cos \theta \cos \theta = (1 - 2 \sin^2 \theta)$	$an\theta = 2sin \theta cos^2 + sin \theta - 2sin^2 \theta$
	041125-0112+0 ⁶ 1125-01125 =6
$= 3 \sin \theta - 4 \sin^3 \theta = RHS$	s
$\begin{cases} 2.1 = \theta_{M2}P - \theta_{SM}^2 \theta_{M2} \\ 2.0 = \theta_{M2}P - \theta_{SM} \\ \psi_{M2} \\ \psi_{$	30 = −30° ± 3604 30 = 210° ± 3604 4=0,1(2,3
$\Rightarrow 3 \sin \theta - 4 \sin^2 \theta = -0.5$	8= -10° ± 1204 8= 70 ± 1204
$\implies Sin_3\theta = -\frac{1}{2}$ $atcan(-\frac{1}{2}) = -30$	9 = 110, 230, 350, 70, 190, 310°

1.4

#### Question 177 (****)

Solve the trigonometric equation

 $\frac{\cot\psi}{\csc\psi-1} - \frac{\cos\psi}{1+\sin\psi} = 2, \quad 0 < \psi < 2\pi,$ 

giving the answers in terms of  $\pi$ .

22	$\psi = \frac{1}{4}, \frac{1}{4}$
$\begin{array}{l} \frac{\partial f(\psi)}{\partial s c c \mu_{1}} - \frac{c c s \psi}{1 + s w \psi} = 2, \\ 0, \frac{\partial s \psi}{\partial s w \psi} - 1,  - \frac{c s \psi}{1 + s w \psi} = 2, \\ 0, \frac{\partial s \psi}{\partial s w \psi} - 1,  - \frac{c s \psi}{1 + s w \psi} = 2, \\ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{l} \begin{array}{l} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{l} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{l} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{l} \end{array}\\ $
$= \frac{1}{1-Swp} = \frac{1}{1+Swp} = 2$ $= \frac{1}{1-Swp} = \frac{1}{1+Swp} = \frac{2}{6sp}$	$\begin{array}{c} \left. \begin{array}{c} \operatorname{ardsul} = \mp \\ \psi = \mp \pm \pi \eta \\ \psi = \pi \end{array} \right. \\ \left. \begin{array}{c} \psi_{1} = \pi \end{array} \right. \\ \left. \begin{array}{c} \psi_{1} = \pi \end{array} \right. \end{array}$
- theme of theme a	化二年

 $\pi$  5 $\pi$ 

#### Question 178 (****)

Solve each of the following trigonometric equations.

i.  $\frac{2\cot^2 x + 5}{\csc x} + 2\csc x = 13$ ,  $0 \le x < 2\pi$ 

ii.  $2\cos 2\theta = 1 - 2\sin \theta$ ,  $0 \le \theta < 360^\circ$ .

/`	12	· · · · · · · · · · · · · · · · · · ·
S.C.	(c) $\frac{2u(t_{3-1})}{(uxz_{3-1})^{-2}} \frac{2u(uz_{3-1})}{(uxz_{3-1})^{-2}} \frac{2u(uz_{3-1})}{(uxz_{3-1})^{-2}} \frac{2u(uz_{3-1})}{(uz_{3-1})^{-2}} \frac{2u(uz_{3-1})}{(uz_{3-1}$	$ \begin{array}{l} \hline { { { { { { { { { { { } } } } } } } $

 $x \approx 0.340^{\circ}, 2.80^{\circ}, \theta = 54^{\circ}, 126^{\circ}, 198^{\circ}, 342^{\circ}$ 

#### Question 179 (****)

Smaths Com Live

Marla

I.F.G.B.

Solve the following trigonometric equation

 $\arctan\left(\frac{1}{x}\right) + \arctan\left(\frac{1}{x+1}\right)$ 



naths.com

naths.com

Y.G.B.

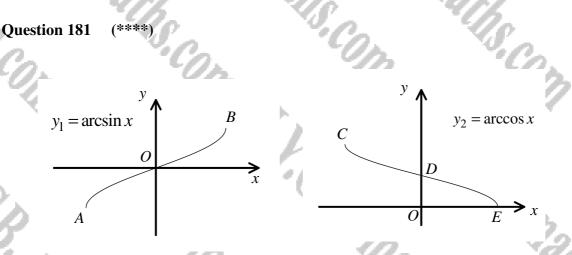
Y.G.B.

1.1.6.

113/3ST12

I. K. C.B. Marian

#### (****) **Question 180**


Solve the following trigonometric equation

 $2\arctan\left(\frac{3}{x}\right) = \arcsin\left(\frac{6x}{25}\right).$ 

	$2 \arctan\left(\frac{3}{x}\right) = \arcsin\left(\frac{6x}{25}\right).$		
I.F. C.B	GB	Placed at Price	· K.G.p
	madasma.	$\Rightarrow$ 2 anctan $\left(\frac{3}{2}\right) = \arctan\left(\frac{5a}{25}\right)$	asmarh.
	alls.	$\Rightarrow 2\theta = \phi$ $\Rightarrow \sin(2\phi = \sin\phi)$ $\Rightarrow 2\sin(2\phi = \sin\phi)$ $(2\sin\phi - \sin\phi)$ $(2\sin\phi - \sin\phi)$ $(2\sin\phi - \sin\phi)$ $\Rightarrow 2\left(\frac{1}{4\pi^{2}}\left(\frac{1}{4\pi^{2}}\right)^{2}\right) = \frac{6}{22}$ $\Rightarrow \frac{6}{1+3^{2}} = \frac{6}{22}$ $\Rightarrow 1+3^{2} = 2e$ $\Rightarrow 2^{2} = 1$	
I.V.			1.Y.
	102	- · · · · · · · · //	
			Casinari
	B. I.C.	, ··Cp	
30. 11302	Created by T. Madas	Mada II	20/28 ×
782 YSA	· 12.	Sh.	102

Mrs.com

naths.com



The figures above show the graph of  $y_1 = \arcsin x$  and the graph of  $y_2 = \arccos x$ .

The graph of  $y_1$  has endpoints at A and B.

The graph of  $y_2$  has endpoints at C and E, and D is the point where the graph of  $y_2$  crosses the y axis.

**a**) State the coordinates of A, B, C, D and E.

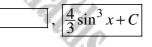
The graph of  $y_2$  can be obtained from the graph of  $y_1$  by a series of two geometric transformations which can be carried out in a specific order.

- b) Describe these two geometric transformations.
- c) Deduce using valid arguments that

 $\arcsin x + \arccos x =$ constant ,

stating the exact value of this constant.

 $D\left(0,\frac{\pi}{2}\right)$ E(1,0)constant  $-1,\pi$ 




- Question 182 (****)
- It is given that
- $\sin(A+B) \equiv \sin A \cos B + \cos A \sin B.$
- a) Use the above trigonometric identity to show that

 $\sin 3x \equiv 3\sin x - 4\sin^3 x \,.$ 

**b**) Hence find

 $\cos x (6\sin x - 2\sin 3x)^{\frac{2}{3}} dx.$ 



#### a) <u>Abeers as Rouce</u> Sm32 = Sm(2

- = (2511721052+ 052154)= = (2511721052)552+ ()-25132)9172 = 2511721652= 2013-2013
- = 251172022 + 51172 20132 = 251172 (1-51122) + 51172 - 251132 = 251172 - 251132 + 51172 - 251132
- 35142 251452 2514 35142 - 451432

Ĉ.

G

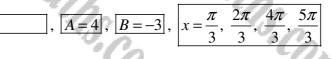
#### USING THE BRULT OF PART (g)

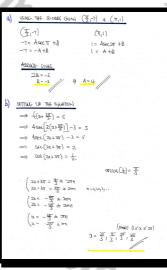
- $\int (0.52 (65102 251432)^{\frac{3}{2}} dz$
- $= \int \cos \left[ 6 \sin \alpha 2(3\sin \alpha 4\sin^3 \alpha) \right]^{\frac{3}{2}} d z$  $= \int \cos \left[ 6 \sin \alpha 6 \sin^3 \alpha + 8 \sin^3 \alpha \right]^{\frac{3}{2}} d z$
- $= \int \cos \left[ \int \sin x \int \sin x + B \cos \frac{3}{2} \right]$ =  $\int \cos \left( B \sin \frac{3}{2} \right)^{\frac{3}{2}} dx$
- = 1 war (824)3 = 1 casa (4543) da
- = [ floszsowia de
- the mathematical per anno an anti-
- $=\frac{7}{7} \cos 7 + C$

Question 183 (****)

 $f(x) = A \sec 2x + B, \ 0 \le x < 2\pi.$ 


The graph of f(x), where A and B are non zero constants, passes through the points


 $\left(\frac{\pi}{2},-7\right)$  and  $(\pi,1)$ .


F.G.B.

I.C.B.

- **a**) Determine the value of A and the value of B.
- **b**) Solve the equation







i G.B.

G

Mada

aths

nadasm.

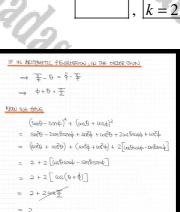
Ins.

#### (****) Question 184

It is given that the angles  $\theta$ ,  $\frac{\pi}{4}$  and  $\varphi$  are in arithmetic progression.

Show that

I.C.p


200

 $(\sin\theta - \sin\varphi)^2 + (\cos\theta + \cos\varphi)^2 = k$ ,

where k is a constant to be found.

.F.G.B.

10



1.E K= 2

27

Y.C.P.

11212

E.G.A

nadasn.

he,

COM

1.4

Question 185 (****)

adasma

Madasm

COM

I.C.B.

It is given that

2ths.com

I.V.C.B.

>

 $\cos x \cos \left( x + \frac{\pi}{4} \right) - \cos \left( 2x - \frac{\pi}{4} \right) = 0.$ 

nadasmaths,

. F.G.B.

nn,

madasmaths,

COM

Given further that  $x \neq k\pi$ ,  $k \in \mathbb{Z}$ , show clearly that  $\tan x = 3$ 

proof

Ins.com

Ths.com

. G.B.

Madasma

I.F.G.

I.V.C.B. Madasn

Madasmaths Com

Created by T. Madas

00

Question 186 (****)

F.G.B.

I.G.B.

 $y = \arcsin x \,, \, -1 \le x \le 1 \,.$ 

**a**) By expressing  $\arccos x$  in terms of y, show that

 $\arcsin x + \arccos x = \frac{\pi}{2}$ 

**b**) Hence, or otherwise, solve the equation

 $3 \arcsin(x-1) = 2 \arccos(x-1)$ .

12= arcsi smA= coc徑~~~) cocA= sm(空~+) (w ィーチー As y= ansing to require to

 $\pi$ 

5

 $x = 1 + \sin \left| \frac{1}{2} \right|$ 

≈1.5878

COM

11₂₀₂

F.G.B.

I.F.G.

nn,

- =) Ξαπωμy = T-=) Saπωμy = T
- orcsiny =
- -> 3 = CMF -> 2-1 = SMF

200

⇒ ==1+5mz × 1.58778...

#### Question 187 (****)

20

Simplify, showing clearly all the workings, the trigonometric expression

 $\cos^3\theta\sin\theta-\sin^3\theta\cos\theta\,,$ 

giving the final answer in the form  $A\sin k\theta$ , where A and k are constants.

Mada,

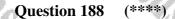
	$\underline{}, \underline{} \frac{1}{4} \sin 4\theta$
Places 45 fougues	
Ozao O ⁵ Niz - Orne O ^f zo) (=- [O ⁵ Niz - O ^f zio] OrneOzoo =	
= COSO SIMO × COSOO	$[\omega s 2\theta \equiv \omega s^2\theta - s i \theta g]$
$=\frac{1}{2}(2\log\log(\theta))$	
= + <u>5</u> .5142000520-	[an28 = 2.5unθcos8]
= + × 2.5.1120 (0520)	
= ± sinilit	Sim40 = Sim(2×20) Sim40 = 2 Sim20 (220
A= 4 , k=4	

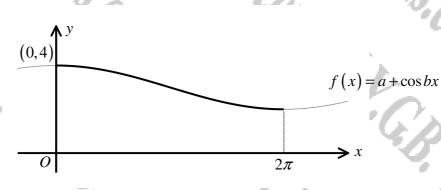
nadasn.

00

Mana,

G


. F.G.p. ろ


Created by T. Madas

0

ŀ.C.p

2017





The figure above shows the graph of the function

$$f(x) = a + \cos bx, \ 0 \le x \le 2\pi,$$

where a and b are non zero constants.

The stationary points (0,4) and  $(2\pi,2)$  are the endpoints of the graph.

- a) State the range of f(x) and hence find the value of a and the value of b.
- **b**) Find an expression for  $f^{-1}(x)$ , the inverse function of f(x).
- c) State the domain and range of  $f^{-1}(x)$ .
- **d**) Find the gradient at the point on f(x) with coordinates  $\left(\frac{4\pi}{3}, \frac{5}{2}\right)$ .
- e) State the gradient at the point on  $f^{-1}(x)$  with coordinates  $\left(\frac{5}{2}, \frac{4\pi}{3}\right)$ .

 $\boxed{\begin{array}{c} \begin{array}{c} \\ \end{array}, \ 2 \le f(x) \le 4 \end{array}, \ a = 3, \ b = \frac{1}{2} \end{array}, \ f^{-1}(x) = 2 \arccos(x-3) \ , \ \underline{2 \le x \le 4} \end{array}, \\ \boxed{\begin{array}{c} 0 \le f^{-1}(x) \le 2\pi \end{array}, \ -\frac{\sqrt{3}}{4} \end{array}, \ -\frac{4}{\sqrt{3}} \end{array}}$ 

6

#### Question 189 (****)

Solve the following trigonometric equation.

 $\arctan 2x + \arctan x = \arctan 3$ ,  $x \in \mathbb{R}$ .



Question 190 (****)

The function f is defined below.

 $f(x) \equiv 4\cos x - 3\sin(\frac{1}{2}x), \quad x \in \mathbb{R}.$ 

Show that if  $\theta$  satisfies the equation

# $4\sin\left(\frac{1}{2}\theta\right)+\sqrt{3}=0\,,$

then  $f(\theta) = \frac{1}{4}(a+b\sqrt{3})$ , where a and b are integers to be found.

$\frac{1}{4}(10+3x)$	/3)
$\frac{1}{2} \frac{1}{2} \frac{1}$	
• We held no satisfies and the first summary Montration the forestical $= - \left\{ (b) = - \frac{1}{4} \log 2 - \frac{3 \sin \frac{b}{2}}{2} - \frac{(c_0 + 2a)}{2} + \frac{1}{2} \log \frac{b}{2} - \frac{1}{2} \log \frac{b}{2} - \frac{1}{2} \log \frac{b}{2} + 1$	(q) 🟅
• SIMULTING THE ABOVE AT SINGLASS $\mathcal{L}_{\mathbf{x}}^{\mathbf{x}} = \mathcal{L}_{\mathbf{x}}^{\mathbf{x}}$ $\Rightarrow \mathcal{L}_{\mathbf{x}}^{\mathbf{x}} = \mathcal{L}_{\mathbf{x}}^{\mathbf{x}} = \mathcal{L}_{\mathbf{x}}^{\mathbf{x}} = \mathcal{L}_{\mathbf{x}}^{\mathbf{x}} = \mathcal{L}_{\mathbf{x}}^{\mathbf{x}}$	~~~~
$= 4 - 8\left(\frac{3}{6}\right) + \frac{34}{7}$ $= \frac{5}{2} + \frac{34}{7}$ $= \frac{9}{2} + \frac{34}{7}$	

= 1 (10+313)

F.G.B.

6

#### Question 191 (****)

The obtuse angles A and A, satisfy the following relationships.

$$\cos 2A = \sin B = \frac{1}{3}.$$

Determine the exact value of  $\tan(A+B)$ .

	$ ,   \tan(A+B) = -\sqrt{2} $
1	STALTING FROM COS24 = 1/2 & NOTING THAT 4 15 OBTOGE
	$\Rightarrow (as2A = 2as2A - 1)$ $\Rightarrow \frac{1}{3} = 2as2A - 1$ $\Rightarrow \frac{1}{3} = 2as2A - 1$ $\Rightarrow \frac{1}{3} = 2as2A$ $\Rightarrow (as2A = \frac{2}{3})$ $\Rightarrow (asA = -\sqrt{\frac{2}{3}})  (A'(a \operatorname{conset}))$
	HANCE BY A STANDARD FLOHT ANDRED TRIANOLE
	$\int \frac{d^2}{\sqrt{2}} \qquad \Rightarrow \qquad t_{\text{tau}} A = -\frac{1}{\sqrt{2}}$
	SMULARLY SMB = { (B OBTUSE SO BOTH SIMB & TWB ARE MERATIVE)
	$\frac{3}{\frac{\beta}{2\sqrt{2}}} \approx \frac{1}{2\sqrt{2}}$
	• finally by the collinguation Area town in the final set of the field of the fiel
	$= -\frac{\frac{3}{2\sqrt{2}}}{\frac{3}{4}} = -\frac{12}{662} = -\frac{2}{\sqrt{2}} = -\sqrt{2}$

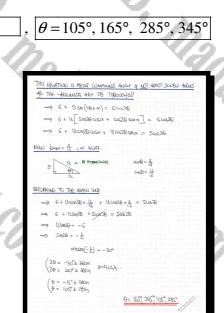
#### **Question 192** (****)

Simplify  $(\tan x + \cot x) \sin 2x$  and hence prove that

 $\tan\left(\frac{1}{8}\pi\right) + \tan\left(\frac{5}{12}\pi\right) + \cot\left(\frac{1}{8}\pi\right) + \cot\left(\frac{5}{12}\pi\right) = 4 + 2\sqrt{2}.$ 



ana + wha) singla = bunasing	a + ata sinza
= <u>1017</u> ×23	anacosa + Caca × 20Macosa
= 2.5434	21052
= 2(svp.	+603)
= 2	
	: (tematota)siva = 2
10.Stuit THE CARESSUN 46.FOR fau开+ (叶苷) Sau开 =2	(for \$\$\vec{1}{2} + 67\$\vec{1}{2}\$) son \$\vec{1}{2}\$ = 2


# 99 HARD QUESTIONS FAX III I.Y.G.B. Madasmalls.Com I.Y.G.B. Madasma I.Y.C.B. Madasmalls.Com I.Y.C.B. Madast

#### Question 1 (****+)

Find the solutions of the trigonometric equation

 $6+13\sin(2\theta+\alpha)^\circ=5\cos 2\theta^\circ, \ 0\le\theta<360$ 

where  $\tan \alpha^\circ = \frac{5}{12}$ ,  $0 < \alpha < 90$ .



#### **Question 2** (****+)

It is given that  $\sin 1^c \approx 0.8415$  and  $\cos 1^c \approx 0.5403$ .

Show that  $sin(1.01^{c}) = 0.847$ , correct to three decimal places.

, proof

1

 $\begin{array}{l} (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1)$ 

#### Question 3 (****+)

It is given that  $\theta$  satisfies the equation

 $4\tan\theta + \cot\theta = 4.$ 

Show clearly that

 $\cos 2\theta = \frac{3}{5}$ .

Question 4	(****+)
	( )

Find in radians, correct to two decimal places, the solutions of the trigonometric equation

 $\sec 2x - 3\tan 2x = 2$ ,  $0 \le x < 2\pi$ .

2	
Sec21, $-3bm/2 = 2$ . $\implies \frac{1}{bn/2} - \frac{3m/2}{bn/2} = 2$ $\implies 1 - 3m/2 = 2m/2$	
$\begin{array}{l} (\omega, \omega)_{\rm rel} = (\omega, \omega)_{\rm rel} = (\omega, \omega)_{\rm rel} \\ (\omega, \omega)_{\rm rel} = (\omega, \omega)_{\rm rel} = (\omega, \omega)_{\rm rel} \\ (\omega, \omega)_{\rm rel} = (\omega, \omega)_{\rm rel} = (\omega, \omega)_{\rm rel} \\ (\omega, \omega)_{\rm rel} =$	
$ \begin{array}{c} \Longrightarrow \begin{pmatrix} 2\alpha + 0.53t' = 0.28t' \pm 2n\eta \\ \alpha + 0.986' = 2.86t' \pm 2n\eta \\ \alpha = -0132 \pm n\eta \\ \Rightarrow \begin{pmatrix} \alpha = -0132 \pm n\eta \\ 1.5 \\ \alpha = 1.5 \\ \alpha =$	
1. It = 1.14" 2.99" 4.28° 6.13°	-

 $x \approx 1.14^{\circ}, 2.99^{\circ}, 4.28^{\circ}, 6.13^{\circ}$ 

proof

 $4\tan\theta + \frac{1}{\tan\theta} = 4$   $4\tan^{2}\theta + 1 = 4\tan\theta$   $4\tan^{2}\theta - 4\tan\theta + 1 = 1$ 

 $taq^2 \Theta = \frac{1}{4}$ 

#### Question 5 (****+)

Solve in radians the trigonometric equation

 $\sin 8x = \sin 2x, \ 0 \le x < \frac{\pi}{2},$ 

giving the answers in terms of  $\pi$ .

		- 74	e		
	x = 0,	$\frac{\pi}{10}$ ,	$\frac{3\pi}{10}$ ,	$\frac{\pi}{3}$ ,	$\frac{\pi}{2}$
2				-	1
	$=0$ $2\cos\frac{P+\varphi_{SN}P-\varphi}{2}$ $m\left(\frac{B_{2}-2\pi}{2}\right)=0$	7	$\frac{\text{ATHAUATTUE}}{\text{SUBR} = SU}$ $\begin{cases} \text{Br} = 23\\ \text{Br} = (T-1)\\ \text{Br} = (T-1)\\ \text{Br} = (T-1)\\ \text{Br} = T \end{cases}$	-±2m -22)±2m =0:(12,3,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
۲ı:	$ \begin{array}{c} \underbrace{op} \\ \underbrace{(3\lambda = 0 \pm 2i} \\ 3\lambda = \pi \pm 2i \\ \underbrace{op} \\ \underbrace{(3\lambda = 0 \pm 2i} \\ \underbrace{(\lambda = 0 \pm 2i)} \\ \underbrace{a = \frac{\pi}{3} \pm 2i \\ \underbrace{a = \frac{\pi}{3} \pm 2i} \\ \end{array} $	(	$\begin{aligned} \boldsymbol{\mathcal{L}} &= \boldsymbol{\mathcal{O}} \\ \boldsymbol{\mathcal{L}} &= \prod_{i \in I} \\ \boldsymbol{\mathcal{L}} &= \boldsymbol{\mathcal{L}} \\ \boldsymbol{\mathcal{L}} &= \boldsymbol{\mathcal{L}} \\ \boldsymbol{\mathcal{L}} &= \boldsymbol{\mathcal{L}} \\ \boldsymbol{\mathcal{L}} & \boldsymbol{\mathcal{L}} \end{aligned}$	± ^{MT} ± ^{MT} ± ^{MT} 5 ^{MT} 5 ^{MT} 5 ^{MT} 5 ^{MT} 5 ^{MT} 5 ^{MT} 5 ^{MT}	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Question 6 (****+)

Solve in degrees the trigonometric equation

 $\sin 5\theta + \sin 3\theta = 0$ ,  $0^\circ \le \theta < 180^\circ$ .

$\theta = 0^{\circ}, 4$	5°, 90°, 135°
12.	
8M58 + SM38 = 0	Althouatrue 7
$\left( \underbrace{\operatorname{KiN}_{P}}_{\operatorname{KiN}_{P}} + \operatorname{KiN}_{Q} = 2 \operatorname{Sin}_{2} \frac{P + Q}{2} \cos \frac{P - Q}{2} \right)$	$\begin{cases} 3850 + 5430 = 0 \\ 5450 = -5430 \\ 5450 = -5430 \\ 4850 = 536 \\ -3850 = -540 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 \\ -3850 $
$\Im \operatorname{an}\left(\frac{59+39}{2}\right) \operatorname{cos}\left(\frac{59-39}{2}\right) = 0$	$\begin{cases} (50 = -30 \pm 360 \\ (50 = (180 + 30) \pm 360 \\ \end{cases}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{pmatrix} & & & & & & \\ & & & & & & \\ & & & & & $
$ \begin{pmatrix} \Theta = & 0 \pm q_{Oq} \\ \Theta = & \delta \pm q_{Oq} \\ \Theta = & \delta \pm q_{Oq} \end{cases} $	$\begin{pmatrix} \theta = 0 \pm 45 n \\ \theta = 90 \pm 100 n \\ \theta = 0^{2} 45^{\circ} 10^{\circ} 135^{\circ} \end{pmatrix}$

1+

#### (****+) Question 7

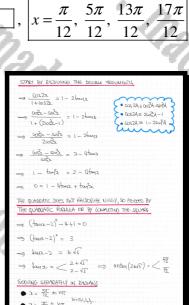
>

I.F.G.B.

I.F.G.p.

COM

Solve the following trigonometric equation


ŀ.G.B.

I.C.

$$\frac{\cos 2x}{1 + \cos 2x} = 1 - 2\tan x \,, \ 0 \le x < 2\pi \,,$$

nadasn.

giving the answers in terms of  $\pi$ .



The Com

E.

a= The to hat ス= 荒、管,際、海

nn

The

COM

I.F.G.

Created by T. Madas

madasmarna marns

2011

#### **Question 8** (****+)

F.G.B.

I.C.B.

Solve in degrees the trigonometric equation

 $4 \tan(\theta + 60) \tan(\theta - 60) = \sec^2 \theta - 16, \ 0^\circ \le \theta < 180^\circ.$ 

(Currently and ) and the second second second second	
USING THE THA CONTROLOG ANDRE IDNJITY & THE PYTHAGORAMI IDNJYY CONNECTING tongog seco	-
munny	~
$\rightarrow 4 \ln(\theta + 6) \tan(\theta - 6) = \operatorname{sr}^2 \theta - 16 \qquad \left\{ \tan(\theta + 8) = \frac{\tan \theta \pm \tan \theta}{1 \pm \cos \theta + \tan \theta} \right\}$	
->4 (Level + level) (Level - level) = (1+b+2)-6 2 + = see24	INOI
{ the (60 = 13')	{
$\longrightarrow \frac{1}{4\left(\frac{1}{2}\cos(\theta + \omega_{2}^{2}) + \omega_{1}^{2}\right)} \approx \frac{1}{4\omega_{1}^{2}} + \frac{1}{4\omega_{1}^{2}} $	
$\implies \frac{4(4a_1^2b-3)}{(-3)a_1^2\theta} = 4a_1^2\theta - 15$	
$\rightarrow 4\frac{T-3I}{1-3T} = T-1S$ ) with $T = tan \theta$	
$\Rightarrow 4(\tau_{-3}) = (\tau_{-1}s)(\tau_{-3}\tau)$	
⇒ 4T - 12 = 1 - ST= 15 + 4ST	
$\implies 3T^2 = 42T + 3 = 0$	
$\implies$ $T^2 - 14T + 1 = 0$	
$\Rightarrow (\tau - \tau)^2 - 48 = 0$	

 $(\tau - \tau) = 48$  $\tau - \tau = \pm \sqrt{48}^{-1}$ 

 $T = 7 \pm \sqrt{48}^{1}$ 1augo= 7 ± 148  $\log \theta = \pm \sqrt{7 \pm \sqrt{48}}$ )= 75±1000 )= 75±1000 · 0= 15, 75, 105, 165

200

COM

Mada

G

I.C.p

 $\theta = 15^{\circ}, 75^{\circ}, 105^{\circ}, 165^{\circ}$ 

S.Com

#### (****+) **Question 9**

Com

I.C.B.

Com I. K.C.J

Prove the validity of each of the following trigonometric identities.

nadasm

- a)  $(\tan\theta + \cot\theta)(\sin\theta + \cot\theta) \equiv \sec\theta + \csc\theta$ .
- **b**)  $\tan\left(\theta + \frac{\pi}{4}\right) \equiv \sec 2\theta + \tan 2\theta$ .



COM

proof

madasm.

1.4.6

Naths Com

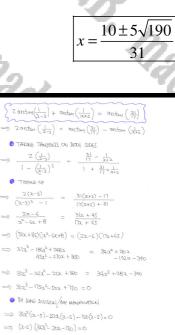
I.V.C.B. Madasm

I.C.p

Madasn

I. C.B. Madasman Sec20 + tan 20 = 245

Question 10 (****+)


F.G.B.

P.C.P.

 $2 \arctan\left[\frac{1}{x-3}\right] + \arctan\left[\frac{1}{x+2}\right] = \arctan\left[\frac{31}{17}\right].$ 

Show that x = 5 is one of the solutions of the above trigonometric equation and find, in exact surd form, the other two solutions.

Madas



 $\alpha = \frac{10 \pm 5\sqrt{19}}{31}$ 

i.G.B.

m20

G

h.

nn

# Question 11 (****+) Non Calculator

A triangle, ABC has  $|AB| = 2\sqrt{3}$  cm,  $\measuredangle BAC = 45^{\circ}$  and  $\measuredangle ACB = 60^{\circ}$ .

Determine, in exact simplified surd form, the area of this triangle

Y.C.B.		THETTY ARC=75° THETTY ARC=75° BY THE SAME ZOUE WE HATCE $\frac{ BC }{Sm(4^{\circ})} = \frac{ AB }{Sm60}$ $ BC  = \frac{ AB }{Sm60}$ $ BC  = 55.6^{12}$	
maria maria		$ \operatorname{cuc}  = \frac{-\sin \theta \sigma^{2}}{-\sin \theta \sigma^{2}}$ $ \operatorname{Rc}  = \frac{2\sqrt{5} \times \frac{2}{5}}{\frac{\sqrt{5}}{2}} = \frac{1}{\frac{\sqrt{5}}{2}} = \frac{2\sqrt{5}}{\sqrt{5}} = 2\sqrt{\frac{5}{5}} = 2\sqrt{2}$ $\frac{\operatorname{Noo}}{\operatorname{He}} + \frac{\sqrt{5}}{4} \operatorname{He} + \operatorname{No} \operatorname{Re} \operatorname{Form} \operatorname{As}$ $-\operatorname{He} + \frac{\sqrt{5}}{4} \operatorname{Ho} \operatorname{No} \operatorname{Re} \operatorname{Form} \operatorname{As}$ $-\operatorname{He} + \frac{\sqrt{5}}{4} \operatorname{Ho} \operatorname{Re} \operatorname{Loss} \operatorname{As} \operatorname{Is}$ $= \frac{1}{2} (\sqrt{5}) (2\sqrt{5}) \sin (45+3\sigma)$ $= 2\sqrt{5} \left[ \frac{\sqrt{5}}{2} \times \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{5} \times \frac{1}{2} \right]$ $= 2\sqrt{5} \left[ \frac{\sqrt{5}}{2} \times \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{5} \times \frac{1}{2} \right]$ $= 2\sqrt{5} \left[ \frac{\sqrt{5}}{4} \times \frac{\sqrt{5}}{4} + \frac{\sqrt{5}}{4} \right]$ $= \frac{10 + 2}{4}$ $= \frac{10 + 2}{4}$ $= \frac{10 + 4\sqrt{5}}{4}$ $= \frac{10 + 4\sqrt{5}}{4}$	
I.V. G.B.	Cp I.K.	I.V.C.B. I.V.C.	
	inadasmana anains	madasman alasman anan	
1. V. C. N. I.			
· 1737	Created by T. Madas	Man Mada	

#### Question 12 (****+)

It is given that

i C.B.

$$\sin^2\left(\theta + \frac{\pi}{4}\right) - \sin^2\left(\theta - \frac{\pi}{4}\right) \equiv \sin 2\theta \,.$$

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence, or otherwise, show that ...

i. ... 
$$\sin\left(\theta + \frac{\pi}{4}\right)\cos\left(\theta + \frac{\pi}{4}\right) - \sin\left(\theta - \frac{\pi}{4}\right)\cos\left(\theta - \frac{\pi}{4}\right) = \cos 2\theta$$
  
ii. ...  $\sin\left(\frac{5\pi}{12}\right)\cos\left(\frac{5\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right)\cos\left(\frac{\pi}{12}\right) = \frac{1}{2}$ .



proof

- $\mathbb{L} = 2 \eta^2 (\phi_{-} (\overline{\mathfrak{T}}) 2 \eta^2 (\phi_{-} \overline{\mathfrak{T}})) = \left( \sin(\theta_{+} \overline{\mathfrak{T}}) \right)^2 \left[ \sin(\theta_{-} \overline{\mathfrak{T}}) \right]^2$ 
  - $=\left(\underline{\varphi}_{1}(\alpha\beta)\underline{\varphi}_{2}(\alpha)-\underline{\varphi}_{1}(\alpha\beta)\underline{\varphi}_{2}(\alpha)-\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline{\varphi}_{2}(\alpha\beta)\underline$
  - $= \left(\frac{\partial \mathcal{L}}{\partial \mathcal{L}} \partial \mathcal{H}^{2} \frac{1}{\mathcal{L}} \int_{\mathcal{L}}^{\mathcal{L}} \left(\partial \mathcal{L}^{T} \frac{\partial \mathcal{L}}{\partial \mathcal{L}} + \partial \mathcal{H}^{T} \frac{\partial \mathcal{L}}{\partial \mathcal{L}} \right)^{2} \right)^{2}$
  - = (forto + smbaso + frato) (forto smbaso + frato) = 25m9ca0 = 5m20 = RH3

(6)

- $\frac{Aarantet}{Aarantet} = 2\hat{\eta}(0, \frac{1}{2}) 2\hat{\eta}(0, \frac{1}{2}) = Different of sponses$
- $= \left[ sn(\theta + \underline{\#}) sn(\theta \underline{\#}) \right] \left[ sn(\theta + \underline{\#}) + sn(\theta \underline{\#}) \right]$
- (Judie Julio) (Fader Labre (Fader) (Fader) (Fader)) = (dispant (2anblest) = (12 loss (12 loss)) = 200 bos = SIN20 = RHS
- $SW_{20} = su_{1}^{2}(\theta + \Xi) su_{1}^{2}(\theta \Xi)$
- $\frac{\mathrm{d}\theta}{\mathrm{d}\theta} \Big( a \eta \partial \theta \Big) = \frac{\mathrm{d}\theta}{\mathrm{d}\theta} \Big[ a \eta^2 \big( \theta + \frac{\pi}{4} \big) a \eta^2 \big( \theta \frac{\pi}{4} \big) \Big]$
- $2co2\theta = -2cm(o+\pm)co(o+\pm) 2cm(o-\pm)co(b-\pm)$ DWIDE BY 2
- $(\alpha S2\theta = \Theta n (\theta + \overline{\psi}) (\alpha S(\theta + \overline{\psi}) S(\theta \overline{\psi}) (\alpha \overline{\psi})$
- $\begin{array}{l} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ = Sm 班 cos 班 + Sm 班 cos 班

Ĉ.Ŗ.

G

#### Question 13 (****+)

Solve the trigonometric equation

 $(3\sin x + 5\cos x)^2 = 4\cos^2 x$ , for  $0 \le x < 2\pi$ ,

giving the answers correct to three significant figures.

$x \approx 1.98^{\circ}, 2.36^{\circ}$	^c , 5.12 ^c , 5.50 ^c
<u>b.</u>	<u></u>
$(3_{SMX} + Slos_X)^2 = 4_{SMS}^2$ $3_{SMYR} + Slos_X = < 2_{SMS}^2$	$\begin{aligned} \mathcal{D}_{\mathcal{L}} &= -\frac{T_{\mathcal{L}}}{4} \neq NT_{\mathcal{L}} \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & \qquad \lambda = O_1(\lambda_1^2 \lambda_1 - \lambda_2) \\ & \mathcal{O}_{\mathcal{L}} & $
3 sina = - 3 casa. June to MARE tays	44uce 2 = 236° 5.50°, 1.98°, 5.12°
$t_{aup} = -\frac{1}{-\frac{7}{3}}$	(ACONSUMPLY) EQUALD, SWITCH CITEMPLE TO DUBLE (MICLS, THEN & TOMOSCIENATION)

#### Question 14 (****+)

Solve the following trigonometric equation

 $\tan x + \cot x = 8\cos 2x , \quad 0 \le x < \pi ,$ 

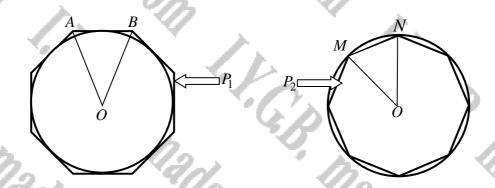
where x is measured in radians.

 $x = \frac{1}{24}\pi, \ \frac{5}{24}\pi, \ \frac{13}{24}\pi, \ \frac{17}{24}\pi$ 

KICHAUGH THE LHS OF THE GOVERNMENT TOUL FIFULIER
fame + cota = Bcosiza
$\int c_{200} dt = \frac{\kappa_{200}}{\kappa_{102}} + \frac{\kappa_{200}}{\kappa_{102}}$
Sultz + custz = Bluezz
1 = Brozzy
$\frac{1}{2sm_{2}\omega_{2}} = 4\omega_{2}$
$\frac{1}{SM2} = 4us2a$
440523.51423 = 1
2/05/22.5111/22 = 1/2
Sinula = 1/2
usu THF OREN(日)= 吾-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$

1+

#### Question 15 (****+)


The figure below shows a regular octagon  $P_1$ . A circle C is inscribed inside  $P_1$  and another regular octagon  $P_2$  is inscribed inside the circle C.

 $P_2$ 

The three objects have a common centre at O.

The circle C has a radius of 1 unit. The points A and B are consecutive vertices of  $P_1$ , and the points M and N are consecutive vertices of  $P_2$ .

 $\overset{\bullet}{O}$ 



- a) By considering the triangle *OAB*, show that the perimeter of the octagon  $P_1$  is  $16 \tan \frac{\pi}{8}$ .
- b) Use the triangle *OMN* in a similar fashion to show that the perimeter of the octagon  $P_2$  is  $16\sin\frac{\pi}{8}$ .

[continues overleaf]

aths,

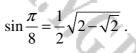
·C.I.

madasm.

proof

F.G.B.

I.F.C.


11₂₀₂

ths.com

I.G.B.

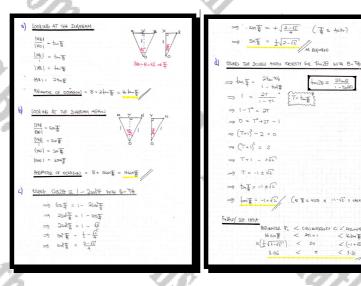
#### [continues from previous page]

c) Use a standard identity for  $\cos 2\theta$  to show that



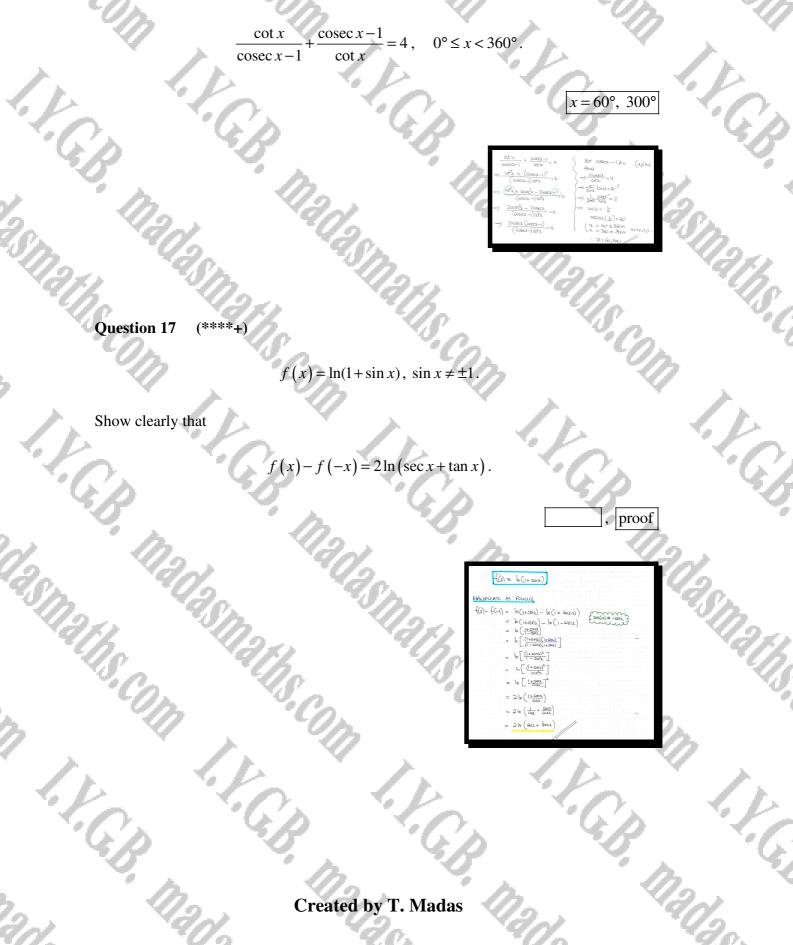
d) Show further that

I.F.G.B.


2115.C

I.C.B.

 $\tan\frac{\pi}{8} = -1 + \sqrt{2} \; .$ 


e) Deduce from the results obtained so far that

 $3.06 < \pi < 3.31.$ 



#### Question 16 (****+)

Solve the following trigonometric equation



- Question 18 (****+)
- It is given that

 $\cos 3x \equiv 4\cos^3 x - 3\cos x \,.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) By differentiating both sides of the above identity with respect to x, show that

 $\sin 3x \equiv 3\sin x - 4\sin^3 x \,.$ 

proof

Sm215M2 - 20015200 = (5+5 )200 = 56200 = 240 . (0)
= (20052-1) (052 - (25002(052) SM2 = 2003-1013-20132 (mm
= 2005 - (000 - 20 - 1000) (000 - 000)
$= 4 \log - 3 \log 2 = 243 \qquad $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
(a) costa = froza = 3costa (
$\Rightarrow \frac{d}{d\theta} \left( \log 3a_{1} \right) = \frac{d}{d\theta} \left[ 4 \log^{2} - 3 \log^{2} \right] = \sin^{2} \sin^{2} - \sin^{2} \cos^{2} \sin^{2} - \sin^{2} \sin^{2} \sin^{2} - \sin^{2} \sin$
= -35m3a = 12cosa (=ma)+3cm2 = 3cm2 = 3cm2 - 4sm2
> -3cm32 = -12ce32 sm2 + 3sm2 / 15 manho
=> SINGR = 4LOGA SINA - SINA
=) sin3e = 4(i-sin2)sina-sina (
2 CONTRACTOR SHE

#### Question 19 (****+)

Prove the validity of each of the following trigonometric identities.

- a)  $\frac{\cos 2x \cos x + 1}{\sin 2x \sin x} \equiv \cot x$
- **b**)  $2\cos^4\theta + \frac{1}{2}\sin^2 2\theta 1 \equiv \cos 2\theta$ .

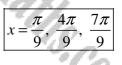


1.4

- (b)  $LHS = 2 \cos^2 \theta + \frac{1}{2} \sin^2 \theta 1 = 2 (\cos^2 \theta)^2 + \frac{1}{2} \sin^2 \theta 1$ 
  - (NOW COS20-= 26030-1) 1+10800=20030
  - $\frac{62203\pm\pm2000}{1000}$
  - $= \Im\left(\frac{1}{2} + \frac{1}{2} (\cos 2\theta)^2 + \frac{1}{2} \sin^2 2\theta 1\right) = 2r_{\overline{A}}^{\underline{A}} (1 + (\cos 2\theta)^2 + \frac{1}{2} \sin^2 2\theta 1)$ 
    - $= \frac{1}{2}(1+2\cos 2\theta + \cos^2 2\theta) + \frac{1}{2}\sin^2 2\theta 1$ =  $\frac{1}{2} + \cos^2 2\theta + \frac{1}{2}\cos^2 2\theta + \frac{1}{2} - \frac{1}{2}\sin^2 2\theta - \frac{1}{2}$
  - $\frac{2}{(62^{2})^{2}} = \frac{1}{(62^{2})^{2}} + \frac{1}{(62^{2})^{2}} \frac{1}{(6$

#### $= -\frac{1}{2} + 0520 + \frac{1}{2} = 0520 + \frac{1}{2} + 0520 + \frac$

# Question 20 (****+)


It is given that

$$\frac{\tan x}{\sec x - 1} - \frac{\sec x - 1}{\tan x} \equiv 2\cot x, \ \theta \neq \frac{n\pi}{2}, \ n \in \mathbb{Z}$$

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence solve the trigonometric equation

$$\frac{\tan 3\theta}{\sec 3\theta - 1} - \frac{\sec 3\theta - 1}{\tan 3\theta} = \frac{2}{\sqrt{3}}, \quad 0 \le \theta < \pi ,$$

giving the answers in terms of  $\pi$ .



s)	LH3 = tanx - ster-1 - {ster-1 - {ste	(b) $\frac{4}{5\pi^2} = \frac{35\pi^2\theta}{4\pi^2\theta} = \frac{2}{100}$
	$= \frac{\tan (\chi - (Star - 1)^2)}{(Star - 1) \tan \chi}$	Row (a)
	$= \frac{\tan(-(2d_2-2\mu_0+1))}{\tan((2d_2-1))}$	$\Rightarrow 20t^3b = \frac{2}{\sqrt{3}}$ $\Rightarrow 0t^3b = \frac{1}{\sqrt{3}}$
	= tai2-sit2+240-1 -541x(Sta-1) = (St2-1)-sit2+240-1	arden (NS) = F
	$= \frac{28eq-2}{\tan(360-1)} = \frac{2(3eq-1)}{\tan(360-1)}$	• 30= ± × ντ • 0 = ± × ντ
	$=\frac{2}{\tan 2}=2\omega t_{2}=R+S$	$\therefore \theta = \frac{\pi}{9}_1 \frac{4\pi}{5}_1 \frac{\pi}{5}$

Question 21 (****+)

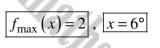
Prove the validity of the following trigonometric identity.

 $\frac{1+\cos\theta}{1-\cos\theta} \equiv \left(\csc\theta + \cot\theta\right)^2.$ 

proof

 $\begin{array}{l} \frac{\partial f_{0,01}}{\partial f_{0,02}}(t) &= \frac{\partial f_{0,01} + \partial f_{0,02}(t+1)}{\partial f_{0,02}} = \frac{\partial f_{0,01} + \partial f_{0,02}(t+1)}{\partial f_{0,02}} = \frac{\partial f_{0,01}}{\partial f_{0,02}} + \frac{\partial f_{0,02}}{\partial f_{0,02}} + \frac{\partial f_{0,0$ 

Question 22 (****+)


It is given that

 $\sin 3\theta \equiv 3\sin \theta - 4\sin^3 \theta \,.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) State the maximum value of

 $f(x) = 6\sin(5x) - 8\sin^3(5x), x \in \mathbb{R},$ 

and determine, in degrees, the smallest positive value of x which produces this maximum value.



1+

f(2) = 2 [33msz - 43v3 sz. f(2) = 2 3m Isa.

Created	by T.	Madas
ranu	Dy I.	Trauas

#### Question 23 (****+)

>

I.F.G.B.

2017

I.C.B.

The obtuse angles  $\theta$  and  $\varphi$  satisfy the equation

 $\sin 6\theta^\circ + \cos 4\varphi^\circ = -2.$ 

Mada,

Find the possible values of  $\theta$  and  $\varphi$ .

 $\begin{array}{c} (\Delta + UAB & TRAUBLO & DURITING & URACH &$ 

madasn.

20

I.F.C.P.

COM

G

 $(\theta, \varphi) = (105^\circ, 135^\circ) \cup (165^\circ, 135^\circ)$ 

ths.com

nn

Created by T. Madas

2017

I.C.P.

2017

nadasmana Inalias

Question 24 (****+)

It is given that

 $\tan(A+B) \equiv \frac{\tan A + \tan B}{1 - \tan A \tan B}.$ 

- a) Prove the validity of the above trigonometric identity by using the compound angle formulae for sin(A+B) and cos(A+B).
- **a**) Deduce an exact simplified expression for  $\tan\left(\theta \frac{\pi}{3}\right)$ , in terms of  $\tan\theta$ .

**b**) Solve, for  $0 \le \theta < 2\pi$ , the trigonometric equation

$$\tan\theta - \sqrt{3} = \left(1 + \sqrt{3}\tan\theta\right) \tan\left(2\pi - \theta\right)$$

giving the answers in terms of  $\pi$ .

of 
$$\pi$$
.  
$$\tan\left(\theta - \frac{\pi}{3}\right) = \frac{\tan\theta - \sqrt{3}}{1 + \sqrt{3}\tan\theta}, \quad \theta = \frac{\pi}{6}, \quad \frac{2\pi}{3}, \quad \frac{7\pi}{6}, \quad \frac{5\pi}{3}$$

(a) ton (A+B) = $\frac{Sm(A+B)}{\cos(A+B)} = \frac{Sm(A \cos B + \cos A \sin B)}{\cos(A \cos B - \sin A \sin B)}$
Suntus + setus tund + tous
COALOSE STATISE I - truth + 1000
GARA GARB WESTAGEB
$\frac{\overline{c}_{1}}{\overline{c}_{1}} - \underline{c}_{met} = \frac{\overline{c}_{met} - \underline{c}_{met}}{\overline{c}_{met} + i} = \frac{\overline{c}_{met} - \underline{c}_{met}}{\overline{c}_{met} + i} $
( tant - N3 = (1 + N3 ban () tan (217 - 0)
=> tou0-NS. = (1+N3 tou0) x togth-tou0 1 + tou20 tog0
⇒ ton B-NS = (1+65 ton B) × (-ton B)
== taub-13 = -taub-13 taufo - ALTHENATUE
→ 13 tango + 2bano - N3 = 0 { tano-K2 = (1+K5bano) ban (ar-0)
$\Rightarrow \tan^{2}_{1} + \frac{1}{2\pi} \tan^{2}_{1} - 1 = 0 \qquad \qquad$
- (taufer +)2 (112
$\Rightarrow (\overline{b}u\theta + \overline{b}u)^{a} = \frac{u}{3}$ $(\theta - \overline{u}) = (2\pi - \theta) \pm n\pi$
$\Rightarrow$ $\tan \theta + \frac{1}{12} = \pm \frac{2}{477}$ $2\theta = \frac{7\pi}{3} \pm 107$
$\Rightarrow$ toub = $\langle \overline{x_1} = \frac{c_1}{3}$ $\langle 0 = \frac{c_1}{2} \rangle = \frac{c_2}{2}$
$ \begin{array}{c} \Rightarrow \ b_{2} = \frac{1}{2} \int_{0}^{1} \frac{1}{\sqrt{D}} \int_$
$\circ \operatorname{arcon}(\frac{1}{2}) = \frac{1}{22} \circ \operatorname{arcon}(-6) = -\frac{1}{2}$
@8= Ft m 09= Fam 7
h=qizz.
θ= \u03c8. [\u03c8], 3\u03c8, 3\u03c8
- 0 0.3

#### **Question 25** (****+)

>

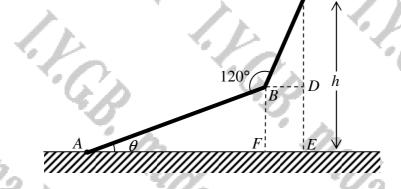
Solve the following trigonometric equation

IS.COM  $\tan 4x - \tan 2x = 0$ ,  $0^{\circ} \le x < 360^{\circ}$ . I.F.G.p. 90°, 180°, 270°  $x = 0^{\circ}$ . METHOD A = 0 ± 900 2 = 0, 90, 180, 270 A BALLER 90°, 180°, 270  $\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$ ANIZU The set tou (2x2x) - tou 2 = 0 2 Jun 22 - tay 22 (1 - tay 22)=0 tay 22 [ 2 - (1 - by 22)] =0 ay22 (1+ jag22) = 0 I.F.G.B. G.B. F.G.B. madasmarns, Madasm. Madasn he, 2017 CO17 00 2017 I.C.B. I.C. I.F.G.B. I.F.G. Mada Created by T. Madas

- Question 26 (****+)
- It is given that

 $\cos 3\theta \equiv 4\cos^3\theta - 3\cos\theta \,.$ 

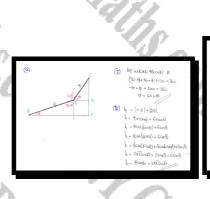
- a) Prove the validity of the above trigonometric identity.
- **b**) Hence solve in degrees the trigonometric equation


 $2 + \cos 6x \sec 2x = 0$ ,  $0^{\circ} \le x < 180^{\circ}$ .

= 2 = 2	$\begin{array}{c} (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) &$

6

 $x = 30^{\circ}, 60^{\circ}, 120^{\circ}, 150^{\circ}$ 

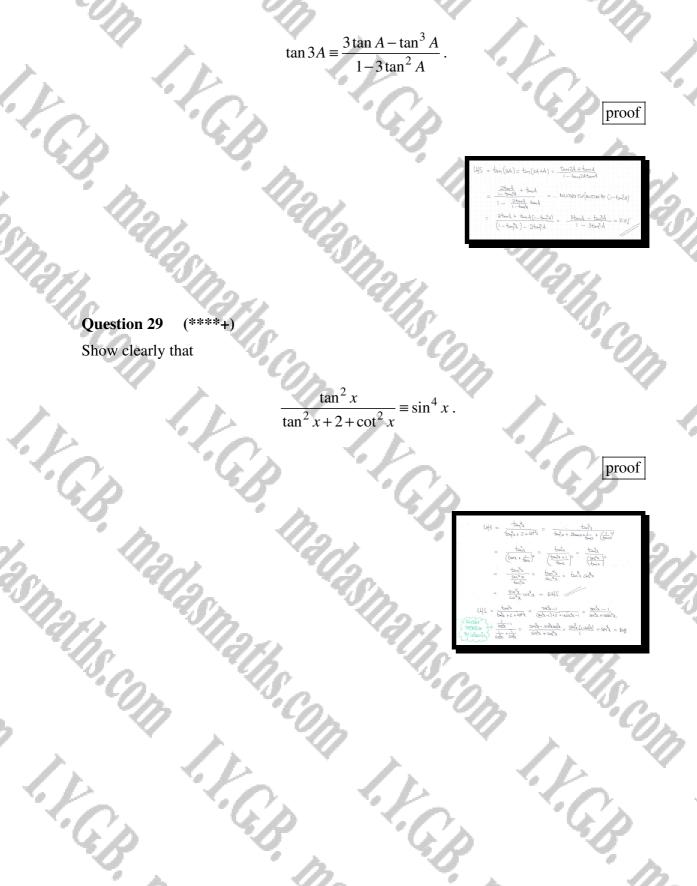

Question 27 (****+)



The figure above shows a rigid rod *ABC* where *AB* is 6 metres, *BC* is 4 metres and the angle *ABC* is 120°. The rod is hinged at *A* so it can be rotated in a vertical plane forming an angle  $\theta^{\circ}$  with the horizontal ground.

Let h metres be the height of the point C from the horizontal ground.

- a) Show clearly that ...
  - i. ...  $\measuredangle DBC = \theta^\circ + 60^\circ$ .
  - ii. ...  $h = 8\sin\theta + 2\sqrt{3}\cos\theta$ .
- **b)** By expressing h in the form  $R\cos(\theta \alpha)$ , where R > 0 and  $0 < \alpha < 90^{\circ}$ , find to the nearest degree, the values of  $\theta$  when h = 6.




100
North North
$8sm_{\theta} + 2k_{\theta} \cos \theta = 2cos(\theta - \kappa)$
= Ricebcosa + Ranbang
= (Plass) torb + (RUMA) SIND
$\begin{array}{c} \vdots \ \operatorname{Rat}_{\mathcal{H}} = 2\sqrt{2} \\ \operatorname{Rs}_{\mathcal{H},\mathcal{H}} = 8 \end{array} \right\} \implies \operatorname{Re} \sqrt{\left(2/3\right)^2 + 8^2} = \sqrt{2} \\ \operatorname{tab} \left( 5 - \frac{8}{2\sqrt{2}} \right)  0 \approx 66\sqrt{2} \end{array}$
$ \begin{array}{l} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $
$ \begin{cases} \theta - 666^{\circ} = 46.5 \pm 3604 \\ \theta - 66.6^{\circ} = 313.5 \pm 3604 \\ \end{cases} _{H=0/1} & H=0.033 \end{cases} $
(θ = 113:1 ± 360 4 θ = 380.1 ± 360 4 . θ = 113° or 20°

*θ* ≈ 20°, 113°

#### Question 28 (****+)

By considering the expansion of tan(2A + A), show clearly that



Created by T. Madas

G

Question 30 (****+)

It is given that

 $\cos 3\theta \equiv 4\cos^3\theta - 3\cos\theta \,.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence, or otherwise, prove that

#### $\cos 6\theta = 32\cos^6\theta - 48\cos^4\theta + 18\cos^2\theta - 1.$



6)	$\cos 3\theta = \cos(2\theta + \theta) = \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$
	$\Theta_{VG}(GamOmega) - \Theta_{GGG}(1-\Theta_{GGG}) =$
	65420205 - Carl- 02016 =
	$= 2 \cos^2 \theta - \cos \theta - 2 \cos \theta (1 - \cos^2 \theta)$
	$= 2 \log^2 \theta - \log \theta - 2 \log \theta + 2 \log^3 \theta$
	= 4105° - 3600
	ts supreno
o)	$l = (\theta \varepsilon)^2 \cos^2 \varepsilon = (\theta \varepsilon \times \varepsilon) \cos^2 \varepsilon = \theta \partial \varepsilon \partial \varepsilon$
	= $2(405^30 - 31050)^2 - 1 = 2(16105^50 - 24105^50 + 91050)^{-1}$
	= 32656 - 486540 + 18650 - 1

#### Question 31 (****+)

Prove the validity of each of the following trigonometric identities.

**a**)  $\sin^2(x+y) - \sin^2(x-y) \equiv \sin 2x \sin 2y$ .

**b**)  $\frac{\cot 2\theta + \cos 2\theta}{\cot 2\theta} \equiv (\cos \theta + \sin \theta)^2$ 

#### proof

1.+

- $\begin{array}{rcl} (y,z) & (y,z)$

#### Question 32 (****+)

Show clearly that

 $\tan\left(\theta - \frac{\pi}{4}\right) \equiv \frac{\sin 2\theta - 1}{\cos 2\theta}$ 

17202.81



G

$= (\frac{\pi}{4} - \theta) M = 2H$		$\frac{10 - 1}{+ \tan \theta} = \frac{\sin \theta - 1}{\cos \theta}$
WUTTAY TOP/BOTTOM	= <u>SING-650</u> (SI	10-cost) (cost - Sint)
= - (Sup - was)2 = -	sup + with - 200 Bus 0 -	(000-540) (000-540)
6030-suf0- sm20-1	RHJ RAN	CO7 581

Question 33 (****+)

It is given that

 $\cos 3x \equiv 4\cos^3 x - 3\cos x \, .$ 

a) Prove the validity of the above trigonometric identity.

**b**) Hence, or otherwise solve the trigonometric equation

 $2 + \cos 6\theta \sec 2\theta = 0$ ,  $0^\circ \le \theta < 360^\circ$ .

cossa = cos(atte)  $460^{2}20 = 1$ = COS22COSX - SM22S2N2 4 (1+ + + 6540) =1 = (2005-1)- 200(1-2005) = 2 + 210440 = = 21032-602 - 2512 =  $I = - \theta \|_{\partial \Omega}$ = 2603 - wer - 2(1-602) were --= -= -= = 2602 - 602 - 2602 + 26032 ancos (-+)= 120" = 40032-30002 120° ± 3604 240° ± 3604 AS REPUIRSO N=01.2.3. 40 -2000007 24 0330019 60° + 904  $\cos 3\theta \equiv 4\cos^3\theta - 3\cos\theta$ 60560 = 605 (3×20) = 400320 - 30020 30, 60 120 150, 210, 240, 300, TRANSFORMING THE EQUATION = 2 + 6x60 acc20 = D UTENATIVE FROM 10520 = ± ⇒ 2 + [46328 - 30028]su20 = 0 60520= ± + ⇒ 2 + 460328 sec20 - 3105285620 = 0 AND SOLUT ROM THERE  $460^22\theta - 3 = 0$ 

,  $\theta = 30^{\circ}, 60^{\circ}, 120^{\circ}, 150^{\circ}, 210^{\circ}, 240^{\circ}, 300^{\circ}, 330^{\circ}$ 

#### Question 34 (****+)

It is given that

- $(\cos x + \sin x)(1 \sin x \cos x) \equiv \cos^3 x + \sin^3 x.$
- a) Prove the validity of the above trigonometric identity.
- **b**) Hence find, in terms of  $\pi$ , the solutions of the trigonometric equation

 $\frac{\cos^3 x + \sin^3 x}{\cos x + \sin x} = \frac{3}{4}, \ 0 \le x < \pi,$ 

giving the answers in terms of  $\pi$ .



6

C.P.

4

3) 645 = (cosa + sina)(1- sina cos	20)
$=$ $(\cos x + \sin x)(\cos^3 x + \sin^3 x)$	(cash cm2 - E
= Gesta + cosasyon - smapping	à
- cosistila +sylacos	2 + SM2
= cor2 + Sm32	
= 2 H3	
$\frac{\varepsilon}{\Rightarrow} = \frac{\varepsilon}{\varepsilon m^{2} + x^{2} \omega}$	aucrin(F)= IL
$ = \frac{(\cos x + \sin x)(1 - \sin x)}{\cos x + \sin x} = \frac{3}{4} $	(2x = 晋 ± 2mm (2x = 晋 ± 2mm (100/13)
$\Rightarrow 1 - SIMX COSL = \frac{3}{4}$	$\begin{pmatrix} \chi \in \frac{3T}{12} \pm nT \\ \chi \in \frac{3T}{12} \pm nT \end{pmatrix}$
+ 4 = smallesz . )	n
$\Rightarrow \frac{1}{2} = 2 \sin a \cos a$	21=晋
= 1 = SIM22	22= 50
	1

Question 35 (****+)

It is given that

 $\cos(x+36)^\circ = \sin(x-54)^\circ.$ 

a) Show clearly without a calculating aid that the above trigonometric equation is equivalent to

 $\tan x^{\circ} = \tan 54^{\circ}.$ 

**b**) Hence solve the trigonometric equation

 $\cos(3y+36)^\circ = \sin(3y-54)^\circ, \ 0 \le y < 180.$ 

 $(\mu_{Z-x})m_{Z} = (\partial_{Z} + \infty) 200$ o (uszucza) - Sinzswie msu  $by = 54 \pm 19x$ · 9 = 18, 78, 138

*y* = 18, 78, 138

1

Created by T. Madas

#### Question 36 (****+)

Solve the trigonometric equation

 $\sin 3x = \cos 2x + \sin x \,, \quad \text{for} \ \ 0 \le \theta < \pi \,,$ 

giving the answers in terms of  $\pi$ .

	and the second s
$x = \frac{\pi}{6}, \frac{\pi}{2}$	$\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{6}$
2	12
$\begin{array}{c} \mbox{an}\ \chi = \mbox{an}\ \chi =$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
$\mathcal{X} = \frac{\mathbb{E}}{\mathbb{E}} (\frac{\mathbb{E}}{2}, \frac{\mathbb{E}}{2}) = 0$	

Question 37 (****+)

Solve the trigonometric equation

 $2\sin 2x \tan x + 4\sec 2x + 5 = 0$ ,  $0^{\circ} \le x < 360^{\circ}$ .

$x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$
12N
$\begin{array}{l} \displaystyle \Im_{c}(x) = 0 \\ \operatorname{G}_{c}(x) = 0 \\ $
$43m_{A}^{2}(1-2m_{A}^{2})+4+5(-2m_{A}^{2})_{\pm 0}$ $43m_{A}^{2}-8m_{A}^{2}.1\pm5-10m_{A}^{2}=0$ $0=8m_{A}^{2}.4+6m_{A}^{2}9$
$(4g_{PL}^{2}-3)(2g_{PL}^{2}+3) = 0$ $Sh_{PL}^{2} = \bigvee_{3/4}^{3/4}$ $Sh_{RL} = \bigvee_{-\frac{1}{2}}^{4/2}$ $(\alpha = 6\alpha' + 30\alpha_{H})$ $(\alpha = 6\alpha' + 3\alpha_{H})$
$ \begin{array}{c} (\alpha = 60^{\circ}\pm 260^{\circ}, \\ \alpha = 120^{\circ}\pm 260^{\circ}, \\ \alpha = 120^{\circ}\pm 360^{\circ}, \\ \alpha = 64^{\circ}, \alpha = 64^{\circ}, \alpha = 64^{\circ}, \alpha = 260^{\circ}\pm 360^{\circ}, \\ \alpha = 64^{\circ}, \alpha = 360^{\circ}, \\ \alpha = 64^{\circ}, \alpha = 360^{\circ}, \\ \alpha = 64^{\circ}, \alpha = 260^{\circ}, \\ \alpha = 260^{\circ}, \alpha = 260^{\circ}, \alpha = 260^{\circ}, \\ \alpha = 260^{\circ}, \alpha = 260$
$\frac{\text{AUTRIVATURE BY UTTLE ± DARTITUS}}{\text{IF towal = t}} = \frac{24}{3m_{2}^{2}} = \frac{24}{1+4^{2}}$
$ \Rightarrow \widehat{\operatorname{SSM}}_{2} \operatorname{Laup}_{1} + 4\left(\frac{\mu+1}{(1-\ell)}\right) + 5 = 0 \qquad \qquad$
$ \begin{array}{l} \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S}_{j_1 + \mathcal{U}_1} + S = 0 \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S}_{j_1 + \mathcal{U}_1} + S(j_1 + \mathcal{U}_1)_{j_1 - 0} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S}_{j_1 + \mathcal{U}_1} + S - S\mathcal{U}_1 = 0 \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S + S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S + S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S + S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S + S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S + S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S + S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S + S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S + S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S + S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S + S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S + S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S - S\mathcal{U}_1 + S - S\mathcal{U}_1 = 0}_{j_1 - \mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S - S\mathcal{U}_1 + S - S\mathcal{U}_1} \\ \underset{j \in \mathcal{U}}{\overset{(1)}{\longrightarrow}} + \underbrace{k(j_1 + \mathcal{U}_1 + S - S\mathcal{U}_1 + S - S - S - S - S - S - S - S - S - S$
$\Rightarrow 0 = St^{4} - 12t^{2} - 9 = 0$

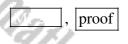
1.4

Question 38 (****+)

It is given that

Ĝ.

F.C.B.


 $\tan\theta + \tan\varphi = 3,$ 

 $\sin^2 x + 2\sin x + \sin(\theta + \varphi) = 3\cos\theta\cos\varphi - 1,$ 

for  $x \in \mathbb{R}$ ,  $\theta \in \mathbb{R}$ ,  $\varphi \in \mathbb{R}$ .

Show that the above relationships imply that

 $\sin x = -1.$ 



i.C.B.

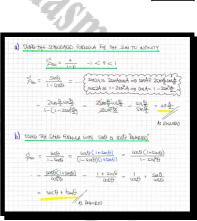
G

Mada

#### STALTING FROM THE SECOND EQUATION.

- -> land + tamp = 3
- $\longrightarrow \frac{SW0}{\cos\theta} + \frac{SW0}{\cos\theta} = 3$ 
  - $\frac{\sin(1)\cos(1+\sin(1+\cos))}{\cos(1+\cos(1+\cos))} = 3$
- → SMOcoset + sund caso =3cos00 → Sm(0+4) = 3cos0coset

#### THE FIRST EPUATION SIMPLIFIES


- -> suía + 20112 + su(876) = 3(0080000 -
- $\Rightarrow S_{M}^{2} + 2S_{M} = -1$
- $= 1 + 2\pi n^2 + \frac{2}{6} n^2 + \frac{2}{6} n^2$
- -> (smx +1)=0
- to Depute

#### Question 39 (****+)

- A geometric progression has first term  $\sin \theta$  and common ratio  $\cos \theta$ .
  - a) Given the value of  $\theta$  is such so that the progression converges, show that its sum to infinity is  $\cot \frac{\theta}{2}$ .

A different geometric progression has first term  $\cos\theta$  and common ratio  $\sin\theta$ .

**b**) Given the value of  $\theta$  is such so that this progression also converges, show that its sum to infinity is  $\sec \theta + \tan \theta$ .



proof

6

## Question 40 (****+)

Is given that

•  $\cos^2 x + \sin^2 x \equiv 1$ .

 $\csc 15^\circ = \sqrt{6} + \sqrt{2} .$ 

Use these facts only to show that

- **a**)  $1 + \cot^2 x \equiv \csc^2 x$ .
- **b**)  $\cot 15^\circ = 2 + \sqrt{3}$ .

	410
$1 = x_{1}^{2}w^{2} + x_{20}^{2}$ (0)	~ - out 15" = ± 17+415"
$\underset{\text{Chi}}{\overset{\text{Col}}{=}} = \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \frac{1}{2} $	501. 12. 17 ante 120
→ Wtx. + 1 = Losicz	$\langle \Rightarrow \text{ost }   S^* = + \sqrt{7 + 4\sqrt{3}^7}$
(b) 47 2=15°	$ \Rightarrow (a^{+}_{t} _{5}^{\circ} \circ \sqrt{2^{\circ}_{t} \cdot 2x 2x 4^{\circ}_{3}^{\circ} + (a^{\circ}_{5})^{2}} ) $
$\rightarrow lot^2   z + 1 = lost^2   z$	$ \Rightarrow \alpha t^{1} I_{2}^{\circ} = \sqrt{(2 + k_{2}^{-1})^{2}} $
$\Rightarrow (at^{2}15 + 1 = (at^{2}+b^{2})^{2}$ $\Rightarrow (at^{2}15 + 1 = 6 + 2b^{2}t^{2} + 2$	$= \frac{1}{2} u + 2 = 2 + \sqrt{2}$
- C1 ² ×	AP Ployee

proof

proof

1.

#### Question 41 (****+)

Prove the validity of each of the following trigonometric identities.

- **a**)  $\sqrt{1+\sin 2\theta} \equiv \cos \theta + \sin \theta$ .
- **b**)  $8\cos^4\left(\frac{1}{2}\theta\right) = \cos 2\theta + 4\cos \theta + 3$ .

1	
@)	BROUGHTES + OFIL2 + OFED V = 65M2+1 V =241
	$= \sqrt{(102 + 9m2)^2} = 1000 + 9m2 + 9201)$
(b)	$ \left\{ \begin{array}{c} \text{Note} & \cos 2A = 2\cos^2 A - 1 \\ 2\cos^2 A = 1 + \cos 2A \\ \cos^2 A = \frac{1}{2} + \frac{1}{2} \sin^2 A \\ \cos^2 A = \frac{1}{2} + \frac{1}{2} \tan^2 A \end{array} \right. \left. \begin{array}{c} \text{def} b = \frac{1}{2} + \frac{1}{2} \cos^2 \theta \\ \cos^2 A = \frac{1}{2} + \frac{1}{2} \tan^2 A \end{array} \right. $
	$\int dt = 8 \log^2(\underline{t}\theta) = 8 (\log^2 \underline{t}\theta)^2 = 8 (\underline{t} + \underline{t} \cos\theta)^2$
	$= 8 \times \left(\frac{1}{2}\right)^{2} (1 + (0.50)^{2} = 2(1 + 0.50)^{2} = 2(1 + 0.50) + (0.50)^{2}$ $= 2 + 4(0.50 + 2(0.50) = 2 + 4(0.50 + 2(5 + \frac{1}{2}(0.50)))$
Ι,	$= 2 + 4 \log 0 + 1 + \log 2 0 = \cos 2 0 + 4 \log 0 + 3 = PH3$

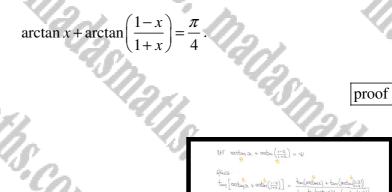
#### Question 42 (****+)

A relationship between x and y is given by the equations

 $x = \sin 2\theta$ ,  $0 < \theta < \pi$ .

$$y = \cot \theta$$
,  $0 < \theta < \pi$ .

Use trigonometric identities to show that


y(2-xy)=x.

$ \begin{array}{c} (a = \sin 2\theta) \\ (y = \cos \theta) \\ (y = \cos \theta) \\ (y = \cos \theta) \\ (z = 1) \\$	
Now $y^2 = \omega t^2 \Theta = 0$	$\cos \omega^2 \Theta = 1$
$\begin{array}{c} \underline{y}^{2}+\underline{i} = \cos(\hat{c}\theta) \\ (\sum_{i} \underline{y}^{2}\theta = \underline{u}^{2}+\underline{i} \end{array} \end{array}$	
$-\mathrm{THUS}  \mathrm{Q}^2 \approx -4 \times \frac{1}{\underline{y}^{4}+1} \times \left(1 - \frac{1}{\underline{y}^{4}+1}\right)$	$\langle \overset{\circ R}{\Rightarrow} \exists y^2 + x = 2y \rangle$
$\Rightarrow 2^2 = \frac{4}{9^2 + 1} \times \frac{9^2 + 1}{9^2 + 1}$	$\langle \Rightarrow a = 2y - ay^2 \rangle$
$\implies 3^n = \frac{4y^2}{(y^2+1)^2}$	$\Rightarrow x = y(z-xy)$
$\Rightarrow x = \frac{y_{e+1}}{2y}$	14 y(2-2y)=2

proof

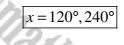
Question 43 (****+)

Show clearly that



- $= \frac{x + \frac{1 \lambda}{1 + x}}{x + \frac{1 \lambda}{1 + x}}$
- $= \frac{\chi(1+\chi) + \zeta(1-\chi)}{(1+\chi) \chi(1-\chi)} = \frac{\chi(1-\chi)^2 + 1-\chi}{(1+\chi) \chi(1-\chi)} = \frac{\chi^2 + 1}{\chi^2 + 1-\chi} = |$
- $= \frac{1}{2} + \frac$

G


Question 44 (****+)

It is given that

 $\frac{2\tan x}{\tan x + \sin x} \equiv \sec^2\left(\frac{x}{2}\right), \ x \neq n\pi, n \in \mathbb{Z}.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence solve the trigonometric equation

 $\frac{2\tan x}{\tan x + \sin x} = 4, \ 0 \le x < 360^{\circ}$ 



@)	$\max_{x \in \mathcal{T}(A)} v_{x} \max_{x \in \mathcal{T}(A)} = \frac{x \max_{x \in \mathcal{T}(A)}}{x \max_{x \in \mathcal{T}(A)}} = \frac{x \max_{x \in \mathcal{T}(A)}}{x \max_{x \in \mathcal{T}(A)}} = 2 (4)$
	$= \frac{2 \sin x}{\sin x + \sin \cos x} = \frac{2}{1 + (\cos x)} = \frac{2}{1 + (2\cos^2 \frac{x}{2} - 1)}$
J	$= \frac{Z}{Z\omega_{4}s_{\pm}^{2}} = \frac{1}{\omega_{4}s_{\pm}^{2}} = suc^{2}(\frac{2}{s}) = \text{BH}$
6	$\begin{array}{lll} \frac{24\omega_{2n}}{\omega_{2n}+\omega_{2n}} & \equiv 4 \\ \omega_{2n}+\omega_{2n}, & \\ \omega_{2n}^{2} \frac{\Delta_{2n}}{\Delta_{2n}} & = 4 \\ \omega_{2n}^{2} \frac{\Delta_{2n}}{\Delta_{2n}} & = 4 \\ \omega_{2n}^{2} \frac{\Delta_{2n}}{\Delta_{2n}} & = 4 \\ \omega_{2n}^{2} \frac{\Delta_{2n}}{\Delta_{2n}} & \omega_{2n} \\ \omega_{2n}^{2} \frac{\Delta_{2n}}{\Delta_{2n}} & \omega$
	$\begin{aligned} &\mathcal{M}_{1} \stackrel{\text{\tiny def}}{=} = \pm \frac{1}{2} \\ &\mathcal{M}_{2} \stackrel{\text{\tiny def}}{=} \frac{1}{2} \\ &\mathcal{M}_{2} \stackrel{\text{\scriptstyle def}}{=} \frac{1}{2} \\ &\mathcal{M}_{2$
	∴ 2 = 1201240°

Question 45 (****+)

Prove the validity of the following trigonometric identity

 $\frac{\sin x}{1+\tan x} \equiv \frac{\cos x}{1+\cot x}$ 



= 241	SINX I+tup SHTX0052 SHTX COS2 + SIN	605		-	SUMALOGA LOSA + SIMA
ACTEQNIA LHS =	51/12 Style	SIMZ	= HULTRY DP/Artony BY at 2	-	Cotasina Gota + 1
-	GOSD × SUMA Gota +1		= 12.45	-	

Question 46 (****+)

Let  $t = \tan \frac{x}{2}$ .

I.F.G.B.

COM

I.C.p

a) Show clearly that ...

**i.** ... 
$$\sin x = \frac{2t}{1+t^2}$$

ii. ...  $\cos x = \frac{1-t}{1+t^2}$ 

I.G.B.

I.C.

**b**) Use these results to solve the trigonometric equation

 $5\sin x + 4\cos x = 3$ ,  $0^{\circ} \le x < 360^{\circ}$ .

I.C.B.

#### *x* ≈ 113.4°, 349.3°

The

I.F.G.B.

00

1.4.6

madasm

(nn

madasm.

m

I.C.B.

 $\begin{array}{l} \textbf{(3)} & \frac{2\xi}{1+\xi^2} = \frac{2\xi_{2}\omega_{1,\xi}^{2}}{1+\xi_{2}\omega_{1}^{2}} = \frac{2\xi_{2}\omega_{1,\xi}^{2}}{1+\xi_{2}\omega_{1}^{2}} = 2\xi_{2}\omega_{1,\xi}^{2}\omega_{1}\xi_{2}^{2} = 2\xi_{2}(\omega_{1}(\xi))\omega_{1,\xi}^{2}\xi_{2} \\ & \quad -2sn(\xi)\alpha(\xi) = sn(\xi,\xi) - sn(\xi,\xi) - sn(\xi,\xi) \\ & \quad -\xi_{2}(\xi) = sn(\xi,\xi) \\$ 

2017

I.C.B.

## Created by T. Madas

nadasmaris,

2017

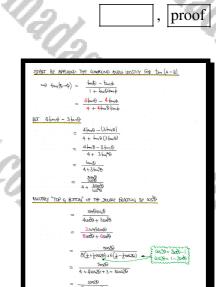
#### Question 47 (****+)

>

I.V.G.B.

CO11

I.C.P.


It is given that for  $\theta \in \mathbb{R}$ ,  $\varphi \in \mathbb{R}$ 

 $3\tan\theta = 4\tan\varphi$ .

Show that the above relationship implies that

$$\tan\left(\theta - \varphi\right) = \frac{\sin 2\theta}{7 + \cos 2\theta}$$

nadası,



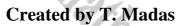
# REPORT

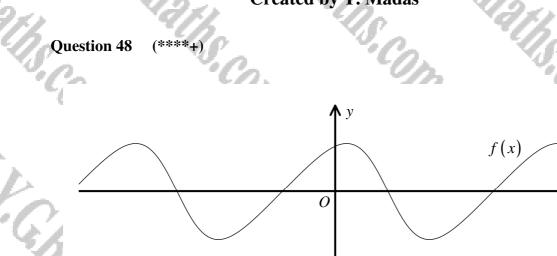
2017

aths.com

G

nadasn.


I.C.p


hs.com

Created by T. Madas

madasmarna marns

2011





The figure above shows part of the graph of the curve with equation

$$f(x) = \frac{\cos x}{3 - \sin x}, \ x \in \mathbb{R}$$

Use differentiation to show that

na

I.F.G.B.

I.C.p

$$-\frac{1}{4}\sqrt{2} \le f(x) \le \frac{1}{4}\sqrt{2} \ .$$

proof

maths.com

2/28M21

G

Madasn

Cn.

**>** *x* 



## Question 49 (****+)

It is given that

$$\tan 3x \equiv \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}, \ x \neq \frac{n\pi}{3}, \ n = 0, 1, 2, 3, \dots$$

- **a**) Use the above identity to express  $\cot 3x$  in terms of  $\cot x$ .
- **b**) Show clearly that

 $\frac{\cos 2x - \cos x + 1}{\sin 2x - \sin x} \equiv \cot x, \ \cos x \neq \frac{1}{2}$ 

a) Hence, or otherwise, given that  $\cos 3x \neq \frac{1}{2}$  solve the trigonometric equation

 $\cos 6x + \sin 6x - \cos 3x - \sin 3x + 1 = 0,$ 

for  $0 < x < \pi$ , giving the answers in terms of  $\pi$ .

	615		
10 DOSTEV = <u>3tya-bulz</u> = <u>1-3bulz</u> = <u>1-3bulz</u>		c) which there (b) $-\frac{3}{4}$ and	
$= \frac{1 - 3 \log 2}{3 \log 2 - \log 2}$ $= \frac{1 - \frac{3}{2} \log 2}{\frac{1 - \frac{3}{2}}{\log 2} - \frac{1}{\log 2}}$		$\rightarrow \frac{(\operatorname{cold}_{2} - \operatorname{cold}_{2})}{\operatorname{Sh}(a_{2} - \operatorname{cold}_{2})} = -1$ The u the later of the (b) with $\alpha \mapsto \alpha$ . $\Rightarrow \operatorname{cold}_{2} = -1$	
1 BOTTON IN THE 24.5 <u>whith a sunta</u> Botton - 1 Botton - 1 Boutse Anose uncontress R		$\Rightarrow  \{u_i \geq 1 = -1 \\ \hline acts_1(-i) = -\overline{\mp} \\ \Rightarrow  3\Delta = -\overline{\mp} \pm u_{\overline{1}}  v = c_1/c_1 b_2 \dots \\ \Rightarrow  2a = -\overline{\mp} \pm u_{\overline{1}}  v = c_1/c_1 b_2 \dots \\ \hline acts_1(-i) = -\overline{\mp} \\ \Rightarrow  b = c_1/c_1 + c_2/c_2 + c_1/c_2 + c_2/c_2 + c_2/$	
22- 6052+1 = (200 M22-5192 = 251 N2-6052 = (0052) N642-5192 = 2445 = 642 = 2445	&-1)- αα + 1 m(ga - sma, (2αμ+1) (2αμ+1) (αα + 2)	$\begin{array}{c} 2 = \frac{1}{3} \\ \begin{array}{c} 2_1 = \frac{1}{3} \\ \hline 2_2 = \frac{7}{3} \\ \hline \frac{1}{3} = \frac{1}{3} \\ \end{array}$	or
$\frac{dt_{1}}{dt_{2}} = \frac{dt_{2}}{dt_{2}} = dt$	$\underbrace{\operatorname{tar}(t + 1, \operatorname{sm}(t))}_{\operatorname{argen}(t) \to \operatorname{argen}(t)} \\ \underbrace{\underbrace{\operatorname{argen}(t)}_{\operatorname{argen}(t) \to \operatorname{argen}(t)}_{\operatorname{argen}(t) \to \operatorname{argen}(t)} \\ \underbrace{\operatorname{argen}(t)}_{\operatorname{argen}(t) \to \operatorname{argen}(t)}_{\operatorname{argen}(t) \to \operatorname{argen}(t)} $	$ \begin{array}{c} \overrightarrow{a_{1}} = 1\\ \overrightarrow{a_{2}} = -1\\ \overrightarrow{a_{1}} = -1\\ \overrightarrow{a_{2}} = -\overrightarrow{a_{2}} \pm \overrightarrow{a_{1}}\\ \overrightarrow{a_{2}} = -\overrightarrow{a_{2}}\\ \overrightarrow{a_{2}} = -\overrightarrow{a_{2}} = -\overrightarrow{a_{2}}$	

 $7\pi$ 

12

π

4

 $11\pi$ 

12



#### Question 51 (****+)

Solve the trigonometric equation

 $\sqrt{3}(\sec x - \tan x) = 1, \quad 0 \le x \le 2\pi,$ 

giving the answers in terms of  $\pi$ .

$ \begin{split} & \sqrt{3} \left( \frac{866}{6} - \frac{6}{66} \eta \right) = 1 \\ \Rightarrow & \frac{5}{666} - \frac{6}{666} = \frac{10}{37} \\ \Rightarrow & \frac{1}{666} - \frac{10}{666} = \frac{10}{37} \\ \Rightarrow & \frac{1}{666} - \frac{10}{666} = \frac{10}{37} \\ \Rightarrow & \frac{1}{666} - \frac{10}{666} = \frac{10}{666} \\ \Rightarrow & \frac{10}{666} - \frac{10}{666} = 10$	ഡ്യ

Question 52 (****+)

Prove the validity of the following trigonometric identity

 $\cot^2 x - \tan^2 x \equiv 4\cot 2x \csc 2x.$ 

3

proof

1+

 $x = \frac{\pi}{6}$ 

- $\begin{aligned} (4S = \omega f_{x}^{2} \frac{L}{L} \omega f_{x}^{2} = \frac{m_{x}^{2}}{Sm_{x}^{2}} \frac{m_{x}^{2}}{\omega f_{x}} = \frac{m_{x}^{2}}{Sm_{x}^{2}} \frac{m_{x}^{2}}{Sm_{x}^{2}} \\ (m_{x}^{2})^{2} (m_{x$
- $= \frac{(\omega_{3}^{2})^{2} (S_{1}M_{3})^{2}}{\frac{1}{4} \times 4\omega_{3}^{2}\omega_{3}^{2}\omega_{3}^{2}} = \frac{(\omega_{3}^{2} s_{1}M_{3})(\omega_{3}^{2} + s_{3}M_{3})}{\frac{1}{4}(2sm_{3}\omega_{3})^{2}}$   $= \frac{\omega_{3}\omega_{3}}{\frac{1}{4}(s_{1}m_{3})^{2}} = \frac{4(\omega_{3}^{2})}{s_{1}w_{2}^{2}} = \frac{4(\omega_{3}^{2})}{s_{1}w_{2}^{2}} = \frac{4(\omega_{3}^{2})}{s_{1}w_{2}} = \frac{1}{s_{1}w_{2}}$
- $\pm (\sin_2 2)^2$   $\sin_2 2x$   $\sin_2 2$
- $e_{24S} = 4 \cot 2 \cot 2 = 4 \cot 2 = 6 \cot 2$
- $= \frac{4(\log_{3}^{2} \sin_{3}^{2})}{(2\sin_{3})^{2}} = \frac{4\log_{3}^{2} 4\log_{3}^{2}}{4\log_{3}^{2} 4\log_{3}^{2}} = \frac{4\log_{3}^{2}}{\log_{3}^{2}} \frac{4\log_{3}^{2}}{\log_{3}^{2}}$
- $= \cos^{2} \sec^{2} = (1 + \cos^{2}) (1 + \tan^{2})$ 
  - = ath-tantz = LHS

Question 53 (****+)

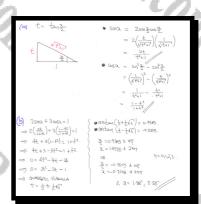
Let  $t = \tan \frac{x}{2}$ .

I.V.G.B.

CO17

I.C.p

a) Show clearly that ...


**i.** ... 
$$\sin x = \frac{2t}{1+t^2}$$
,

**ii.** ...  $\cos x = \frac{1-t^2}{1+t^2}$ 

.F.G.B.

- b) Use these results to solve the trigonometric equation
  - $2\sin x + 3\cos x = 1, \ 0 \le x < 2\pi.$

Y.C.F.



2017

 $x \approx 1.88^{\circ}, 5.58^{\circ}$ 

ne,

I.F.G.B.

COM

Mada

1.4.6.

I.G.B.

:0m

Madasm.

う

K.C.A

Created by T. Madas

2017

N.

Question 54 (****+)

I.C.B.

I.C.B.

- $f(x) = \sec x, \quad 0 \le x < \frac{\pi}{2} \cup \frac{\pi}{2} < x \le \pi.$
- a) Sketch in the same diagram the graphs of f(x) and  $f^{-1}(x) = \operatorname{arcsec} x$ .
- **b**) State the domain and range of  $f^{-1}(x) = \operatorname{arcsec} x$ .
- c) Show clearly that  $\operatorname{arcsec} x = \operatorname{arccos}\left(\frac{1}{x}\right)$ .

**d**) Show further that  $\frac{d}{dx}(\operatorname{arcsec} x) = \frac{1}{\sqrt{x^4 - x^2}}$ .

domain:  $x \le -1 \cup x \ge 1$ , range:  $0 \le f^{-1}(x) \le \pi$ ,  $f^{-1}(x) \ne \frac{\pi}{2}$ 

$= \frac{1}{x} = \frac{1}{y^2}$	
$\implies g = \arctan\left(\frac{1}{2c}\right)$	
the arcsec 2 =	arcus (+)
d) englise are snowed theorem	of Anguere of -Aver (c)
$\frac{d}{dt}(auczecs) = \frac{d}{dt}(auccos(t))$	$\left( t \right) = -\frac{1}{\sqrt{1-(\frac{1}{2})^2}} \times \frac{1}{\sqrt{1-(\frac{1}{2})^2}}$
$= - \frac{1}{\sqrt{1 - \frac{1}{\lambda^2}}} \times ($	$\left(\frac{1}{\sqrt{2^2}}\right) = \frac{1}{\sqrt{\frac{2^2-1}{\sqrt{2^2}}}} \times \frac{1}{\sqrt{2^2}}$
$= \sqrt{\frac{2^2 - 1}{2^2} \times 2^3}$	$T = \frac{1}{\sqrt{(2^2 - 1)\chi^2}} = \frac{1}{\sqrt{2^4 - 2^2}}$
OR BY THE INDRESE RILLS ~~	A REALIGO
} ⇒ y= oreseen	$\Rightarrow \left(\frac{d\alpha}{dy}\right)^2 = \alpha^4 - \alpha^2 \qquad \begin{cases} -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \\ $
} =>secy = a	$\rightarrow \left(\frac{dy_1}{d\chi}\right)^2 = \frac{1}{\chi^4 - \chi^2}$
S => a = secy S => day = secy trany	$\Rightarrow \frac{dT}{du} = \pm \frac{1}{\sqrt{2u^2 - x^2}}$
$= \frac{dx}{du}^2 = sedy tauly$	$  dx = + \frac{1}{\sqrt{x^2 - x^2}} $
$z = \frac{dg}{dg}^2 = \frac{2}{2} \frac{1}{2} $	POSINGE GRATICAT INS THE GITTLE DOWNED (PRAPH)
$\begin{cases} \rightarrow \left(\frac{du}{dy}\right)^2 = Such - Such -$	Š
min	manna

F.G.B.

6

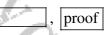
KGA

Question 55 (****+)

It is given that

 $\sin 3\theta \equiv 3\sin \theta - 4\sin^3 \theta \,.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) By differentiating both sides of the above identity with respect to  $\theta$ , show that

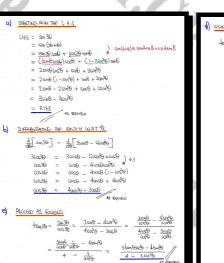

 $\cos 3\theta \equiv 4\cos^3\theta - 3\cos\theta$ 

c) Hence show that

 $\tan 3\theta = \frac{3\tan\theta\sec^2\theta - 4\tan^3\theta}{4 - 3\sec^2\theta}$ 

**d**) Deduce that

 $\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}.$ 




1.

HAUE

 $\frac{3 \tan \theta \sec \theta - 4 \tan \theta}{3 \tan \theta (1 + \tan^2 \theta) - 4 \tan^2 \theta} = \frac{3 \tan \theta (1 + \tan^2 \theta) - 4 \tan^2 \theta}{3 \tan^2 \theta + \tan^2 \theta}$ 

n0+3ban30



#### Question 56 (****+)

Prove the validity of the trigonometric identity

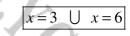
F.C.P.

 $\frac{1+\sin\theta}{1-\sin\theta} \equiv \left(\sec\theta + \tan\theta\right)^2.$ 



- $\frac{\theta_{M2}+\theta_{M2}+1}{\theta_{M2}-1} = \frac{(\theta_{M2}+1)(\theta_{M2}+1)}{(\theta_{M2}+1)(\theta_{M2}-1)} = \frac{\theta_{M2}+1}{-\theta_{M2}-1} = 2\frac{1}{2}$
- $=\frac{1+2sm\theta+\frac{1}{6s\theta}+\frac{1}{6s\theta}+\frac{1}{6s\theta}+\frac{2sm\theta}{6s\theta}+\frac{3m\theta}{6s\theta}$
- $= 3t^{2}_{0} + \frac{2900}{\cos \theta} + \frac{1}{\cos \theta} + \frac{1}{\cos^{2}\theta} = 3t^{2}_{0} + 2\frac{1}{\cos \theta} + \frac{1}{\cos^{2}\theta}$
- = (Seco + tano) = R44

#### Question 57 (****+)


I.Y.C.B.

I.C.B.

Solve the following trigonometric equation.

 $\arctan\left(\frac{x-5}{x-1}\right) + \arctan\left(\frac{x-4}{x-3}\right) = \frac{\pi}{4}, x \in \mathbb{R}.$ 

11₂₀₂



#### $\theta = \operatorname{otcpn}\left(\frac{x^{-i}}{x^{-2}}\right) \quad \phi = \operatorname{otcpn}\left(\frac{x^{-i}}{x^{-2}}\right)$

- ⇒ +++++== → +=++(+++)======
- tang + but =
- $\longrightarrow \frac{1-\frac{y-1}{y-1} + \frac{y-y}{y-y}}{\frac{y-1}{y-1} + \frac{y-y}{y-y}} = 1$
- $\Rightarrow \quad \frac{z-i}{J-\overline{z}} \vdash \frac{z-j}{\overline{z}-\overline{n}} = i \frac{(y-i)(z-j)}{(\overline{z}-\overline{z})(\overline{z}-\overline{n})}$

#### NRV TTHROUGH BY (2-1)(2-3)

 $\begin{cases} \partial (b_{x,y}^{-1}) \langle z - b \rangle (z - z) \langle z - z \rangle (z - z) (z - z) \langle z - z \rangle (z - z) (z -$ 

6

Question 58 (****+)

Given that

 $\sec^2 x - (1 + \sqrt{3}) \tan x + \sqrt{3} = 1$ ,

show that either  $\tan x = 1$  or  $\tan x = \sqrt{3}$ .

Detailed workings must be shown in this question.



#### $(QNG 1 + ball = set \theta$

- $\implies 54\tilde{c}_{\underline{k}} = (1+\sqrt{3}) \frac{1}{4} a_{42} + \sqrt{3}^{2} = 1$   $\implies \frac{1}{4} a_{42}^{2} \frac{1}{4} + 1 = (1+\sqrt{3}) \frac{1}{4} a_{42} + \sqrt{3}^{2} = 1$
- -> fuzz (1+v3) fanz +v3=0

#### THE PUMPERIC FRANCIA

- $\rightarrow p_{M\lambda} = \frac{(1+\sqrt{2}) \pm \sqrt{E(1+\sqrt{2})} 4 \times 1 \times \sqrt{2}}{2 \times 1}$
- $\rightarrow \frac{1}{12} \exp z = \frac{1+\sqrt{1}+\sqrt{1+2\sqrt{1}+3}-4\sqrt{2}}{2}$   $\rightarrow \frac{1}{12} \exp z = \frac{1+\sqrt{1}+\sqrt{1-2\sqrt{2}+3}}{2}$
- $\Rightarrow f_{m_1 \lambda} = \frac{1 + \sqrt{\lambda}}{2} \pm \sqrt{(\sqrt{\lambda} 1)^{\lambda}}$
- 2
- -> fant =

Question 59 (**

(****+)

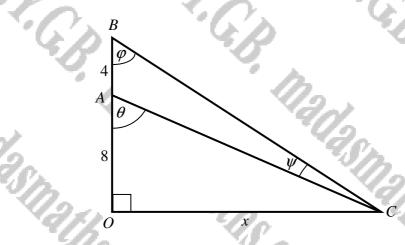
It is given that

 $u = \sin 2\theta$ ,  $v = \cot \theta$ .

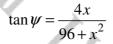
Use trigonometric identities to find a simplified expression for  $u^2$  in terms of v.



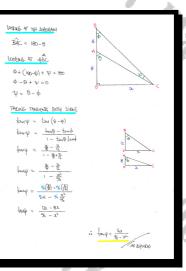
u°=	$4\left(\frac{1}{v^2+1}\right)\left(1-\frac{1}{v^2+1}\right)$	
42=	$4 \frac{1}{ v_{+1} } \times \frac{ v_{+1}  -  v_{+1} }{ v_{+1} }$	


 $U_1^{2} = \frac{4v^2}{(v^2+1)^2}$ 

(v²+1)²


#### Question 60 (****+)

The diagram below shows a right angled triangle *OBC* where |OC| = x and the point *A* on *OB* so that |OA| = 8, |AB| = 4.


The angles *OAC*, *OBC* and *ACB* are denoted by  $\theta$ ,  $\varphi$  and  $\psi$  respectively.



By considering a relationship between the angles  $\theta$ ,  $\varphi$  and  $\psi$ , show that







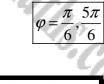
#### Question 61 (****+)

Solve the trigonometric equation

 $\sin x \cos x \cos 2x \cos 4x = \frac{\sqrt{2}}{16}, \quad 0 \le x \le \frac{\pi}{2},$ 

202.01

giving the answers in terms of  $\pi$ .


$\boxed{\qquad},  x = \frac{\pi}{32}, \frac{3\pi}{32},$	$\frac{9\pi}{32}, \frac{11\pi}{32}$
2.	.9
WING THE DOUBLE ANONE IDENTITY FOR SING	
$ \Rightarrow Sinterracionalita \frac{\sqrt{2}}{16} \Rightarrow \frac{2m_{2}}{m_{2}} \cos 2i \cos(1x + \frac{\sqrt{2}}{16}) \Rightarrow \frac{2m_{2}}{m_{2}} \cos 2i \cos(1x + \frac{\sqrt{2}}{16}) \Rightarrow \frac{2m_{2}}{m_{2}} \sin 2i \sin(1x + \frac{\sqrt{2}}{16}) \Rightarrow \frac{2m_{2}}{m_{2}} \sin 2i \sin(1x + \frac{\sqrt{2}}{16}) \Rightarrow \frac{2m_{1}}{m_{2}} \sin 2i \sin(1x + \frac{\sqrt{2}}{16}) \Rightarrow \frac{2m_{1}}{m_{2}} \sin 2i \sin(1x + \frac{\sqrt{2}}{16}) \Rightarrow \frac{2m_{1}}{m_{2}} \sin 2i \sin(1x + \frac{\sqrt{2}}{16})$	
$\implies$ Sin Bi $\rightarrow \sqrt{2}$	
$ \begin{pmatrix} B_{\lambda} = \overline{V}_{\lambda} \pm 2n\eta \\ B_{\lambda} = \overline{J}_{\lambda} + \pm 2n\eta \\ \lambda = \overline{J}_{\lambda} \pm \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ \lambda = \overline{J}_{\lambda} \pm \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \end{pmatrix} $	
L2 = 3752 + 174	
BE THE RANG OS 2 5 TZ	
J = 莊1 莊) 藍1 蘆	

Question 62 (****+)

Solve the trigonometric equation

4  $\frac{1}{2\sec\varphi-2\sin\varphi+1}=\cot\varphi,$  $0 < \varphi < 2\pi, \ \varphi \neq \pi$ 

giving the answers in terms of  $\pi$ .



6

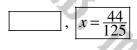
4. 1200 - 25mp+1 = 0060	5	: cat -2
= @t\$(25ec\$-25m\$+1)	3	BND= 7
$=\frac{\cos b}{\sin b}\left(\frac{2}{\cos b}-2\sin b+1\right)$	3	011.2m (2) = 15
= 2 - 20sb + Gost	3	$\begin{pmatrix} \phi = \frac{\pi}{6} \pm 2n\pi \\ \phi = \frac{\pi}{6} \pm 2n\pi \end{pmatrix}$ Max
$\Im m \varphi = 2 - 2 \cos \varphi \sin \varphi + \cos \varphi$	5	
5md + 260565m6 -2-6056=0	. {	$\frac{1}{12} = \frac{1}{12} $
$2sm\phi(2+\cos\phi) - (2+\cos\phi) = c$	. (	(2 16
2+1000) (221106-1) =0	\$	

#### Question 63 (****+)

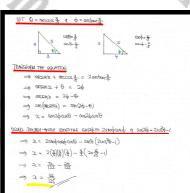
Solve the trigonometric equation

 $\tan \theta (1 + \cos 2\theta) = 2\sin^2 2\theta$ ,  $0 \le \theta \le 90^\circ$ .

nadasm


$\theta = 0^{\circ}, 15^{\circ}, 75^{\circ}, 90^{\circ}$	
~	2
$t_{0}=0$ (1+ $t_{0}=0$ ) = 2511/20	
tano (17+ (20050-11)) = 201/2 2 tano (020 = 201/20	( <del>0</del>
$\frac{2 \sin \theta}{\cos \theta} \cos^2 \theta = 2 \sin^2 2 \theta$	
$2su0us\theta = 2su^2 2\theta$	
$Sw_20 = 2sw^220$	
0 = 250/20 - 50/20	
0 = 25M2D(251M2D-1)	
SM20 = < 2	
0 = 0 = 0	@ OTEEM1 ()= 30
$\begin{pmatrix} 20 = 0 \pm 3600 \\ 20 = 160 \pm 3600 \\ & 4=0,100 \\ & 4=0,100 \\ & 4=0,100 \\ & 4=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=0,100 \\ & 5=$	(20 = 30 ± 3604 20 = 150 ± 3604
$ \begin{pmatrix} \Theta = 0 & \pm & 1804 \\ \Theta = & 90 & \pm & 1804 \end{pmatrix} $	$\begin{pmatrix} \theta = 12 \pm 1804 \\ \theta = 12 \pm 1804 \end{pmatrix}$
0 = 0 1 0 1 1	5,75
1	//

#### Question 64 (****+)


E.

Solve the trigonometric equation

 $\arcsin x + \arccos \frac{3}{5} = 2 \arctan \frac{3}{4}$ .



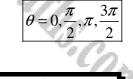
G



Question 65 (****+)

It is given that

i.C.B.


P.C.B.

 $\frac{\cot x}{\csc x - 1} - \frac{\cos x}{1 + \sin x} \equiv 2\tan x , \quad x \neq 180^{\circ}n, n \in \mathbb{Z}.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence solve the trigonometric equation

 $\frac{\cot 3\theta}{\csc 3\theta - 1} - \frac{\cos 3\theta}{1 + \sin 3\theta} = 2\tan \theta, \ 0 \le \theta < 2\pi,$ 

giving the answers in terms of  $\pi$ .



ŀ.G.p.

G

E.



#### **Question 66** (****+)

Prove the validity of the following trigonometric identities.

 $\frac{\tan 2x}{\tan 2x + \sin 2x} \equiv \frac{1}{2}\sec^2 x \,.$ 

ii.

2017

I.F.G.B.

I.F.C.P.

 $\frac{\tan\varphi}{(1-\cos\varphi)(1+\sec\varphi)}$  $= \operatorname{cosec} \varphi$ .

202

200

2017

I.V.G.B.

madasmaths,

Y.G.B.

COM I.Y.C.J

proof

I.C.p

COM

 $\frac{\frac{3n_{2\lambda}}{\cos 2\lambda}}{\frac{\sin 2\lambda}{\cos 2\lambda} + \frac{3n_{2\lambda}}{\cos 2\lambda}} = \frac{3n_{2\lambda}n_{2\lambda}}{f^2AGNOU} \frac{3n_{2\lambda}}{g^2} \frac{3n_{2\lambda}}{g^2}$ = hustry top Scritch =

 $\frac{1}{1+(2\alpha\dot{h}-1)} = \frac{1}{2\alpha\dot{h}} = \frac{1}{2}\operatorname{stel} = RHS$ 

nadasn

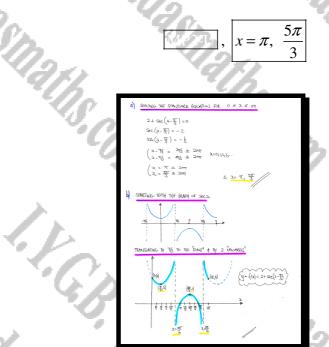
2011

I.G.B.

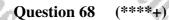
21/15

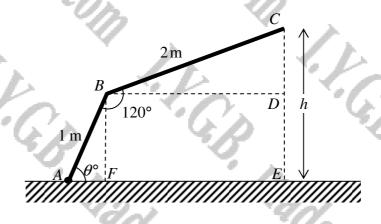
112d2s1

00


1.1.6

Question 67 (****+)

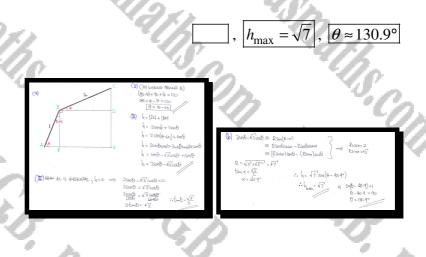

 $f(x) = 2 + \sec\left(x - \frac{\pi}{3}\right), \ x \in \mathbb{R}, \ 0 \le x \le 2\pi.$ 


- **a**) Solve the equation f(x) = 0.
- **b**) Sketch the graph of f(x).

The sketch must include the coordinates of any stationary points, the coordinates of any x or y intercepts and equations of the vertical asymptotes.



1.+






The figure above shows a rigid rod *ABC* where *AB* is 1 metre, *BC* is 2 metres and the angle *ABC* is 120°. The rod is hinged at *A* so it can be rotated in a vertical plane forming an angle  $\theta^{\circ}$  with the horizontal ground.

Let h metres be the height of the point C from the horizontal ground.

- a) Show that ...
  - i. ...  $\measuredangle DBC = \theta^\circ 60^\circ$ .
  - ii. ...  $h = 2\sin\theta \sqrt{3}\cos\theta$ .
  - iii. ... when AC is horizontal,  $\tan \theta = \frac{\sqrt{2}}{2}$
- **b)** By expressing h in the form  $R\sin(\theta \alpha)$ , where R > 0 and  $0 < \alpha < 90^\circ$ , find the maximum value of h and the value of  $\theta$  when h takes this maximum value.



#### (****+) **Question 69**

Solve the trigonometric equation

 $2\sin y + 3\sec y = 6 + \tan y,$  $0 \le y < 2\pi \,,$ 

2017

I.V.C.B. Madasman

I.G.B.

nadasma

L.C.B. Mada

1.4.6.

Madasm

.com

ths.com

 $y = \frac{\pi}{3}, \frac{5\pi}{3}$ 

S.Com

giving the answers in terms of  $\pi$ .

madasmaths,

Madasm

COM

I.C.p

Com

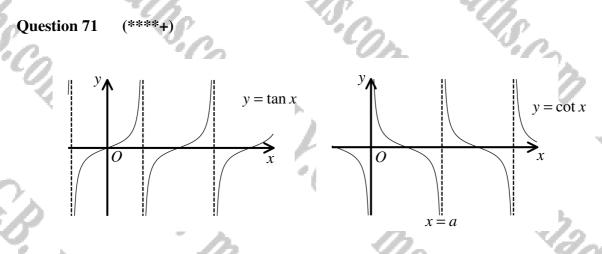
I.F.G.B.

>

Created by T. Madas

K.C.B. Madasmarkins.Com

COM


Stran	-425	nar.
	Question 70	(****+) f(x)=
		*

Show that if  

$$f(x) = \frac{1}{2}f\left(x + \frac{\pi}{4}\right),$$
then either sin *x* = 0 or tan *x* = 2.

h	,	proof

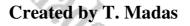
20. 4282	asp.	120	asm	1
nor a	Created by T.	Madas	. ¹ 211	
Question 70 (**	***+)	Co.	18 40	r Co
"COM	$f(x) = \sec^2 x, \ x \in \mathbb{R}, \ x \neq$	$\frac{\pi}{2}(2n+1), n \in \mathbb{N}.$	COM .	00
Show that if		· · · · · · · · · · · · · · · · · · ·	, II	
Gp '	$f(x) = \frac{1}{2}f\left(x\right)$	$+\frac{\pi}{4}$ ),	6 '( ')n	B
then either $\sin x =$	0 or $\tan x = 2$ .	12.	120	
250 4200	adash	1935 1955	, proof	o~.
12/1/2 13	1212 12	$\begin{array}{c} \underline{\partial}\underline{\partial}\underline{\partial}\tau \in \operatorname{Tre} \ \overline{\partial}_{\mathbf{x}} \ \overline{\partial}_{\mathbf{x}} \\ \rightarrow \left( \widehat{\alpha} \right)_{\mathbf{x}} \ \frac{1}{2} \left\{ (\widehat{\mathbf{x}}, \frac{1}{2}) \\ \Rightarrow 2 \left\{ \widehat{\alpha} \right\}_{\mathbf{x}} \ - \left\{ \widehat{\alpha} \right\}_{\mathbf{x}} \ \overline{\partial}_{\mathbf{x}} \ \overline{\partial}_{\mathbf{x}} \\ \rightarrow \left\{ \widehat{\alpha} \right\}_{\mathbf{x}} \ - \left\{ \widehat{\alpha} \right\}_{\mathbf{x}} \ \overline{\partial}_{\mathbf{x}} \ \overline{\partial}_{$		Is,
· COM	S.Co.	$\Rightarrow \frac{2}{\omega_{\infty}^{2}} = \frac{\omega^{2}(\alpha; \frac{\pi}{4})}{\omega^{2}(\alpha; \frac{\pi}{4})}$ $\Rightarrow \frac{\omega_{\infty}^{2}}{2} = \omega^{2}(\alpha; \frac{\pi}{4})$ $\frac{1}{2}\omega_{\infty}^{2} = \frac{1}{2}(\omega_{\alpha}\omega_{\infty}) + \frac{1}{2}(\omega_{\alpha}) + \frac{1}{2}(\omega_{\alpha})$		-
Jr. C	V V	$ \Rightarrow \frac{1}{2} 4 c_{L}^{2} = \left(\frac{11}{471}^{2} (\omega_{L} - \kappa_{HZ})^{2} \right)^{2} $ $ \Rightarrow \frac{1}{2} (\omega_{L}^{2} - \kappa_{HZ})^{2} $ $ \frac{1}{10 M_{HV}} \tau_{HD} = \frac{1}{2} (\omega_{L}^{2} - \kappa_{HZ})^{2} $ $ \frac{1}{10 M_{HV}} \tau_{HD} = \frac{1}{2} (M_{H}^{2} + \kappa_{HZ})^{2} - \frac{1}{2} (\omega_{L}^{2} - \kappa_{HZ})^{2} $ $ \frac{1}{2} (\omega_{L}^{2} - \omega_{HZ})^{2} + \frac{1}{2} (\omega_{L}^{2} - \kappa_{HZ})^{2} $ $ \frac{1}{2} (\omega_{L}^{2} - \omega_{HZ})^{2} + \frac{1}{2} (\omega_{L}^{2} - \kappa_{HZ})^{2} $ $ \frac{1}{2} (\omega_{L}^{2} - \omega_{HZ})^{2} + \frac{1}{2} (\omega_{L}^{2} - \kappa_{HZ})^{2} $ $ \frac{1}{2} (\omega_{L}^{2} - \omega_{HZ})^{2} + \frac{1}{2} (\omega_{L}^{2} - \kappa_{HZ})^{2} $ $ \frac{1}{2} (\omega_{L}^{2} - \omega_{HZ})^{2} + \frac{1}{2} (\omega_{L}^{2} - \kappa_{HZ})^{2} + \frac{1}{2} (\omega_{L}^{2} - \kappa_{HZ})^{2} $ $ \frac{1}{2} (\omega_{L}^{2} - \omega_{HZ})^{2} + \frac{1}{2} (\omega_{$	$a_{1} = \pm \omega_{2,4} \epsilon_{0,2}$	2
C.p	Gp 1	$O = SN2 (SN2 - 2MS2) + LO22  \frac{O}{MO2} = \frac{SN2 (SN2 - 2MS2)}{LO22} (c)  CO2 = CO2 (SN2 - 2M2) (c)  CO2 (SN2 -$	$r_{1} = r_{2} = r_{1} r_{1} r_{2} = r_{2} r_{1} r_{2} r_{2} r_{2} r_{2} = r_{2} r_{1} r_{2} r_{2} r_{2} r_{2} = r_{2} r_{1} r_{2} r_$	63
do no	Made	. m.	nari	
aspan, ala	m asn	21. 9028	- ¹ 35/	2.
Co.	"alls	IS.C.	21/2	The second
	r. 00		"COM	
I.K.	Co !	Ko. 1	Cp 1	I.
S.	Created by T.	Madas	12	
20/20 × 20	Created by I.			Do.



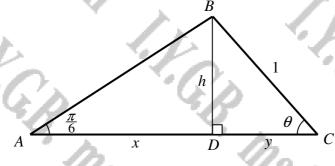
The diagrams above shows part of the graphs of  $y = \tan x$  and  $y = \cot x$ .

a) Sketch the graph of  $y_1 = -\tan(-x)$  and hence write a simplified expression for  $y_1$  in terms of  $\tan x$ .

The graph of  $\cot x$  has vertical asymptotes and the equation of one of them is labelled in the diagram as x = a.


**b**) State the value of *a*.

The graph of  $\cot x$  can be obtained from the graph of  $\tan x$  by a series of two geometric transformations which can be carried out in any order.


- c) Describe the two geometric transformations.
- d) Deduce using valid arguments that

 $\cot x = \tan\left(\frac{\pi}{2} - x\right).$ 

 $\overline{a=\pi}$ , reflection in the x axis/translation to the "right" by  $\frac{\pi}{2}$  units







The figure above shows a triangle *ABC*, where  $\measuredangle BAC = \frac{\pi}{6}$ ,  $\measuredangle BCA = \theta$  and |BC| = 1.

The straight line segment BD, labelled as h, is perpendicular to AC.

Let AD = x and DC = y.

a) By expressing h in terms of  $\theta$ , and x in terms of h, show that

 $x + y = \sqrt{3}\sin\theta + \cos\theta,$ 

and hence deduce that the area of the triangle ABC is given by

# $\sin\theta\sin\left(\theta+\frac{\pi}{6}\right).$

**b**) By using the trigonometric identities for

$$\cos\left[\theta + \left(\theta + \frac{\pi}{6}\right)\right]$$
 and  $\cos\left[\theta - \left(\theta + \frac{\pi}{6}\right)\right]$ ,

write a simplified expression for the area of the triangle ABC.

[continues overleaf]

[continued from overleaf]

The value of  $\theta$  can vary.

R,

I.G.B.

c) By using part (b), deduce that the maximum value of the area of the triangle *ABC* is

 $\frac{1}{4}\left(2+\sqrt{3}\right)$ 

and this maximum value occurs when  $\theta = \frac{5\pi}{12}$ .

100		
a) working at BDC		R
• h = l× sm9	/	1
• y = 1× 605€	A 756	1 8A
LOCIND AT ARD		
→ h = tart		
$\rightarrow \frac{sm\theta}{z} = \frac{\sqrt{3}}{3}$		
→ 1372 = 35MB		
Omzilv = 10 00		
∴ 2c+y = 6000 + √3 5	an <del>0</del>	
: ARRA = 1 LACITED	>	
= 1/(x+y)h	k	
$=\frac{1}{2}(\log \theta + \sqrt{3})$	นี้เพย) จเทย	
$=\left(\frac{1}{2}6000 + \frac{1}{2}\right)$	sime ) sing	
= (Sm IF loo B + 0	ontenno)smo	
= SM(0+E)	SIMA -	
	SUND	

 $(\Xi+\theta) \mod \Theta \operatorname{dec} - (\Xi+\theta) \dim \Theta \operatorname{dea} \equiv [(\Xi+\theta) + \theta] \operatorname{dea}$  $(\Xi^{+a})$ mz $\theta$ niz +  $(\Xi^{+a})$ zoo  $\theta$ zoo =  $[(\Xi^{+a}) - \theta]$ zoo SUBTRACTING UPWARDS  $\cos(-{\mathbb F})-\cos(2\theta+{\mathbb F})\equiv -2{\rm Sim}(\theta+{\mathbb F})$  $(\overline{z}+\theta)_{ni2} \theta_{ni2} = (\overline{z}+\theta_2)_{200} \underline{z} - (\overline{z})_{200} \underline{z}$  $Sin \theta Sin (\theta + \overline{E}) \equiv \frac{\sqrt{3}}{4} - \frac{1}{2} \log (2\theta + \overline{E})$  $\pi R GA = \frac{1}{4} \left[ \sqrt{5} - 2 \cos(20 + \frac{\pi}{2}) \right]$ = (平+152)200 (小HW 28U200 A3AA MUMIXAM ARA = + [NS-2(-1)] = + (15+2)

 $\sqrt{3}$ 

4

 $\sin\theta\sin\left(\theta+\frac{\pi}{6}\right)$ 

 $-\frac{1}{2}\cos\left(2\theta+\frac{\pi}{6}\right)$ 

F.G.B.

G

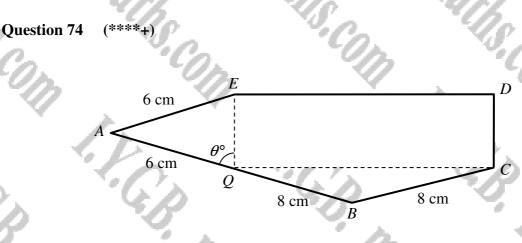
#### Question 73 (****+)

The height of tide, h meters, in a harbour on a certain day can be modelled by

 $h(t) = 10 + \sqrt{3} \sin(30t)^\circ + \cos(30t)^\circ, \ 0 \le t \le 12$ 

where t is the time in hours since midnight.

a) Find the time when the high tide and the low tide occur during the morning hours of that day and state the corresponding depth of water in the harbour at these times.


The depth of water in this harbour needs to be at least 8.5 metres for a boat to dock

A boat arrives outside the harbour at high tide and needs five hours to unload.

**b**) Show that the boat has to wait until 09:23 to enter the harbour.

, high tide of 12 metres at 02:00, low tide of 8 metres at 08:00

$h(t) = 10 + 13^{-1} sm(30t) + cos(30t)$	or Rem(306+~)
	( + Rsm30tsma + (Rsma)sm30t 60°
30	60 = 0 t = 60 t = 2
30€~6 30€	
Law TIDE B withins AT 08:00	
$\begin{array}{c} 28 \times J \\ (a_{3}-3b_{3}^{2}) xa_{3}^{2} + 1 \\ (a_{3}-3b_{3}^{2}) xa_{3}^{2} + 2.3 \ll \\ (a_{3}-3b_{3}^{2}) xa_{3}^{2} + 27.9 \\ 7.9 \\ - 17.9 \\ (xa_{3}^{2}b_{4}^{2} + 27.80) \\ - 100 \\ xa_{3}^{2}b_{4}^{2} + 27.80 \\ (xa_{3}^{2}b_{4}^{2} + 27.80) \\ - 20.18 \\ xa_{3}^{2} + 27.80 \\ xa_$	00150 7 20059 9 460 23064 2 + 00170 -20038 11 00 70060 71 (72:00) 200-2005 200394 1408 TI
$ \begin{cases} 30t = (96, 59 \pm 3604) \\ 30t = 281, 4  \pm 3604 \\ \\ t = 642, \pm 1247 \\ t = 1.38 \pm 1247 \\ \end{cases} $	: IT WAST WAIT ONTIL t=9.38 IF 0.38 XG = 22.9 IF 0.91:23 JS LEPUR NO



The figure above shows an irregular pentagon ABCDE. The lengths of AB, BC and AE are 14 cm, 8 cm and 6 cm respectively.

The point Q lies on AB so that AQ is 6 cm and QB is 8 cm. The point D is then constructed so that QEDC is a rectangle.

Let the angle AQE be  $\theta^{\circ}$  and assume that  $\theta^{\circ}$  can vary.

a) Given that P cm and  $R \text{ cm}^2$  are the perimeter and the area of the pentagon respectively, show that ...

i. ...  $P = 28 + 12\cos\theta + 16\sin\theta$ .

ii. ...  $R = 146 \sin 2\theta$ .

b) Hence show that when the pentagon has a maximum area

 $P = 14\left(2+\sqrt{2}\right)\,\mathrm{cm}^2\,.$ 

Created by T. Madas

proof

I.F.G.B.

(****+) **Question 75** 

Let  $t = \tan\left(\frac{x}{2}\right)$ .

Smarns-Com I.K.

I.V.G.B.

1.V.G.

- a) Show that ...
  - $\dots \sin x = \frac{1}{1+t^2}$
  - **ii.** ...  $\cos x = \frac{1-t^2}{1+t^2}$ .

I.G.B.

**b**) Use these results to solve the trigonometric equation

 $5\sin x - 5\cos x = 1, \ 0 \le x < 2\pi.$ 

 $3(z) RHS = \frac{2t}{1+t^2} = \frac{2tm^3/2}{1+tm^2/2} = -$ 25m圣 Cun圣serethy 25m2 Stc 2 madasmans.com

ths.com

 $x = 3.79^{\circ}, 0.927^{\circ}$ 

ths.com

I.V.C.B. Madasm

I.V.G.B.

Ż

1.1.6

Created by T. Madas

00

#### **Question 76** (****+)

I.V.C.B. Madasm

COM

I.C.P.

>

The functions f and g are defined by

$$f(x) \equiv 3\sin x, \ x \in \mathbb{R}, \ -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
$$g(x) \equiv 6 - 3x^2, \ x \in \mathbb{R}.$$
$$f^{-1}g(x).$$

$$g(x) \equiv 6 - 3x^2, \ x \in \mathbb{R}$$

**a**) Find an expression for  $f^{-1}g(x)$ .

**b**) Determine the domain of  $f^{-1}g(x)$ .

$g(x) \equiv 0 - 3x , x \in \mathbb{R}.$	~0	· · · G
on for $f^{-1}g(x)$ .	<u>n</u> '	n.
main of $f^{-1}g(x)$ .	an.	A0/2
20	- 98n	
$\int f^{-1}g(x) = \arcsin\left(2 - x^2\right)$	, $-\sqrt{3} \le x \le -1$ or 1	$\leq x \leq \sqrt{3}$

10.1	a) $-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}$
- °C	$g(x) = 6 - 3x^2$ $x \in \mathbb{R}$
0	$= \mathcal{G} = 32 \text{ More } \qquad \text{Now } f(g(u)) = f(6-3u^2)$
	$\implies \frac{W}{3} = s_{M,0} \qquad \qquad$
	$ = 3 \propto \alpha \operatorname{crisin} \frac{M}{3} = \alpha \operatorname{crisin} (2-2^2) $ $ : \int_{-1}^{1} (x) = \alpha \operatorname{crisin} \frac{3}{2} $
	2.1(x) = arowi 3.
1.	b) -{(x) HUS INCUMUN [-至1至] AND ENVISE [-3,3] -{G) HAS INCUMUN [-43] AND RENTE [-3)至]
61	(xel) 3(2) our seferit fix our
10	<u>Hlace</u> → -3 < 3(x) < 3 < < < < < < < < < < < < < < < < <
111111	$ = -3x^{2} \le -3x^{2} \le 3 \qquad \underbrace{0}_{i} \left\{ \begin{array}{c} -1 \le 2 - 1^{2} \le i \\ = -9 \le -3x^{2} \le -3 \\ = -1 \le -x^{2} \le -1 \\ = -1 \le -x^{2} = -x^{2} = -x^{2} = -x^{2} = -x^{2} = -x^{2} = -x^{2}$
~ ~ <i>L</i>	$\Rightarrow 1 \leq x^2 \leq 3$
100	263 56265 · · · · · ·
~	22 > 1 = 2 > 1 = 2 = 1 - 1 - 1 - 1 = 1
	13 = 1 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 2
	** -00 0 LE ~ 10 LE N3
9	
15	and a
19.	11 Mar
911	10
-cn	V.2.
- VP	911
	n - c n
	$\mathcal{D}$ $\mathcal{A}$

2011

hs.com

I.V.C.

hs.com

I.V.G.B

Created by T. Madas

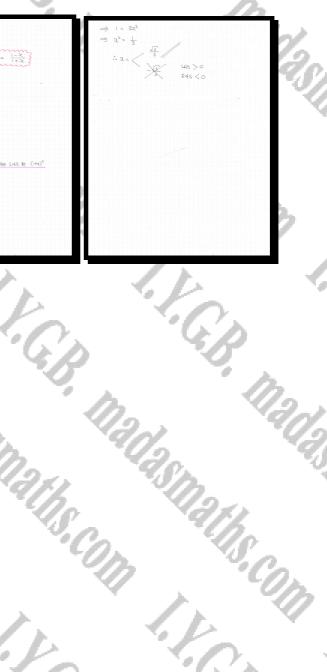
COM

1.Y.C.

### (****+) **Question 77**

I.V.G.B. 11130/3

asmaths.com


1121125

I.F.G.B.

Find the solution of the equation

 $\arctan\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\arctan x$ .





naths.com

 $x = \frac{\sqrt{3}}{3}$ 

naths.com

Y.G.B.

ins.C

.Y.G.B.

1.1.6

madasma

I.V.C.B. Mada

Created by T. Madas

Madasmaths.com



### Question 79 (****+)

A relationship is defined as

$$x = \sin^2 \theta, \ 0 \le \theta < \frac{\pi}{4}$$

$$y = \tan 2\theta$$
,  $0 \le \theta < \frac{\pi}{4}$ 

Use trigonometric identities to show that

$$y^{2} = \frac{4x(1-x)}{(1-2x)^{2}}.$$

		100	100
sufo = tan 20	⇒y= zbro = 1-try20 =	2 touro touro touro touro touro	= 2uto uto-1
	$\Rightarrow$ $\underline{\mathcal{G}} = \frac{2at\theta}{(atb-1)}$		
	$\implies y^{2} = \frac{4\omega^{2}\theta}{(\omega^{2}\theta - 1)^{2}} =$	$\frac{4(108169-1)}{(108169-2)^2}$	
	man	$\frac{1}{x} = \frac{1}{2}$	
	$\Rightarrow y^2 = \frac{4(\frac{1}{3}-1)}{(\frac{1}{3}-2)^2} =$	$\frac{4\left(\frac{1-\lambda}{2}\right)}{\frac{\left(1-2\lambda\right)^2}{\lambda^2}}$	
	$\Rightarrow y^2 = \frac{4a(i-a)}{(1-2a)^2}$	22	
	11		

proof

### Question 80 (****+)

Find the solutions of the trigonometric equation

 $\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta = 0,$ 

for which  $0 \le \theta < 180^{\circ}$ .

 $\theta = 22.5^{\circ}, 45^{\circ}, 67.5^{\circ}, 90^{\circ}, 112.5^{\circ}, 135^{\circ}, 157.5^{\circ}$ 

• $(\alpha X \theta = 0)$ • $(\omega_X \chi_B = 0)$ • $(\omega_1 \xi_B = 0)$ • $(\omega_1 \xi_B = 0)$ $(\theta = 10 \pm 300 \eta)$ $(2\theta = 10 \pm 320 \eta)$ $(4\theta = 10 \pm 360 \eta)$ $(\omega_1 \xi_B)$ $(\theta = 210 \pm 360 \eta)$ $(2\theta = 210 \pm 360 \eta)$ $(4\theta = 210 \pm 360 \eta)$ $(\omega_1 \xi_B)$ $(\theta = 210 \pm 360 \eta)$ $(\theta = 210 \pm 360 \eta)$ $(\theta = 210 \pm 360 \eta)$	201+8201+8201 5+87201-8201 5+822038201 4820398201 52002 × 88201 5019200 8800	0=6200+620=0 20=0000000000000000000000000000000	(cc14+cc3=2755	113 and 2
thut θ= 90, 45, 135, 225, 1125, 67,5, 157.5	(0=90 ± 3604 (0= 270 ± 3604	$\begin{pmatrix} 20 = 90 \pm 360_{1} \\ 20 = 210 \pm 360_{2} \\ 0 = 250 \pm 360_{1} \\ 0 = 45 \pm 180_{1} \\ 0 = 135 \pm 180_{1} \end{pmatrix}$	$ \begin{pmatrix} 40 = 90 \pm 3604 \\ 40 = 270 \pm 3604 \\ \theta = 270 \pm 3604 \\ \theta = 67.5 \pm 904 \\ \theta = 67.5 \pm 904 \\ \end{pmatrix} $	

G

### Question 81 (****+)

 $\sin 3\theta \equiv 3\sin \theta - 4\sin^3 \theta \, .$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence or otherwise solve the trigonometric equation

 $\arcsin x = 3 \arcsin\left(\frac{1}{3}\right)$ 





Question 82 (****+)

Solve the simultaneous equations

 $\arctan x + \arctan y = \arctan 8$ 

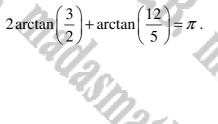
x + y = 2

, in either order x =, y = q (y=2-x)

G

### Question 83 (****+)

Solve the trigonometric equation


 $4\tan 2\psi + 3\cot \psi \sec^2 \psi = 0, \quad 0 \le \psi < 2\pi,$ 

giving the answers in terms of  $\pi$ .

		$\frac{2\pi}{3}, \frac{4\pi}{3}$	$\frac{5\pi}{3}$
2		X	Ŀ
$ = \frac{0 \tan(p)}{1 - \tan(p)} + $ $ = \frac{8T}{1 - T_{n}} + \frac{\pi}{2} $ $ = 8T^{2} + 3(1 - 1)^{2} $	$\frac{3}{5m\psi} \wedge (1+5m\psi) = 0$ $\frac{3}{5m\psi} + 35m\psi = 0$ $\frac{3}{5} + 3T = 0$ $\frac{3}{7} + 3T^{2}(-177) = 0$ $\frac{1}{7^{2}} + 3T^{2}(-77) = 0$ $\frac{1}{7^{2}} - 3T^{4} = 0$ $T^{3} - 3$	$\begin{array}{c} \overline{C}A\pm=T \longleftrightarrow\\ \overline{C}A\pm=T \longleftrightarrow\\ \overline{C}A\pm=T \end{aligned}\\ \overline{C}A\pm=T \end{aligned}$	

Question 84 (****+)

Show clearly that



tout = to

12 41

SMA = 12

Cosop = 5

0 = artanz taul = z-

3

 $SIN\Theta = \frac{3}{NG^{2}}$ 

 $\cos \theta = \frac{z}{4\pi^2}$ 

$$\begin{split} & (cs\psi = (2cs\theta - 1)cs\phi - (2sm\theta cs\theta sm + (2s\phi - 1)(3s) + (2$$

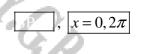
 $\cos \psi = -\frac{5}{13} \times \frac{5}{13} - \frac{12}{13} \times \frac{12}{13}$ 

4 = 28 + 4 (129) = 62(28+4) (129) = 62(28+4)

= 4200

V, proof

G


ALTHENIATULY BY COMPLEX NUMBRES

 $(2+3i)^{2}(s+12i) = (4+12i-9)(s+12i) = (-s+12i)(s+12i)$ = -25-60i+60i-1044 = -169

### Question 85 (****+)

Find, in terms of  $\pi$ , the solutions of the trigonometric equation

 $\cos 2x + 3\cos x - 2\cos^2 x - \sqrt[3]{\cos x} = 1, \ 0 \le x < 4\pi.$ 





Question 86 (****+)

Solve the trigonometric equation

 $\cos x + \cos 5x = 0, \quad 0 \le \theta < \pi \,,$ 

giving the answers in terms of  $\pi$ .

and the second	
$x=\frac{\pi}{6},$	$\frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{5\pi}{6}$
	220
losa + lossz=0 ⇒lossz = - losz	$\begin{cases} \gamma = -\frac{4}{11} + \frac{3}{11} \\ \alpha = -\frac{6}{11} + \frac{3}{11} \end{cases}$
$ = \int (S_{2} - \pi) (z_{0} - \pi)$	5 3 4 ,
$= \begin{pmatrix} 6a = \pi \pm 2m \\ 4a = -\pi \pm 2m \\ \end{pmatrix}$	$\begin{aligned} \mathcal{I}^{2} = \widetilde{\mathbf{a}}_{1}^{2} \\ \mathcal{I}^{4} = \widetilde{\mathbf{a}}_{1}^{4} \end{aligned}$
(ACTIVINATURE RUSE COSA+COSB	= 2601 4415 005 4-D

6

### (****+) Question 87

Use the substitution  $t = tan \frac{1}{2}x$  to show that if

 $6\tan\frac{1}{2}x = 1 + 5\sin x,$ 

then the three possible values of  $tan \frac{1}{2}x$  are

nadasma

madasm

aths.com

l.Y.C.B.

Smaths.com

I.C.P.

>

1,  $-\frac{1}{2}$  or  $-\frac{1}{3}$ 

I.G.p.

nadasmaths.com

Com



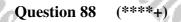
nadasmaths.com

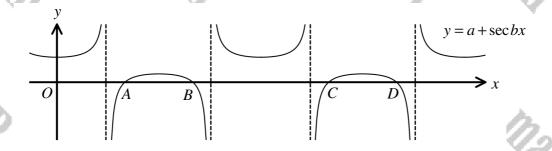
nadasm.

I.F.G.

LYCB Madasm

ths.com


aths com


.C.p.

Created by T. Madas

00

I.C.





The figure above shows part of the graph of

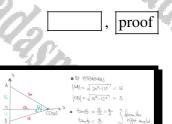
$$y = a + \sec bx \,,$$

where a and b are positive constants.

The points A, B, C and D are the x intercepts of the graph, with respective coordinates  $\left(\frac{\pi}{3}, 0\right), \left(\frac{2\pi}{3}, 0\right), \left(\frac{4\pi}{3}, 0\right)$  and  $\left(\frac{5\pi}{3}, 0\right)$ .

Determine the value of a and the value of b.

a = 2, b = 2


9= a + secba
· lookuus At A.A.B. (or B.Q.D), THEY ARE T HEAR
• THE SECTION TRUSTION HAS A PREVIDE OF 2T ; (LIFE COSANT); SO IT HAS BEEN STREFTCHED IN 2 BY SCALE FACTOR OF 1
. b=2
$\begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \begin{array}{c} \\ \\ \end{array} \end{array} } \\ \end{array} \end{array} } = \underbrace{ \begin{array}{c} 0 = \alpha + \operatorname{Sec}(2 \overline{\mathfrak{A}}) \\ \end{array} \\ = \underbrace{ \begin{array}{c} \end{array} \end{array} } \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} = \underbrace{ \begin{array}{c} 0 = \alpha - 2 \\ \end{array} \\ \end{array} \\ \end{array} \\ = \underbrace{ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} = \underbrace{ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ = \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
=> 0= + seq2(=) <= = = 2
$= 0 = 0 + \frac{1}{\cos \frac{2\pi}{3}}$
== 0 = a + -1/2

### Question 89 (****+)

The point A lies on the y axis above the origin O and the point B lies on the y axis below the origin O.

The point C(12,0) is at a distance of 20 units from A and at a distance of 13 units from B.

By considering the tangent ratios of  $\measuredangle OCA$  and  $\measuredangle OCB$ , show that the tangent of the angle ACB is exactly  $\frac{63}{16}$ .



### Question 90 (****+)

By using the substitution  $t = tan(\frac{1}{2}x)$  solve the trigonometric equation

 $3\cos x + 4\sin x = 3 - \tan\left(\frac{1}{2}x\right), \ 0 \le x < 360^{\circ}.$ 

### $x = 0^{\circ}, 143.1^{\circ}$

30052+45m2=3-tun(22)	· anday D = 0
$\Rightarrow \Im\left(\frac{1-4z}{1+4z}\right) + \frac{1}{4}\left(\frac{2t}{1+4z}\right) = 3-t$	• andown 3 = 71:57*
$\Rightarrow 3(1-t^2) + 4(2t) = (3-t)(1+t^2) \\ \Rightarrow 3' - 3t^2 + 8t = 3' + 3t^2 - t - t^2 \\ \end{cases}$	$\frac{32}{2} = 0 \pm 1804 \qquad M = 01/2_{13}.$
$\Rightarrow t^{3}-6t^{2}+9t = 0$ $\Rightarrow t(t^{2}-6t^{2}+9) = 0$	2 = 0 ± 360 4 2 = 443-13 ± 360 4
$\Rightarrow t(t-3)^2 = 0$	$\mathfrak{X}_1 = 0$ $\mathfrak{X}_2 = 143^\circ$
$= t_{2} < \frac{\circ}{3}$ $= t_{2} < \frac{\circ}{3}$	
$\Rightarrow t_{av}(\frac{x}{2} = <_{3}^{\circ})$	

### Question 91 (****+)

 $\sin x - \cos x = \sin 2x + \cos 2x - 1, \quad \cos x \neq 0,$ 

Show that the above trigonometric equation is equivalent to

 $(\tan x - 1)(\sec x + 2\tan x) = 0.$ 

Madasm.



Com

$$\begin{split} Shg_{-} &= \omega_{S,2} = sh_{S,2}^{-} + (\omega_{S,2} - i) \\ shy_{-} &= (\omega_{S,2} - 2sh_{S,2}\omega_{S,2} + i - 2sh_{S,2} - i) \\ shy_{-} &= (\omega_{S,2} - 2sh_{S,2}\omega_{S,2} - 2sh_{S,2}\omega_{S,2} - i) \\ shy_{-} &= (\omega_{S,2} + 2sh_{S,2}^{-} - 2sh_{S,2}\omega_{S,2} - i) \\ (sh_{-} - (\omega_{S,1} + 2sh_{S,2}^{-} - 2sh_{S,2}\omega_{S,2} - i) \\ (sh_{-} - (\omega_{S,1} - i) + 2sh_{S,2}^{-} (sh_{-} - \omega_{S,2}) = o \\ (sh_{-} - (\omega_{S,1} - i) + 2sh_{S,2}^{-} - i) \\ (sh_{-} - (\omega_{S,1} - i) + 2sh_{S,2}^{-} - i) \\ (sh_{-} - i) \\ (sh_{-$$

Question 92 (****+)

Solve the trigonometric equation

$$\frac{d}{dx}\left(\sqrt{1-\cos 2x}\right) = 1, \ 0 \le x < 2\pi.$$



Ĉ.Ŗ

mana,

G

$\frac{d}{dx} \left[ \sqrt{1 - \omega S^2} \right] = 1$ $\frac{d}{dx} \left[ \sqrt{1 - (1 - 2w_1^2)} = 1$ $\frac{d}{dx} \left[ \sqrt{2 S w_2} \right] = 1$ $\frac{d}{dx} \left[ \sqrt{2 S w_2} \right] = 1$	$\begin{cases} \rightarrow i \overline{z} \text{ log}_{z=1} \\ \rightarrow i \overline{z} \text{ log}_{z=1} \\ e \operatorname{opce}(\frac{1}{2p}) = \frac{1}{4} \\ (\overline{z} = \frac{1}{4} + 2\operatorname{orr} + \operatorname{sop}_1 i \beta). \end{cases}$
$d_{2}$ $d_{3}$ $(SWDC) = 1$	2= ¥1 ₩

Question 93 (****+)

Given that

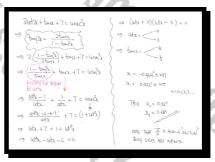
$$\csc^2\left(\frac{x}{2}\right) - \frac{1 - \cos x}{\sin x} = 5,$$

20/201

find the **finite** value of  $\tan x$ .

12.	19
$\begin{array}{l} 23c_{2}^{2}\frac{\lambda}{2}-\frac{1-0.02}{5}=5\\ 23c_{2}\frac{\lambda}{2}-\frac{1-0.02}{5}=5\\ 23c_{2}\frac{\lambda}{2}-\frac{1-0.02}{5}=5\\ 23c_{2}\frac{\lambda}{2}-\frac{1-0.02}{5}=5\\ 23c_{2}\frac{\lambda}{2}-1-0.$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

 $\tan x = -$ 


Question 94 (****+)

 $2\cot 2x + \tan x + 7 = \csc^2 x , \ 0 \le x < \pi .$ 

Given that  $x \neq \frac{\pi}{2}$ , find the solutions of the above trigonometric equation, giving the answers in radians correct to two decimal places.

### $x = 0.32^{\circ}, 2.68^{\circ}$

1



Question 95 (****+)

202.50

Madasm,

00

I.C.p

nn

I.F.G.B.

>

 $\frac{1+\cos x}{1-\cos x} = 3 + \sqrt{8}\operatorname{cosec}\left(\frac{x}{2}\right), \ 0 \le x < 720.$  $1 - \cos x$ 

Find the solutions of the above trigonometric equation, giving the answers in **degrees**.

madas

20

2011

N.

I.G.B.

# *x* = 30°, 330°, 510°, 570° $\frac{1+\cos \alpha}{1-\cos \alpha} = 3 + \sqrt{8} \cos \alpha \frac{\alpha}{2}$ $\frac{1 + (2m_{1}^{2}m_{2}^{2} - 1)}{1 - (1 - 2m_{1}^{2}m_{2}^{2})}$ = 3 + NB 60580.3 3 + N8 6056.2

G.B.

madasmaths,

2011

ins.com

m

Ż

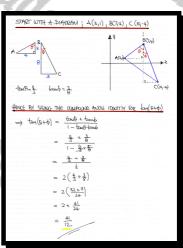
I.F.G.

nadasm.

COM

I.C.B. Madasn

Created by T. Madas


madasmaths,

### Question 96 (****+)

A triangle has vertices at the points with coordinates A(3,1), B(7,4) and C(10,-4).

The acute angle  $\theta$  is defined as the angle formed between AB and the straight line which is parallel to the y axis and passes through B.

Find the value of  $\tan \theta$  and hence show that  $\tan(\measuredangle ABC) = \frac{41}{12}$ .



 $\tan \theta =$ 

D

 $\square_B$ 

Question 97 (****+)

The figure above shows two right angles triangles ABC and ACD. The angles CAB and DAC are denoted by  $\theta$  and  $\varphi$ , respectively.

E

The length of *BC* is 1.

The point E lies on AB so that the angle AED is  $90^{\circ}$ .

 $\varphi \\ \overline{\int \theta}$ 

Show clearly that the length of AE is  $\cot \theta - \tan \varphi$ .

LOCKING AT THE FLOHT ANOUG TRANSOLE ABC.	
$\frac{ BC }{ AC } = SIN\Theta$	
$\frac{1}{ AC } = SmQ$	
(AC) = 1 SMO	
BORING AT THE RIGHT ANOLED TRIMOLE ACD	
$\frac{ AC }{ AC } = \log \frac{ AC }{ AC }$ $Hol = \frac{ AC }{\log p}$	
- 10A] = 10A]	
$\frac{1}{100}$ (0000) AT THE PLOT AND THANK ADE $\frac{1}{100}$ = (05(0+4)	
$ AE  =  AD  \cos(\theta + \phi)$	
$ AE  = \frac{(as(0+d))}{\sin \theta \cos \phi}$	
H61 = <u>deco Occo</u> = 10H	
19E1 = <u>astrando</u> <u>smitisma</u>	
(AE) = atto - Jung	
As apprend	

, proof

Question 98 (****+)

It is given that

I.F.G.B.

I.C.p

 $\sin \varphi = k \sin \theta , \ k \neq 0 , \ k \neq \pm 1.$ 

Show, by a detailed method, that

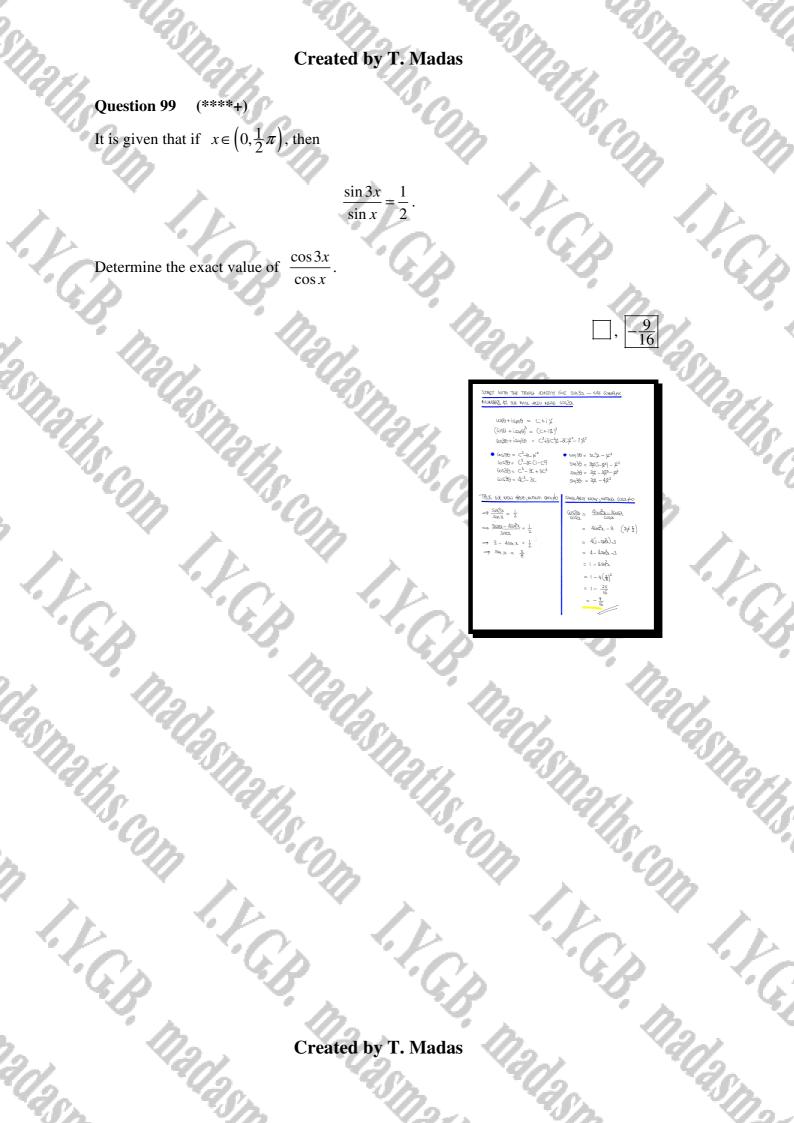
 $1 + \left(\frac{d\varphi}{d\theta}\right)^2 = \left(k^2 - 1\right)\sec^2\varphi$ 

·G.A



I.F.G.B.

proof


E.

G

m20

Created by T. Madas

KR,



# 147 ENRICHMENT DUESTIONS SITATION COMPANY CONTRACTOR CONTR

### **Question 1** (*****)

Use trigonometric algebra to find the solution of the following simultaneous equations, in the intervals  $0 \le x < 2\pi$ ,  $0 \le y < 2\pi$ .



ISMAINS.COM

I.C.B.

1.1.6

naths.com

Question 2 (*****)

# $C = \cos\left(\frac{1}{9}\pi\right)\cos\left(\frac{2}{9}\pi\right)\cos\left(\frac{4}{9}\pi\right)$

TXCB MARSHallscon TXCB Marashallscon

ASTRAILS CORT I. Y. C.P. MARASINALIS CORT I. Y. C.P. MARASINALIS CORT I. Y. C.P. MARASINALIS CORT I. Y. C.P. MARASINA

and 🍌

### Question 3 (*****)

The acute angles x and y, satisfy the following relationships.

 $2\tan x = 1$ 

 $\sin\left(x+y\right) = \frac{7}{\sqrt{50}} \, .$ 

Determine the possible values of  $\tan y$ .



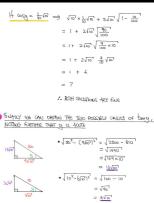
 $\Rightarrow Sm(\chi+y) = \frac{7}{450}$   $\Rightarrow Sm(\chi+y) = \frac{7}{450}$   $\Rightarrow Sm(\chi-cocy + cocx,Smy) = \frac{7}{450}$   $\Rightarrow \frac{1}{47}(org + \frac{2}{\sqrt{2}}, Smy) = \frac{7}{450}$   $\Rightarrow Hic cocy + 2ie' smy = 7$   $\Rightarrow Hic cocy + 2ie' (+\sqrt{1-cocy}) + 7$   $\Rightarrow \frac{2ie'\sqrt{1-cocy}}{2ie'} = 7 - Jm(cocy)$   $\Rightarrow 4\chi10\times(1-cocy) = (7 - \sqrt{10}cocy)^{2}$ 

⇒ 40 - 406esty = 49 - 14√16°6esy + 106esty ⇒ 0= 50esty - 14√10°6esy + 9

 $\frac{P}{\sigma 2} + \frac{P}{\rho \omega \sqrt{\omega}} + \frac{F}{\rho \omega} - \frac{F}{\rho \omega} \leftarrow$ 

 $= \frac{q}{2} + 2\left(\frac{1}{2}\sqrt{\frac{1}{2}}\right)^{2} - \left(\frac{1}{2}\sqrt{\frac{1}{2}}\right)^{2} = 0$ 

I.C.B.


6

 $= \int \left[ (\omega_{ij} - \frac{1}{6} (\omega_{i}) \right]^{2} = \frac{440}{1260} - \frac{450}{2160}$   $= \int \left[ (\omega_{ij} - \frac{1}{3} (\omega_{i}) \right]^{2} = \frac{4}{2600} = \frac{4}{2600} \times 10$   $= \int (\omega_{ij} - \frac{1}{3} (\omega_{i}) \right]^{2} = \frac{1}{2} (\omega_{i} - \frac{1}{3} \omega_{i})$   $= \int (\omega_{ij} - \frac{1}{3} (\omega_{i}) - \frac{1}{3} \omega_{i})$   $= \int (\omega_{ij} - \frac{1}{3} (\omega_{i}) - \frac{1}{3} \omega_{i})$   $= \int (\omega_{ij} - \frac{1}{3} (\omega_{i}) - \frac{1}{3} \omega_{i})$   $= \int (\omega_{ij} - \frac{1}{3} (\omega_{i}) - \frac{1}{3} \omega_{i})$   $= \int (\omega_{ij} - \frac{1}{3} (\omega_{i}) -$ 

HEAR THE SOUTIONS AGAINST THE GRUATION REPORE SPUREING

 $\Rightarrow \left[ \left( 05y - \frac{7}{50} \left( 10^{\circ} \right)^2 \right]^2 = \frac{490}{2500} - \frac{9}{50} \right]$ 

$$\begin{array}{l} \label{eq:constraint} \begin{split} & \left(1^{-1} \left( \log_{2} + 2 \sqrt{10} \sqrt{1 - \log_{2}^{1}} + 2 \sqrt{10} \sqrt{1 - \log_{2}^{1}} + 2 \sqrt{10} \sqrt{1 - \log_{2}^{1}} \right) \\ & \left(1^{+1} \left( \log_{2} + 2 \sqrt{10} \sqrt{1 - \log_{2}^{1}} + 2 \sqrt{10} \sqrt{10} \sqrt{10} + \log_{2}^{1}} \right) \\ & = \frac{9}{2x} + 2 \sqrt{10} \sqrt{\frac{10}{200}} \\ & = \frac{4}{x} + \frac{20}{x0} \\ & = \frac{4}{x} + \frac{20}{x0} \\ & = \frac{4}{x} + \frac{20}{x0} \\ & = 7 \end{split}$$



 $\frac{13\sqrt{10^2}}{9\sqrt{10^2}} = \frac{13}{9}$ 

 $\frac{3\sqrt{10}^{1}}{10^{7}} = 3$ 

I.F.G.B.

G

M2012

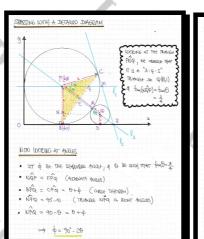
 $\tan y =$ 

Created by T. Madas

### **Question 4** (*****)

Two circles,  $C_1$  and  $C_2$ , have respective radii of 4 units and 1 unit and are touching each other externally at the point A.

The coordinates axes are tangents to  $C_1$ , whose centre P lies in the first quadrant.


The x axis is a tangent to  $C_2$ , whose centre Q also lies in the first quadrant.

The straight line  $l_1$  is parallel to the x axis and passes through P.

The straight line  $l_2$  has negative gradient and is a common tangent to  $C_1$  and  $C_2$  touching  $C_1$  at the point C.

The acute angle formed by *PC* and  $l_1$  is denoted by  $\varphi$ .

Show that  $\tan \varphi = \frac{7}{24}$ 



proof

65-09) 201 (65-09) 201

В

Question 5 (*****)

The figure above shows a triangle ABC, where |AB| = a and |AC| = 2a.

 $\Gamma$ 

а

2a

θ

С

The angle *BAC* is  $\alpha$ , where  $\tan \alpha = \frac{3}{4}$ .

A

The side BC is extended to the point D so that the angle ACD is denoted by  $\theta$ .

Show clearly that  $\theta = \arctan 2$ .

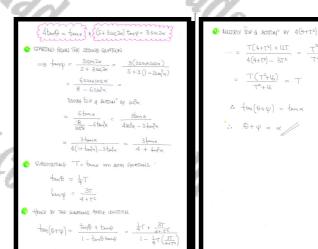
• START WITH THE DIAGRAM, LET BBC - 2
8 All and a series of the two series of
$\Rightarrow \frac{1}{12} \Rightarrow \frac{1}{12} \frac{1}{1$
$\implies \left  $
$\implies [\Re c]^2 = Sa^2 - 4a^2 \times \frac{4}{S}$ $\qquad \qquad \qquad$
$\Rightarrow \left( BC \right)^2 = Sa^2 - \frac{Ka^2}{S}$
$\Longrightarrow  Bc ^2 = \frac{q}{5}q^2$
$\Rightarrow  g_C  = \frac{\lambda C_1}{2} d$
NORT BY THE SINE PULE ON ABC     SINK = 3     SINK = 3
$\Rightarrow \frac{SWA}{3} = \frac{SWA}{a}$
= a'sina' = $\frac{3}{\sqrt{37}}$ a'sind
$\frac{1}{2} = \frac{1}{2}$ (=
$\Rightarrow \frac{1}{2} = 3miz$
NEXT GET THE SWART TRIG RATIOS OF R
S SWE = SWE
$0$ $(xe) = \frac{x}{400} = \frac{2}{3} \frac{1}{3} \frac{1}{3}$
$\sqrt{2p^{1}}$ thus $s = \frac{\sqrt{2}}{\sqrt{2p^{1}}} = \frac{\sqrt{2}}{2\sqrt{21}} = \frac{1}{2}$

 $\begin{array}{l} \Rightarrow \quad b = \kappa' + l \\ \Rightarrow \quad +a_{10}b = b_{11}(\kappa_1 k_1) \\ \Rightarrow \quad t_{10}(b = \frac{t_{10}}{t_{10}} + \frac{t_{10}}{t_{10}}) \\ \Rightarrow \quad t_{20}(b = \frac{3+t_{10}}{t_{10}}) \\ \Rightarrow \quad t_{20}(b = \frac{3+t_{10}}{t_{10$ 

proof

### Question 6 (*****)

The acute angles  $\theta$ ,  $\psi$  and  $\alpha$  satisfy the following equations.


 $4 \tan \theta = \tan \alpha$ 

 $(5+3\cos 2\alpha)\tan\psi=3\sin 2\alpha$ .

Express  $\theta + \psi$ , in terms of  $\alpha$ .

.C.B.

Y.C.B.



 $\theta + \psi = \alpha$ 

T²+ VCT

Y.G.P.

G

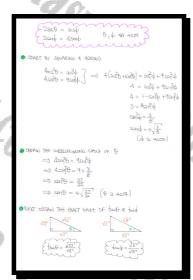
 $\frac{T(4+T^2)+12T}{4(4+T^2)-3T^2}$ 

 $\frac{\top(\tau^2+16)}{\tau^2+16} = \top$ 

Question 7 (*****)

The acute angles  $\theta$  and  $\varphi$  satisfy the following equations

 $2\cos\theta = \cos\varphi$ 


 $2\sin\theta = 3\sin\varphi.$ 

Show clearly that

C.B.

Y.C.B.

 $\theta + \varphi = \pi - \arctan \sqrt{15}$ 



 $\frac{\frac{\sqrt{27}}{72y} + \frac{\sqrt{21}}{72y}}{\frac{\sqrt{27}}{72y} - \frac{\sqrt{27}}{7}}$  $\tan(0+\phi) = \frac{\tan 0 + \tan \phi}{1 - \tan \theta \tan \phi}$  $\frac{1}{2\sqrt{2}\sqrt{2}} + \frac{1}{2\sqrt{2}\sqrt{2}}$  $\frac{\sqrt{13}c^2 + \sqrt{15}^2}{5 - 9}$ 5×1 - 1/2/×13 ×1  $\frac{\sqrt{9^{-1}\sqrt{15^{-1}} + \sqrt{15^{-1}}}}{-4} = \frac{3\sqrt{15^{-1}} + \sqrt{15^{-1}}}{-4} = \frac{16\sqrt{15^{-1}}}{-4}$ -15 : toy (0+4) =

proof

20

F.C.B.

G

Mada

 $\Rightarrow 0 + d = av_{\text{then}}(-v_{\vec{s}}) \pm v_{\vec{1}} \quad \text{Nequip}_{\vec{s}_{1},...}$   $\Rightarrow 0 + d = av_{\text{then}}(-v_{\vec{s}}) \pm v_{\vec{1}} \quad \text{Nequip}_{\vec{s}_{1},...}$   $\Rightarrow 0 + d = -av_{\text{then}}\sqrt{v_{\vec{s}}} \pm v_{\vec{1}}$   $\text{Rir} \quad 0 < 0 + d < Tr$ 

 $0 + \phi = -\alpha R \tan \sqrt{s} + \pi$  $0 + \phi = \pi - \alpha R \tan \sqrt{s}$ 

### (*****) **Question 8**

I.F.G.B.

asmaths.com

I.F.G.B.

Determine the range of the following function

madasmaths.com

 $f(\theta) = \frac{1}{\sin^2 \theta + 3\sin \theta \cos \theta + 5\cos^2 \theta}$ V.C.B. Madasm  $\theta \in \mathbb{R}$ 



Madasmaths.com

The Com

 $\leq f(\theta) \leq 2$ 

aths com

ŀG.ŀ

K.G.B.

1.1.6

Madasm.

I.V.C.B. Madasm

Created by T. Madas

I. C.B. Madasmarks.Com

Question 9 (*****)

It is given that

 $(a+2)\sin x + (2a-1)\cos x = 2a+1,$ 

where a is a non zero constant.

Find the exact value of  $tan(\frac{1}{2}x)$ , giving the answer in terms of *a*, where appropriate.

 $\tan\left(\frac{1}{2}\right)$  $=\frac{1}{a}$  $\tan\left(\frac{1}{2}\right)$  $SM2t = \frac{2t}{1+t^2} \quad Cosx = \frac{1-t^2}{1+t^2} \quad where to tay = \frac{1}{2}$ (a+2) SMA +  $(2a-1)\cos a = 2a+1$  $\implies (a+2) \frac{2t}{1+t^2} + (2a-1) \frac{1-t^2}{1+t^2} = 2a+1$  $(2a-1)(1-\frac{1}{2}) = (2a+1)(1+\frac{1}{2})$  $+ (2a-1) - (2a-1)t^2 = (2a+1) + (2a+1)t^2$ z)+ + (2a+1) - (2a-1)  $t = (a+2) \pm (a+2)^2 - 4 \times 2a \times 1^3$ 1) (at $t = (a+2) \pm \sqrt{a^2 + 4a + 4 - 8a^2}$ 

ĈŖ.

G

### Question 10 (*****)

Solve the following trigonometric equation.

$\cos 4x^{\circ}$	$= \cos 40^\circ + \cos 80^\circ ,$	$0^{\circ} \le x \le 180^{\circ}$

_ ,	$x = 5^{\circ}, 85^{\circ}, 95^{\circ} 175^{\circ}$
_	4.0
	$\left\{ \cos \theta_{2} = \cos \theta_{0}^{\circ} + \cos \theta_{0}^{\circ} \circ \leq 2 \cdot <  \theta ^{\circ} \right\}$
	<ul> <li>START BY UNVIPOLATING THE RIAT (MAD 2012, 104)</li> <li>START BY UNVIPOLATING THE RIATING (A+B) = 0.5400B</li> <li>(2014) AB = 0.5400B</li> <li>(2014) AB = 0.5400B</li> </ul>
2	$(\alpha_1(A+a) + (\alpha_2(A-B) = 2\log A (\alpha_2B))$ $(\alpha_1(A+a) + (\alpha_2(a-b) + 2\log b) = 2\log B (\alpha_2 + \alpha_2)$
Ģ	• Hence we three =) $(a_1b_{2} = 2a_2b_1^2 co_2b_1^2)$ -) $(a_1b_{2} = 2x \frac{1}{2}x (a_2b_1^2)$
	$\implies \cos(4\lambda = \cos 20^{\circ} \pm 360^{\circ} n$ $(4\lambda = 340^{\circ} \pm 360^{\circ} n = 10^{-1/2} n^{-1/2}, n^{-1/2})$
	$\begin{pmatrix} x = 8S_{*} \mp 40^{H} \\ x = 8S_{*} \pm 40^{H} \end{pmatrix}$
	$\therefore \ \alpha = \ 5_1^\circ 95_1^\circ 85_1^\circ 17_2^\circ$

### Question 11 (*****)

A right circular cone, of radius r and semi-vertical angle  $\theta$ , lies with one of its generators in contact with a horizontal surface.

The cone is then rolled on the horizontal surface with its vertex at rest, so that the rolling circumference of its base completes a full circle on the surface, while the cone completes N revolutions about its own axis.

Show that  $N = \csc \theta$ .



THE GROLE HAS GROWFFRENCE

PLASE IS

 $N = \frac{2\pi\sqrt{r^2+h^2}}{2\pi r} = \frac{\sqrt{r^2+h^2}}{r} = \frac{h\sqrt{r^2+1}}{r^2}$ 

= Jsece Ntay 0+1

Alls.com

1.1.6

### (*****) **Question 12**

I.F.G.B.

Solve the following trigonometric equation.

Ths.com  $2\sqrt{3}\sin\left(x+\frac{7\pi}{12}\right) = 3\csc\left(x+\frac{5\pi}{12}\right),$  $0 \le x \le 2\pi \; .$ I.C.

510			
	A		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.13"Sm(x+冊) = 3 cosec(x+冊), 0 ≤ x < 2T	$\left(\begin{array}{c} 2\chi = \frac{\pi}{2} \pm 2\eta\pi \right)$
		turinin	$\sqrt{2} = \frac{\ln \pi}{6} \pm 2n\pi$
		$\Rightarrow 2\sqrt{5} \operatorname{SM}\left(2,+\frac{2\pi}{2c}\right) = \frac{3}{\operatorname{SM}\left(2,+\frac{3\pi}{2c}\right)}$	$\left( x = \frac{x}{10} + \mu \right)$
de de la		$\Rightarrow 2 \sin(2 + \frac{2\pi}{2}) \sin(2 + \frac{5\pi}{12}) = \frac{3}{\sqrt{2}}$	$\int \mathcal{D}_{z} = \frac{m}{2} \pm \mathcal{D}_{z}$
	-		$\Omega = \frac{11}{12}, \frac{1117}{12}, \frac{1317}{12}, \frac{2317}{12}$
10 N 4	2	NOW DEGUNE AN INFATINY BASED ON THE COMPOUND ANDLE IDENTITIES	12 . 12 . 12 . 12
10. 9	CPs .	$\begin{array}{l} \begin{array}{l} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\cos(A-B) = \cos(A+B) \equiv 2\sin A \operatorname{sm} B$	
~//s		$\frac{\partial v_{\varepsilon}}{\partial t_{\varepsilon} v_{\varepsilon}} = \left[ \left( \frac{\omega}{2} + z \right) + \left( \frac{\omega}{\omega} + z \right) \right]_{200} - \left[ \left[ \frac{\omega}{2} + z \right) - \left( \frac{\omega}{\omega} + z \right) \right]_{200} \iff$	
	and the second		
11 Mar -		$\overline{\epsilon}b = (\pi + \chi \epsilon) 2\omega - \frac{\pi}{2} 2\omega \epsilon$	
~~ P_		ib = [miltone - marshe - marshe	
- C/2.	×. × .	$\Rightarrow \frac{1}{2} + 5220 + 5220$	
	- C.A	$\Rightarrow \delta s \delta z = \frac{\sqrt{s}}{2}$	
> Y		$OTCCOS\left(\frac{\sqrt{2}}{2}\right) = \frac{1}{4}$	
	1		- ~ L
10			
	- "(x' )		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
100.12	510		
		. 50	
		n 45	
~ · · · · · · · · · · · · · · · · · · ·			
		and the second sec	<u>A.</u>
1. 1.	1	· · · · · · · · · · · · · · · · · · ·	0_
12. 0		- U 2 V	19.5
Y.O. Y	10	- 90.	90
	de.		00
	~~		- 90.
111 1. 1	10	and the second se	
		~//L	
-110	011		
	· · (D).		
" O D_		· · · · · · · · · · · · · · · · · · ·	
	· · · · ·	a 177	2.
		15 TU	<b>A</b> .
r (//	· · · · · · · · · · · · · · · · · · ·		
$h$ $\langle h \rangle$	100 B		Ý .
			·
7 A.			
	S D		
10		10 J	

 $x = \frac{\pi}{12}, \frac{11\pi}{12}$ 

 $13\pi$ 

12

 $23\pi$ 12

Madasmans.com I.Y.C.B. Madasm

# Question 13 (*****)

Solve the following trigonometric equation.

 $\sin(2\theta+58)^\circ+2\sin^2(42^\circ)=1, \quad 0 \le \theta < 360.$ 

į۴.

COM

)b-

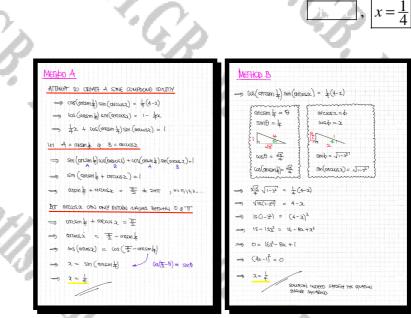
· · · ·		], $\theta = \{58, 154, 238, 334\}$	Kn.
B B	n. "n	$Souther, the equation is secondsouther, the equation is secondSouther, the equation is second\Rightarrow Sm(29 + 39^{2}) = 1 - 2au^{2}dz\Rightarrow Su(29 + 39^{2}) = co(2xdz)$	4.8
inadasmaths	nadasmarhs	$\Rightarrow SiV_1(2\beta + ggr) = Ga_1^2 g_1^{A_1}$ $\Rightarrow SiV_1(2\beta + ggr) = SiV_1(4\beta + ggr)$ $\Rightarrow SiV_1(2\beta + ggr) = SiV_1(4\beta + ggr)$ $\Rightarrow SiV_1(2\beta + ggr) = SiV_1(4\beta + ggr)$ $\Rightarrow GriteArmula A (dirikulik-ggu) = Ga_1^2$ $\Rightarrow (2\beta + ggr) = Ga_1^2 + 3Ga_1$ $\Rightarrow (2\beta - ggr) = Ha^2 + 3Ga_1$ $\Rightarrow (2\beta - ggr) = Ha^2 + 3Ga_1$	naths
	Con "SCOL	$ \begin{array}{l} \longrightarrow \left( \begin{array}{ccc} \theta & = & -2\delta^{\alpha} \pm 1\theta \Delta \eta \\ \theta & = & -3\delta^{\alpha} \pm 1\theta \Delta \eta \\ \end{array} \right) \\ \Longrightarrow \left( \begin{array}{ccc} \theta & = & -2\delta^{\alpha} \pm 1\theta \Delta \eta \\ \theta & = & -3\delta^{\alpha} \pm 1\theta \Delta \eta \\ \end{array} \right) \\ \Longrightarrow \left( \begin{array}{ccc} \theta & = & -2\delta^{\alpha} \pm 1\theta \Delta \eta \\ \theta & = & -3\delta^{\alpha} \pm 1\theta \Delta \eta \\ \end{array} \right) \\ \Longrightarrow \left( \begin{array}{ccc} \theta & = & -2\delta^{\alpha} \pm 1\theta \Delta \eta \\ \theta & = & -3\delta^{\alpha} \pm 1\theta \Delta \eta \\ \end{array} \right) \\ \Longrightarrow \left( \begin{array}{ccc} \theta & = & -2\delta^{\alpha} \pm 1\theta \Delta \eta \\ \theta & = & -3\delta^{\alpha} \pm 1\theta \Delta \eta \\ \end{array} \right) \\ \end{array} $	~~Q
C. I.C.	I.F.	I.V.C.S	.Y.G.
nan .	mada I	na 1120	
	Sinaths.		SIN211
Cp Cp	2. ··· Cp	· Gp	1.1.6
"Day	Created by T. Madas	12 12	بر م

### Question 14 (*****)

I.F.G.p

21/15.1

I.V.C.B.


COM

I.C.P.

I.G.

Solve the following trigonometric equation

 $\cos\left(\arcsin\frac{1}{4}\right)\sin\left(\arccos x\right) = \frac{1}{4}(4-x) , \quad x \in \mathbb{R}.$ 



Ċ.J.

ng

2017

Ins.com

madasn.

Mada

1.4.6.

he,

I.F.G.B.

### (****) Question 15

It is given that  $0 < x < \frac{1}{2}\pi$  and  $0 < y < \frac{1}{2}\pi$ .

I.I.C.B.

1. ¥.C.]

I.F.G.B.

ains.com

I.C.B.

It is further given that

 $\sin(x+y)\sin(x-y) = \frac{5}{36}$  and  $\cos x + \cos y = \frac{5}{6}$ .

Show that  $\cos(x-y) = \frac{1+\sqrt{n}}{n}$ , where *n* is a positive integer to be found.

, n = 6

aths com

1.1.6

I.V.G.B

hs.com

MANIPOLATE AS FOLIOUS	
$\Rightarrow$ Sm( $\alpha$ +y)Sm( $\alpha$ -y) = $\frac{\pi}{2c}$	
- z = [masew - yeosaw ][ymaeso + yeosaw] = z	
- Smaraly - cosa sunty = 5	
- (1- (ada) (ady - (ad (1 - ad y) = 30	
- inty - indicaty - cost + instraty - 5	
$=$ $\cos^2 - \cos^2 = \frac{2}{3c}$	
⇒(losy - cost)(asy + cost) = 35	
BUT INCH I INCH - 5	

Madasmaris.com

### Question 16 (*****)

A curve in the x-y plane has equation

 $x^2 + y^2 + 6x\cos\theta - 18y\sin\theta + 45 = 0,$ 

where  $\theta$  is a parameter such that  $0 \le \theta < 2\pi$ .

Given that curve represents a circle determine the range of possible values of  $\theta$ .

$\boxed{}, \boxed{\left\{\frac{1}{4}\pi < \right.}$	$\theta < \frac{3}{4}\pi \Big\} \cup \Big\{ \frac{5}{4}\pi < \theta < \frac{7}{4}\pi \Big\}$	
16	<u>()</u>	2
Dara	$\begin{array}{l} & \qquad $	12
~~!s.co	• How if this entrances a case of the grave of the start $e^{-1}$ and $e^{-1}$	
1.K	$\frac{1}{\sqrt{2}} = 2 \sum_{i=1}^{\infty} 2 i = 2 \sum_{i=1}^{\infty} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$	
60		

m

Com

M21/2

G

I.C.B.

Is.com

### Question 17 (*****)

Prove the validity of the following trigonometric identity.

 $\frac{1+\tan\theta\tan3\theta}{1+\tan2\theta\tan3\theta} = \frac{\cos^22\theta}{\cos^2\theta}.$ 

19	eo,	proof
	4	
∈ lufs tang0tang30	the the the	tau 30

### Question 18 (*****)

A surveyor views the top of a building, of height h, at an angle of elevation  $\alpha$ .

The surveyor walks a distance a, directly towards the building.

From this new position he views the top of the building at an angle of elevation  $\beta$ .

Show that

 $=\frac{a\sin\alpha\sin\beta}{\sin(\beta-\alpha)}.$ 

2	100
	BY STANDARD TRIGNDUCTRY (a) RIGHT ANALES TRANSPEC $\frac{l_{\rm N}}{2\chi + \alpha} = \frac{l_{\rm N}}{\frac{2\chi + \alpha}{\chi_{\rm N}}}$
$\begin{array}{lll} 2\sqrt{31} \\ \gamma = \mu x^2 = \frac{2\sqrt{31}}{6\pi x^2} \\ \gamma = \frac{6}{6} + \frac{2}{3} \\ \gamma = \frac{6}{7} + \frac{1}{3} \\ \gamma = \frac{6}{7} + \frac{1}{3} \\ \gamma = \frac{1}{6} \\ \gamma = \frac{1}{6} + \frac{1}{3} \\ \gamma = \frac{1}{6} \\ \beta = -\chi = 1 \\ \beta = -\chi = \frac{1}{6} \end{array}$	$\Rightarrow \frac{a}{b} = \frac{\cos a}{\sin a} - \frac{\cos b}{\sin a}$ $\Rightarrow \frac{a}{b} = \frac{\sin b}{\sin a} - \frac{\cos b}{\sin a}$ $\Rightarrow \frac{a}{b} = \frac{\sin b}{\sin a} - \frac{\cos b}{\sin a}$ $\Rightarrow \frac{a}{b} = \frac{\sin b}{\sin a} - \frac{\sin b}{a}$ $\Rightarrow \frac{b}{a} = \frac{\sin a}{\sin a} - \frac{\sin b}{a}$ $\Rightarrow \frac{b}{a} = \frac{\sin a}{\sin a} - \frac{\sin b}{a}$ $\Rightarrow \frac{b}{a} = \frac{\sin a}{\sin a} - \frac{\sin b}{a} - \frac{\sin b}{a}$
	5476 - N)

, proof

6

Question 19 (*****)

 $\sin^8 x - \cos^8 x = 1 - \frac{1}{2}\sin^2 2x$ 

Use trigonometric identities to show that the general solution of the above equation is  $x = k\pi$ ,  $k \in \mathbb{Z}$ .

proof
proor

23 Buch -Sna war Sna - 2003aaB

$Sup_{L}^{\theta} - \cos S_{L} = 1 - \frac{1}{2}$	sin2a
smin - war (smin + was	$f(x_{2}) = 1 - \frac{1}{2}(x_{2})x_{1} = 1 = 0$
3 (21B2-633) (21B2+763	$f_{x}(s_{x}+t_{x})=1$
= 6222 (sm2+602)	$= 1^2 - 2sin^2 x \cos^2$
(Levi+ Lm2) 22200 €	$= (2 x^2 x + 2 x^2 x)^2 -$
9 6522 (Smt + 6052)	= 6052 + 240358752

Question 20 (*****)

It is given that x is a solution of the following equation.

### $\sec x + \tan x = \frac{5}{7}$

Without solving the above equation for x, find the value of  $\csc x + \cot x$ .

V,,6
905
15145 (+tug2 = se2
=> Seca + tonz = 5 => (Seca + tonz)(seca-tonz) = 5/(Seca-tonz)
$\Rightarrow$ $2e^{2}x - tay^{2}x = -\frac{2}{7}(se_{2}x - b_{2}y)$ .
$\Rightarrow l = \frac{5}{2}(sea - by_{\lambda})$ $\Rightarrow sea - by_{\lambda} = \frac{7}{2}$
The we wan the
$\frac{36\alpha + \tan \alpha = \frac{5}{2}}{34\alpha + \tan \alpha = \frac{7}{2}} \frac{4000\alpha}{3200} = \frac{254\alpha + \frac{5}{2} + \frac{7}{4}}{\frac{37}{34}} = \frac{254\alpha + \frac{3}{34}}{34}$
Sec. = $\frac{24}{5}$ Sec. = $\frac{24}{5}$
26 25 = 1000
$\frac{\text{SURTRATING}}{\text{SURTRATING}} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{24} = \frac{1}{24}$
As we there formul account bot intofficut thereas we get in the gto
QUADRAST - WE OPN STU USE THE STANDARD TRUMMALE
$35 \begin{array}{ c c c c c c c c } \hline 35 \end{array} \implies \cos 4 \cos 4 \cot x = \frac{1}{\sin x} + \frac{1}{1 - \sin x}$
$=\frac{1}{-\frac{12}{237}}+\frac{1}{-\frac{12}{247}}$
12.
$\frac{32}{12} - \frac{72}{12} - =$
$\frac{347}{259} + \frac{35}{125} + \frac{122}{124} = -\frac{72}{12}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
105 1369 1225

### Question 21 (*****)


The positive solution of the quadratic equation  $x^2 - x - 1 = 0$  is denoted by  $\phi$ , and is commonly known as the golden section or golden number.

Solve the equation

 $x\cos\left(\frac{1}{2}\arctan 2\right) = \sqrt{\phi}, \ x \in \mathbb{R}$ .

Give the answer in the form  $\sqrt[n]{m}$ , where *m* and *n* are positive integers.

♥,□	$x = \sqrt[4]{5}$
$\Theta = \theta$ (continuations A-ONIQ)	retaur
$ \Rightarrow 20 = t_{av}2, \\ \Rightarrow t_{av}2b = 2, \\ \Rightarrow t_{av}^{2}2b = 4, \\ \Rightarrow 1 + t_{av}^{2}2b = 4, \\ \Rightarrow 1 + t_{av}^{2}2b = 5, \\ \Rightarrow 3cc^{2}2b = 5, \\ \Rightarrow 3cc^{2}2b = 1, \\ c_{1}^{2}, \\ c_{2}^{2}, \\ c_{3}^{2}, \\ c_{3}^{2},$	$\frac{1}{\sqrt{2}} = 1 - \frac{1}{\sqrt{2}} = 1 - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{2$
$\sum_{i=1}^{n} \frac{1}{10} \sum_{i=1}^{n} \frac{1}{10} \sum_{i=1}^{n} \frac{1}{10} \sum_{i=1}^{n} \frac{1}{10} \sum_{i=1}^{n} \sum_{i$	$\begin{cases} -1 - \sqrt{2 + \frac{1}{2} - \frac{1 + \sqrt{1}}{2}} \\ \left( \alpha + \frac{1 + \sqrt{1}}{2} - \frac{1 + \sqrt{1}}{2} - \frac{1 + \sqrt{1}}{2} \right) \\ \left( \alpha + \frac{1 + \sqrt{1}}{2} - \frac{1 + \sqrt{1}}{2} - \frac{1 + \sqrt{1}}{2} - \frac{1 + \sqrt{1}}{2} \right) \end{cases}$
$\int \frac{1}{\sqrt{2}} \int z = \int \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \int z = \int z$	$\frac{p-4}{2}$ $\frac{p-4}{2}$ $\frac{p-4}{2}$



### Question 23 (*****)

The functions f and g are defined in the largest possible domain by the equations

 $f(x) = \arcsin(\cos x)$  and  $g(x) = \sqrt{\pi^2 - 4x^2}$ 

- a) Sketch the graphs of f and g on the same set of axes.
- **b**) Use an algebraic method to solve the equation

 $\arcsin(\cos x) = \sqrt{\pi^2 - 4x^2}$ 

Øy = arcsn (iosa) + N 112-422  $y = \alpha rcsm(sm(\pm -x))$  $\chi^2 = \pi^2 - 4\chi^2$ y= =-x 4²+4x² =π² REP  $\frac{U^2}{TT^2} + \frac{4U^2}{TT^2} = 1$ 9 e [- F. F]  $\frac{y^2}{\pi^2} + \frac{\alpha^2}{(k)^2} = |$ FUNCTION HAS PERIOD  $\begin{array}{l} \mathfrak{Q} \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \\ \mathfrak{Q} \in \left[ -\pi, \pi \right] \\ \mathfrak{Q} \in \left[ \mathfrak{o}, \pi \right] \end{array}$ 

 $\operatorname{arcsm}(\cos x) = \sqrt{\pi^2 - 4x^2}$ COBJ = SIN V712-422  $Sim\left(\frac{\pi}{2}-x\right) = Sim \sqrt{\pi^2-4x^2}$ -x = 17 - 4x2  $\frac{\pi^2}{4} - \pi \alpha + \alpha^2 = \pi^2 - 4\alpha^2$  $S\chi^2 - \pi\chi - \frac{3\pi^2}{4} = 0$ 2022-4172-312=0  $\Rightarrow (2x - \pi)(10x + 3\pi) = 0$  $\alpha_{c} < \frac{v_{z}}{\frac{3\pi}{10}}$ NOTE THAT BOTH SIDER ARE GON SO POTINTIALLY + THE COULD BE SOUTH AN ANAMUSE OF AUCT THE LATTER CAUGOD  $\pi csin(cos(\pm T)) = circsin 0 = c$ · 1=+ TT  $\sqrt{\eta^2 - 4(\pm \frac{\pi}{2})^2} = \sqrt{\eta^2 - 4x \frac{\eta^2}{4x}} = 0$ 

 $\begin{array}{c} \frac{2\pi}{3}\frac{1}{2}\frac{1}{2}\sum_{i} & \text{for all constraints}\\ \alpha arch \left( \cos\left(\frac{\pi}{2}\right) - \frac{\pi}{3}\right) = & \alpha arch \left( \cos\left(\frac{\pi}{2}\right) - \frac{\pi}{3}\right) \\ = & \alpha arch \left( \cos\left(\frac{\pi}{2}\right) - \frac{\pi}{3}\right) = & \alpha arch \left[ \cos\left(\frac{\pi}{2}\right) - \frac{\pi}{3}\right] \\ \sqrt{\mu_{i}^{-} + \left(\frac{\pi}{3}\right)^{2}} = & \sqrt{\mu_{i}^{-} - \frac{\pi}{3}} - \sqrt{\frac{\mu_{i}^{-}}{3}} + \frac{\pi}{3} + \frac{\pi}{3} + \frac{\pi}{3} \\ Now we area of grant the coupling of the product or the product of the product or the product of t$ 

 $x = \pm \frac{\pi}{2}$ 

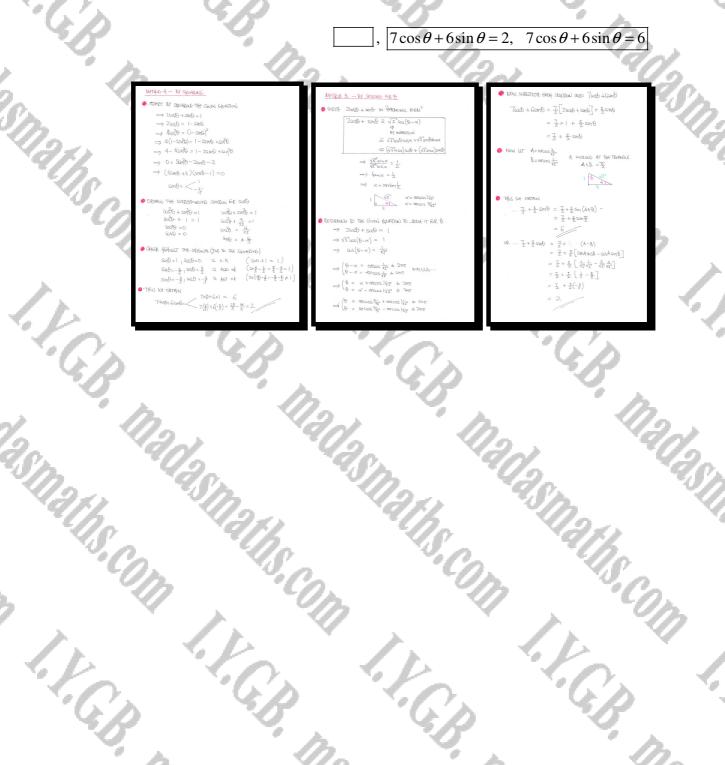
6

ins,

COM

G

Madasn


Question 24 (*****) non calculator

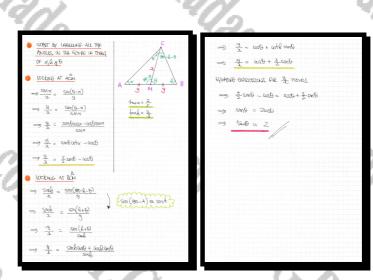
It is given that

 $2\cos\theta + \sin\theta = 1$ .

Determine the possible values of

 $7\cos\theta + 6\sin\theta$ .




## Question 25 (*****)

The point M is the midpoint of AB, on a triangle ABC.

Given further that

 $\tan[\measuredangle CAM] = \frac{2}{5}$  and  $\tan[\measuredangle CBM] = \frac{2}{3}$ 

Use trigonometric identities to find the value of  $tan [\measuredangle CMB]$ .



 $\tan\left[\measuredangle CMB\right] = 2$ 

F.G.B.

G



## Question 27 (*****)

A pole AB, of height h, is standing vertically on level horizontal ground with A on the circumference of a circle of radius a, centred at the point O.

The point *C* is another point on the circumference of this circle so that  $\angle COA = \theta$  and  $\angle ACB = \theta$ .

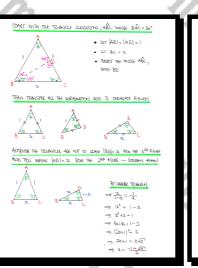
 $h = \frac{4a\sin\left(\frac{1}{2}\theta\right)\tan\left(\frac{1}{2}\theta\right)}{4a\sin\left(\frac{1}{2}\theta\right)}$ 

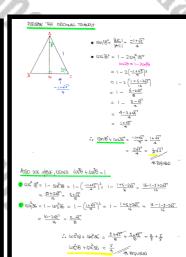
 $\frac{1}{1-\tan^2\left(\frac{1}{2}\theta\right)}$ 

Use a detailed method to show that

1303SM2

proof


1.+

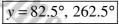

## Question 28 (*****)

A triangle has angles of  $36^{\circ}$ ,  $72^{\circ}$  and  $72^{\circ}$ .

By suitably partitioning this triangle and using similar triangles, show that

 $\sin 18^\circ + \cos 36^\circ = \frac{1}{2}\sqrt{5}$  and  $\sin^2 36^\circ + \cos^2 18^\circ = \frac{5}{4}$ 






 $-\frac{9}{16}$ 

## Question 329 (*****) non calculator

Solve the trigonometric equation

 $\sin(y-30) = \sin(y-45), \ 0 \le y < 360^{\circ}.$ 



 $SW(\underline{y}-3o) = SW(\underline{y}+\underline{y}S)$ 

 $= \left( \begin{array}{c} y - 30 \\ y - 30 \end{array} = \left( \begin{array}{c} y + 45 \end{array} \right) \pm 3600 \\ y - 30 \end{array} = 180 - \left( \begin{array}{c} y + 45 \end{array} \right) \pm 3600 \\ \end{array} \right)$ 

G

- => ( y-30 = 132-y ± 3600
- $\Rightarrow 2y = 165 \pm 360n$
- ⇒ y = 82.5 ± 800

Question 30 (*****)

 $\cot^2 x - \tan^2 x = 8 \cot 2x, \ 0 \le x < 180.$ 

Find the solutions of the above trigonometric equation, giving the answers in degrees.



## Question 31 (*****)

I.C.B.

Solve the following trigonometric equation for  $0 \le x < 360^{\circ}$ 

$$\tan x \sec x + \frac{1}{1+\sin x} = \frac{4}{3}$$

$x = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$
$\begin{array}{c} \text{with y have } y = y = y = y = y = y = y = y = y = y$
$\begin{array}{c} (1 = 50 \pm 30), \\ (\lambda = 0) \pm 30), \\ (\lambda = 0) \pm 30, \\ (\lambda = $

# Question 32 (*****) non calculator

I.G.B.

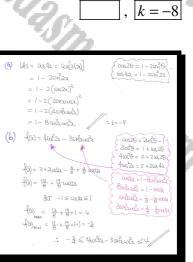
Given that  $\alpha = \arctan \frac{1}{2}$  and  $\beta = \arctan \frac{9}{13}$ , find the value of  $\tan(3\alpha - \beta)$ .

nadası,

 $\tan(3\alpha-\beta)=1$ 

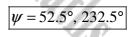
I.G.

• $\tan 3A = \tan(2A + A) = \frac{\tan 2A + \tan A}{1 + \tan 2A + \tan A} = \frac{2\tan 4}{1 - \tan 2A + \tan A}$ • $\tan 3A = \frac{2\tan 4}{1 - \tan 2A + \tan A}$ • $\tan 3A + \tan 4A + \tan$
and not a manual of the employal By I- David
$= \frac{2\tan A + \tan A(1 - \tan^2 A)}{1 - \tan^2 A} = \frac{3\tan A - \tan A}{1 - 3\tan^2 A}$
$\begin{aligned} & (1) (2s-\theta) = - \frac{2s_{w_1} 2s_{w_2} - b_{w_1} \delta_{w_2}}{1 + s_{w_1} s_{w_2} - b_{w_2} \delta_{w_2}} = - \frac{\frac{2s_{w_1} - b_{w_1} s_{w_2}}{1 - 3s_{w_1} s_{w_2} - b_{w_2} \delta_{w_2}} \\ & + \frac{3s_{w_1} s_{w_2} - s_{w_2} \delta_{w_2}}{1 - 3s_{w_1} s_{w_2}} \end{aligned}$
But $\alpha = \arctan \frac{q}{\beta_{\alpha}} \implies \operatorname{theorem}_{\alpha} = \frac{q}{\beta_{\alpha}}$ $\beta = \arctan \frac{q}{\beta_{\alpha}} \implies \operatorname{theorem}_{\alpha} = \frac{q}{\beta_{\alpha}}$
$\dots = \frac{\frac{1}{2} - \frac{1}{2}}{\frac{1}{2} - \frac{1}{2}} - \frac{1}{3} \frac{1}{3$
$\left( = \frac{251}{251} \approx \frac{81-601}{62 + 85} \approx \frac{81-2011}{2} = 81$
7 10.73


## Question 33 (*****)

It is given that for some value of the constant k

 $\cos 4x \equiv 1 + k \sin^2 x \cos^2 x \, .$ 


- **a**) Determine the value of k.
- **b**) Hence, or otherwise, show clearly that for  $x \in \mathbb{R}$

 $-\frac{3}{4} \le 4\cos^2 2x - 3\sin^2 x \cos^2 x \le 4.$ 



**Question 34** (*****) **non calculator** Solve the following trigonometric equation

 $\cos(\psi - 60) = \cos(\psi - 45), \ 0 \le \psi < 360^{\circ}.$ 



	100
$(\psi_{-\psi_{0}}) = (\psi_{-\psi_{0}}) = (\psi_{-\psi_{0}}) = (\psi_{-\psi_{0}})$ $(\psi_{-\psi_{0}}) = (\psi_{-\psi_{0}}) = (\psi_{$	4=91,23
$\Rightarrow \begin{pmatrix} 10002116707\\ 24 &= 105 \pm 3607 \end{pmatrix}$	
⇒ 4=525°± 3604	
+ φ = 52.5° , 232.5°	

6

Question 35 (*****)

 $S = \sin(10^\circ) \sin(30^\circ) \sin(50^\circ) \sin(70^\circ)$ 

	$S = \sin \theta$	(10°) sin (30°) sin (50°) sin	(70°)	> 9
	Use the sine double angle iden	tity for sine to show that S	$=\frac{1}{16}$ .	1.12
·Y	Ch.	G.p.	V, D, proo	f Co
Υ.	B O	× 7	$[e_{-d_{1}})_{ab} \equiv \theta_{n} \infty  \text{yreading HT Have upper } \\ \delta_{1} \pi_{a} c_{2} \sigma_{a} \mu_{b} c_{2} \sigma_{a} \sigma_{a}$	
20.	Man.	20/2	$\frac{V_{DD}}{M_{D}} = \frac{C_{B}}{C_{B}} \frac{C_{B}}{$	250
"Ilar	2 asm	"Snarr	$\frac{\partial \partial m_{12}}{\partial m_{12}} + \frac{\partial m_{12}}{$	21/2
	S.C. Alla	- US	$ \overrightarrow{\beta} = \frac{3600^{\circ} \sin^2 \theta}{16 \sin^2 \theta} $ $ \overrightarrow{\beta} = \frac{1}{6} $	0.0
>		Op C		
1.0	· · Ko	1 Lin	1.1.	1.Ko
1.0	Co CP	· · Gp	6.3	6.0
à	in.	nan "	m il	72
asm.	10/2 c.	asm.	4.20/2 ·	"asn
1	the Mark	Allo.	mari	- Wath
	"Com "	$C_{0}$	in in	20 20
7	1. The			
61	O. CI	· Ko	· · C >	- 1. j.
	4.B	m S.		m "4
200	Man	Created by T. Madas	Man	1202 ·
-43sz	"asp	- Cho-	28m	The second

Iths.com

maths.com

1.1.6

## Question 36 (*****)

C.B.

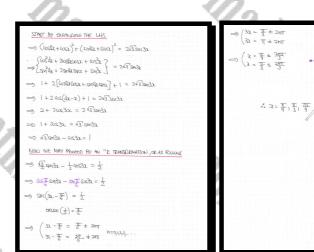
I.C.B.

Solve the trigonometric equation

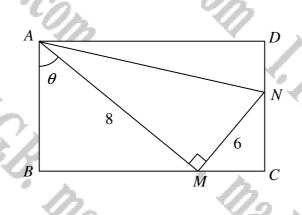
 $(\cos 4x + \cos x)^2 + (\sin 4x + \sin x)^2 = 2\sqrt{3}\sin 3x, \ 0 \le x < \pi,$ 

 $\frac{\pi}{9}, \frac{\pi}{3}, \frac{\pi}{3}$ 

 $\frac{7\pi}{9}$ 


20201

Mada.


G

i G.B.

giving the answers in terms of  $\pi$ .



Question 37 (*****)



The figure above shows a rectangle ABCD.

The points M and N lie on BC and CD respectively.

The angle AMN is 90°, |AM| = 8 and |MN| = 6. The angle BAM is denoted by  $\theta$ .

- a) Given that the perimeter of the rectangle *ABCD* is fixed at 24 units, determine the possible value(s) of  $\theta$ .
- **b**) Given instead that the perimeter of the rectangle ABCD can vary, determine the largest possible area of the **triangle** ADN.

 $\theta \approx 71.7^{\circ}$ , area_{max} = 25

$\begin{array}{c} \mu \\ \Theta \\$
B = M = C = Band+14Losd
$ \begin{array}{c} \left\{ \begin{array}{l} \mathbb{B}^{n} \left( 4 \mathrm{E} \mathrm{E} \mathrm{E} \mathrm{E} \mathrm{E} \mathrm{E} \mathrm{E} \mathrm{E}$
BY R-TRANSFORMATION
$4 \sin\theta + 7 \cos\theta \equiv R \sin(\theta + \kappa)$
= RSMOLOGA+ RUODSING
= (Ricer(Sm0 + (RSma))cello
$\begin{array}{c} \vdots \ \operatorname{Reson} := 4\\ \operatorname{Rsup} := 7 \end{array} \right) \implies \begin{array}{c} \operatorname{R} = \sqrt{4^2 + 7^2} = \sqrt{65^3}, \\ \operatorname{tsup} := \frac{7}{4}  \therefore \text{ are } 60.25^{\circ}. \end{array}$
$4 = \sqrt{65^3} \sin(\theta + 60.255^*) = -6$
Sin(0+60.255) = 0.744
$ \begin{pmatrix} 0 + 6_{2}x_{3} = 48.0!,, \pm 3604 & h = 0_{1}h_{2}^{2}s_{j-1} \\ 0 + 6_{2}x_{3} = 13/408, \pm 3804 & h = 0_{1}h_{2}^{2}s_{j-1} \\ \end{pmatrix} $
$0 = -12.634 \pm 3604$ $0 = 71.654 \pm 3604$ $\theta = 71.7^{\circ}$ Physical work
ACCA OF HON = - 1 [DN] [AD]
$= \frac{1}{2} \left[  A_{\text{E}}  -  N_{\text{C}}  \right] \left[   E_{\text{M}}  +  M_{\text{C}}  \right]$
= + [Bus9-6sm9] [Bsm0+6us9]
= 2 alcosenno + 40c20-40070-36000000
= 2 [280295H0 + 48(430-5470)] . BY R-TRANSPALATION
$= \frac{1}{2} \left[ \frac{1}{12} \sin 2\theta + 48 \cos 2\theta \right]$ $R = \sqrt{7^2 + 24^2} = 25$

# Question 38 (*****) non calculator

 $\tan 2x^{\circ} + \tan 2x^{\circ} \tan 25^{\circ} = 1 - \tan 25^{\circ}, \ 0 \le x < 360$ .

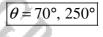
Find the solutions of the above trigonometric equation, giving the answers in **degrees**.

10	$x = 10^{\circ}, 100^{\circ}, 190^{\circ}, 280^{\circ}$
60	-0
0.	$ \begin{array}{c} \exists u_1 \partial_2 + b u_2 \partial_2 b u_2 \partial_2 = 1 - b u_1 \partial_2 \\ \Rightarrow \exists u_1 \partial_2 + b u_1 \partial_2 s = 1 - b u_1 \partial_2 b u_2 \partial_3 \\ \end{array} $
	$ \Rightarrow \frac{\tan_{2} \lambda + \tan_{2} \Sigma}{1 - \tan_{2} \lambda + \tan_{2} \Sigma} = 1 $ $ \Rightarrow \frac{\tan_{2} \lambda + \tan_{2} \lambda + \tan_{2} \lambda}{1 - \tan_{2} \lambda + \tan_{2} \lambda} $ $ \Rightarrow \frac{\tan_{2} \lambda + \tan_{2} \lambda + \tan_{2} \lambda}{1 + \tan_{2} \lambda} $
20.	$\begin{array}{c} \operatorname{accb}_{n} l = 45 \\ \Rightarrow 2x_{+}25 = 45 + 180\eta \\ \Rightarrow \omega_{n}(\lambda_{1}^{2}, \dots \\ \Rightarrow \omega_{n}(\lambda_{n}^{2}, \dots \\ x_{n}^{2}, \dots \\ \Rightarrow \omega_{n}(\lambda_{n}^{2}, \dots \\ x_{n}^{2}, \dots \\ x$
Do.	$\begin{array}{c c} \hline & 2 = 10 \pm 90 \\ \hline & 3 = 10^{1} 100^{1} 190^{1} 280^{0} \\ \hline & \lambda = 10 \pm 90 \\ \hline & \lambda = 10 \pm 90 \\ \hline \end{array}$
The.	
100	· Co.

Question 39 (*****)

 $2\tan x - \sin 2x = \sin^2 x$ ,  $0 \le x < 360$ .

Find the solutions of the above trigonometric equation, giving the answers in **degrees**.


 $x = 0^{\circ}, 26.6^{\circ}, 180^{\circ}, 206.6^{\circ}$ 

SIMA (SIMACOSA + 2003)  $Mac(\frac{1}{2}sy_{2}+(1+cas_{2})-2)=c$  $\frac{1}{2}$  Sig 22 + (0522 - 1) = 0  $SMD_{1}(SH2x + 260S2x - 2) = 0$ S11/22 + 210522 - 2 S11/22 + 210522 = 2  $|2a + 2\cos 2x \equiv R.SM(2a+x)$ = Rayzusa + Rus = (R605x) SUM22 + (RSTUR)0  $\mathbb{R}^{n-1} \left( \Rightarrow \mathbb{R}^{n-1} \right)$ SM2=0 02  $\begin{pmatrix} 2x + 63 \cdot 43^\circ = 63 \cdot 43^\circ \pm 3604 \\ 2x + 63 \cdot 43^\circ = 116 \cdot 57^\circ \pm 3604 \end{pmatrix}$  $\begin{pmatrix} \mathfrak{A} = 0 & \pm & 360 \mathfrak{m} \\ \mathfrak{A} = 180 & \pm & 360 \mathfrak{m} \end{pmatrix}$ ( N=0,1,2,3,...)  $\begin{pmatrix} x = 0 \pm 1800 \\ x = 160 \pm 1800 \end{pmatrix}$ HENCE 2=0,266, 180, 2066

## Question 40 (*****) non calculator

Solve the following trigonometric equation

 $\sin(\theta - 20) = \sin(\theta + 60), \quad 0 \le \theta < 360^{\circ}.$ 



- $SM(\theta 20) = SM(\theta + 60)$
- → ( θ 20 = 180 (θ + 60) ± 360 N
  - $\theta 20 = 120 \theta \pm 360$  $2\theta = 140 \pm 300$
  - θ = To ± lBOM
- θ₂ = 250*

## Question 41 (*****)

The three angles in a triangle *ABC* satisfy the relationship

 $\sin(2A-B)-\sin(B+C)=\cos A\sin(A-B).$ 

2.

Show that the triangle *ABC* is isosceles.

proof

1

$$\begin{split} & Sn(2A+B)-Sn(B+C) = cosAsm(A+B) \\ & \rightarrow Sn(2A+B)-Sn(B+BC) = cosAsm(A+B) \\ & \rightarrow Sn(2A+B)-Sn(B+BC-B+A) = cosAsm(A+B) \\ & = Sn(2A+B)-Sn(2B+CA) = cosAsm(A+A) \\ & \rightarrow Sn(2A+B)-Sn(2B+CA) = cosAsm(A+B) \\ & \rightarrow Sn(2A+B)-Sn(2B+CA) = cosAsm(A+B) \\ & \rightarrow Sn(2A+B) = cosAsm(A+B) \\ & = Sn(A+B) \\ & = Sn(A+B) = cosAsm(A+B) \\ & = Sn(A+B) \\ & = Sn(A+B) = cosAsm(A+B) \\ & = Sn(A+B) \\ & = Sn(A$$

- ⇒ Anakzos = Amz (B-Agne ←
- ) michaos = Am2 [B+A+A]me ← (B-A)2014 (B-A)201Ane ←
- =  $Ani2 (8 A)m_2A_2o_3 + (8 A)2o_3Ani2 = 0 = 0 = 0 = 0 = 0$
- $\operatorname{SinA}= \bigcirc \Longrightarrow A = --360^{\circ}_{1}180^{\circ}_{1}180^{\circ}_{1}260^{\circ}_{1} : \operatorname{SinA} \neq 0$ 
  - bas(A-B) = 1 = 0bas(A-B) = 1
  - $4 3 = ... 360_1 o$ 4 - 3 = 0

Question	42	(*****)
<b>X</b> ^{ucono}		

It is given that

 $\sin(A+B) \equiv \sin A \cos B + \cos A \sin B.$ 

Use the above trigonometric identity to show that

F.G.B.

madasmaths,

N.C.

 $\sin 3x \equiv 3\sin x - 4\sin^3 x \,,$ 

and hence find

I.F.G.B.

SM2/IS-COM

I.C.B.

0

 $\sqrt[3]{3\sin 2x - 2\sin 3x\cos x} dx$ .



maths.com

·GA

Madasmarh

¹²02sm;

I.V.C.

 $\sin^{\frac{4}{3}}x + C$ 

lasmaths.com

I.V.C.B. Madasm

aths.com

F.G.B.

Created by T. Madas

00

madasmaths.com

## Question 43 (*****)

It is given that a, b and c are consecutive terms of an arithmetic progression.

It is further given that

 $a\cos^{2}\frac{x}{2} - (2a+c)\sin^{2}\frac{x}{2} = a\cos x - b(1+\sin x), x \in \mathbb{R}$ 

Show clearly that



## Question 44 (*****)

Э.

Prove the validity of each of the following trigonometric identities.

$$a) \quad \tan 3x \equiv \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

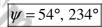
**b**)  $\frac{2\sec^2\theta - \cos 2\theta - 1}{2\tan\theta + \sin 2\theta} \equiv \tan\theta$ .



proof

 $=\frac{3\frac{1}{2}\frac{1}{1-3}\frac{1}{1-3}}{1-3\frac{1}{2}\frac{1}{2}}=\frac{2\frac{1}{2}\frac{1}{1-3}}{2\frac{1}{2}\frac{1}{2}\frac{1}{2}}=\frac{2\frac{1}{2}\frac{1}{1-3}}{2\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{$ 

- turo


 $\frac{na(1-taip)}{-1} = \frac{2taip + taip - taip}{1-3taip}$ 

- $\frac{\partial \hat{z}_{ab} \frac{\partial \bar{z}_{ab}}{\partial ab}}{\partial ab \partial a c + \frac{\partial a c}{\partial ab}} = \frac{\partial \hat{z}_{ab} \partial \hat{z}_{ab}}{\partial a c + \partial a c} = -\alpha + \alpha n n n$
- $= \frac{1 \cos^2 \theta}{\cos^2 \theta} = \dots$  Difficult of swritter (-  $\cos^2 \theta$
- $\begin{array}{c} O_{2,\omega-1}^{*} = \int & O_{2,\omega-1}^{*} = \int & O_{2,\omega-1}^{*} & O_{2,\omega-1}^{*} = \int & O_{2,\omega-1}^{*} & O_{2,\omega-1}^{*} & O_{2,\omega-1}^{*} \\ (e_{1,\omega+1})(e_{2,\omega-1}) = & O_{2,\omega-1} & O_{2$
- $\frac{1}{2} \frac{1}{2} \frac{1}$
- HIG = QUO = QUO = QUO WZ

# Question 45 (*****) non calculator

Solve the trigonometric equation

 $\cos(\psi - 36) = \cos(\psi - 72), \quad 0 \le \psi < 360^\circ.$ 



$$\begin{split} & (\omega_{1} - \psi_{2}) = (\omega_{2} - \psi_{2}) \\ & (\omega_{1} - \psi_{2}) = (\omega_{2} - \psi_{2}) \\ & (\omega_{1} - \psi_{2}) = (\omega_{2} - \psi_{2}) \\ & (\omega_{1} - \psi_{2}) \\ & (\omega_{1}$$

( 2ψ = 108 ± 360 M

∴ \$4 ° \$2 = 234°

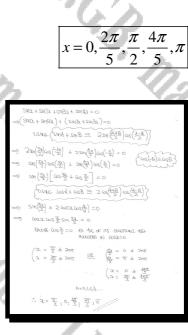
1+

## Question 46 (*****)

I.F.G.B.

23

I.C.p


Solve the trigonometric equation

 $\sin x + \sin 2x + \sin 3x + \sin 4x = 0, \quad 0 \le \theta \le \pi,$ 

12/2

N.

giving the answers in terms of  $\pi$ .



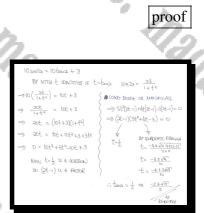
Created by T. Madas

F.G.B.

27

I.C.p

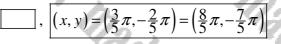
G


Madasn

#### Question 47 (*****)

Use the substitution  $t = \tan x$  to show that if

 $10\sin 2x = 3 + 10\tan x,$ 


then either  $\tan x = \frac{1}{2}$  or  $\tan x = \frac{-2 \pm \sqrt{19}}{5}$ 



Question 48 (*****)

Solve the following simultaneous equations.

 $x + y = \frac{1}{5}\pi$ ,  $\cos x + \cos y = 0$ ,  $0 \le x < 2\pi$ .



- $x \overline{z} = \psi \leftarrow \begin{cases} \overline{z} = \psi + c \\ \sigma = |k_00| + zz_{00} \end{cases}$
- SUBSTITUTE WAS THE OHIAL OPUATION
- $b = (x \frac{\pi}{2}) 20 + 220$
- $= \frac{1}{2} 2 c \delta = \frac{1}{2} 2 c \delta \delta = \frac{1}$
- $h_{0,0-B}(\theta-T)zoo$  during following the R with  $\eta$  during the spont  $\Phi$
- $\cos 2 = \cos \left[\frac{4\pi}{5} + x\right]$
- $\mathcal{Q} = \pm \left(\frac{4\pi}{3} + \chi\right) \pm 2n\pi$   $h = 0/(2\lambda),...$  $\mathcal{Q} = -\frac{4\pi}{3} \pm 2n\pi$
- $\therefore \alpha_{1} = \frac{2\pi}{3} \quad 4 \quad \gamma_{2} = \frac{2\pi}{3}$
- $U_1 = -\frac{2\pi}{5} \quad \text{a} \quad y_2 = -\frac{2\pi}{5}$
- $\because \left(\begin{array}{c} 2 \\ \overline{g} \\ \overline{u} \\ -\overline{z} \\ \overline{u} \\ \end{array}\right) \quad \delta \quad \left(\begin{array}{c} \overline{g} \\ \overline{u} \\ \overline{u} \\ -\overline{z} \\ u \\ \end{array}\right)$

6

Question 49 (*****)

$$f(x) \equiv \frac{1 - \sin 2x}{\sin x - \cos x}, \ x \in \mathbb{R}, \ \sin x \neq \cos x.$$

a) Show clearly that

$$f(x) \equiv \sin x - \cos x$$

**b**) Solve the equation

L.C.B. Madasmatics

Smaths.com

I.V.G.B

>

12

Z

$$f(x)f(-x) = \cos\left(x - \frac{2\pi}{3}\right), \ 0 \le x < 2\pi,$$

giving the answers in terms of  $\pi$ .

I.C.

sx.	-Uh	
· .		No.
6.15		1.
	2	50
- G	2	10
1	5	- 67
	"h	- 0
	- 205	
$2\pi$ ,		2
<i>n</i> ,		de.
70		"m
- 'D.	s	211
- A	12	
$r = \frac{2\pi}{2\pi} \frac{8}{8}$	$\frac{3\pi}{9}, \frac{4\pi}{3}, \frac{14\pi}{9}$	
x = 9,	9'3'9	- (

The COM

Smarns.com

KCH

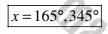
23

I.V.C.

	- ULDS
-On	$\frac{52\eta + 2\alpha\alpha\beta(\alpha S - s_1^2)\omega^2}{5\alpha\alpha + \alpha\alpha \omega} = \frac{s_1^2\eta \omega - s_1^2\omega \omega}{s\alpha - s_1\alpha \omega} = \frac{s_1^2\eta^2 \omega - 1}{s\alpha \omega - s_1\alpha \omega} = (x_1)^2  (x_1)^2$
	$= \frac{\left(\frac{SNQ}{SQR} - \frac{LGQ}{SQR}\right)^{2}}{SQR} \approx \frac{SNQ}{4} - \frac{LGQ}{4}$
	(b) NOW -f(x) + (-x) = (cq(x-2))
	$ \Rightarrow \left( \sum_{i=1}^{N} (S_{i} - i_{i})_{i \neq i} (S_{i} - i$
	= - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	$(\underline{x}_{2} - \underline{y})_{23} = \hat{x}_{1}(u_{2} - \underline{x}_{23}) \Leftrightarrow (\underline{x}_{2} - \underline{y}_{23}) \iff (\underline{x}_{2} - \underline{y}_{23}) \iff (\underline{x}_{2} - \underline{y}_{23}) $
	$\Rightarrow \begin{pmatrix} 2\lambda = (2 - \frac{\pi}{3}) \pm 2A\eta \\ \lambda = (\frac{\pi}{3} - \lambda) \pm 2A\eta \\ \eta = q_1 t_{3\gamma} .$
	$\Rightarrow \begin{pmatrix} 3 & -3T + 2\pi T \\ 3L & 2 & 2T \\ 3L & 2 & 2 & 2T \end{pmatrix}$
· / `	$ = \begin{bmatrix} \alpha & \frac{d^{2}}{d^{2}} \pm 2\phi \pi \\ \alpha & \frac{d^{2}}{d^{2}} \pm 2\pi \end{bmatrix} $
4/0	~
del	
at the	
V. do	dal
	*Un
4112 - AD-	- C O.
V/5 V2	1 U.S.
12. 41	
	lla Valas
~~ <i>C</i> /2	
	100 V/0
CO.	175 °1
4. I.S. I.	
	N. 19 1

9	$-Sufx - Substats + Leastinx + Losiz = Losiz - xm^2$
	$\cos(3u - 5m^2) = \cos(3u - 2T)$
?	$(\alpha_1 2 \alpha = (\alpha_1 (\alpha - \frac{2\pi}{3}))$
2	$\left(2\alpha = \left(\alpha - \frac{2\pi}{3}\right) \pm 2\pi \eta$

Maths.com


L.C.B. Mada

## Question 50 (*****)

Find the solutions of the trigonometric equation

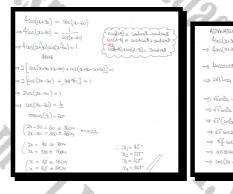
 $\sin(x+15)+5\sin x+\sin(x-15) = \left[\cos(x+15)+5\cos x+\cos(x-15)\right]\tan(2x+15),$ 

in the range  $0^\circ \le x < 360^\circ$ .



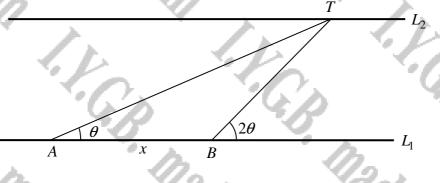
 $= \int_{0}^{\infty} \int_{0}^{\infty} dx + 2\pi i d$ 

- (2++12) mat = tan (2++2) and carefy =
- => Sma(alasts+5) = tm(la+
- =) tima = tim(21+15)
- : x=(2x+15)=1804 maq123,... -2=15=1804 : 2,5 165


*x* = 45°,165°,225°,345°

1.

Question 51 (*****)


Solve the trigonometric equation

 $4\cos(x+30^\circ) = \sec(x-60^\circ), \quad 0 \le x < 360^\circ.$ 



### Question 52 (*****)

In the following question you may not use the sine or the cosine rule.



The figure above shows the plan of a river whose banks are modelled as straight parallel lines  $L_1$  and  $L_2$ .

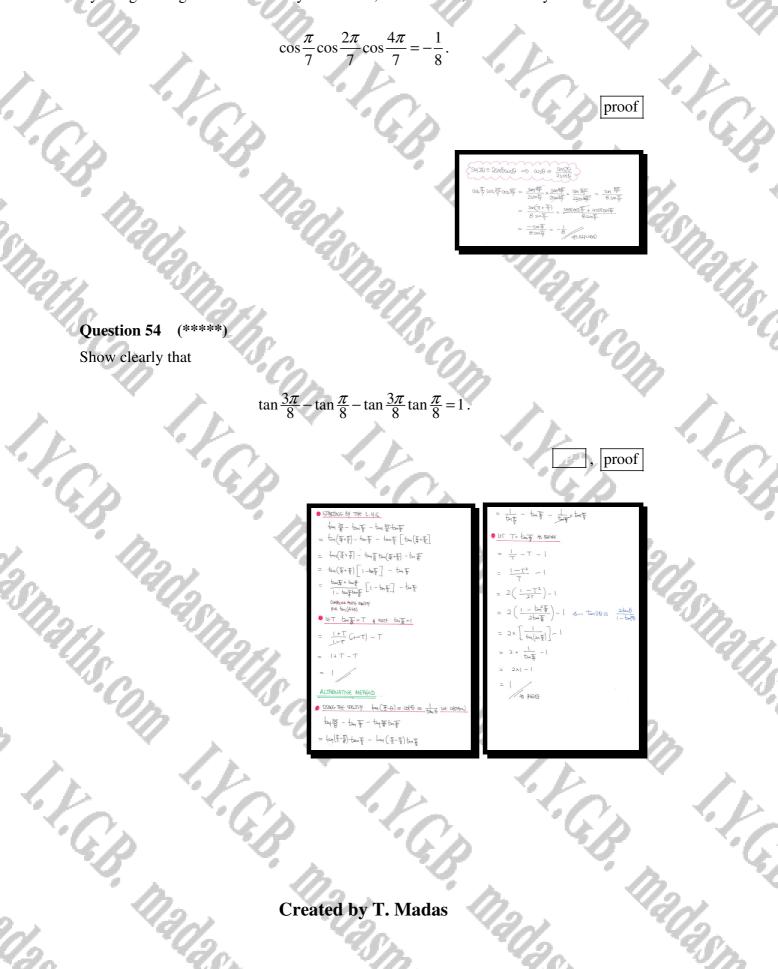
The points A and B lie on  $L_1$ , so that |AB| = x.

A tree is positioned at the point T on  $L_2$ , so that AT and BT subtend angles of  $\theta$  and  $2\theta$ , respectively.

The tree located at T has height h. The angle of elevation of the top of the tree as viewed from A is  $\theta$ .

Show that

 $h=2x\sin\theta.$ 


proof

= Smt

Hant -1+ taigo

## Question 53 (*****)

By using the trigonometric identity for  $\sin 2\theta$ , or otherwise, show clearly that



# Question 55 (*****) non calculator

Solve the trigonometric equation

 $\sin(\varphi+30) = \cos(\varphi-45), \quad 0 \le \varphi < 360^{\circ}.$ 

in,

j.

COM

· · ·	· · ·	$\varphi = 52.5^{\circ}, 232.5^{\circ}$	
0. CA	62	58	42
is of	× · · ·	$\begin{array}{c} (\beta_{-} - \beta_{-})_{AOI} = (-\delta_{-} + \delta_{-})_{AOI} = (-\delta_{-} - \delta_{-}$	
in.	2201	$ \Rightarrow \begin{pmatrix} \omega & -\psi & e & \psi - k_{1} \pm 2\zeta_{OW} \\ \langle \omega & -\psi & = 4\zeta_{1} - \psi \pm 3\zeta_{OW} \end{pmatrix} \stackrel{\forall e \in c_{1}, e_{2}, s}{ \Rightarrow \begin{pmatrix} -2e\psi & e & -\log \pm 3\zeta_{OW} \\ e & -\log \pm 3\zeta_{OW} \end{pmatrix} } $	2.
		$\begin{array}{cccc} & 2\psi & 100 \\ & & & 2\psi & 105 \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array}$	23SI12115
is con sinally	Nar-	1972	"The
as seth	-418	alls.co	0.0
Con VS.	°C2 °C	n O	3
			·
	1 / L	1.1	· Va
Cr Ch	s 'la	*G.b	G.
705 7			
no .	1202	In U	2.
	1212	"Sp	121
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		a dip	195
Con "	Co.	Op S.C	2
			10
L LA	. L.V	· Ko	I.
Gr C	8 S.C.	, Cp	1.0
-0-	in i		m S
12.	Created by T. Madas	12.	121

Question 56 (*****)

Eliminate θ from the following pair of equation.

$$\tan\theta + \cot\theta = x^3$$

$$\sec\theta - \cos\theta = y^2$$

Write the answer in the form

Inadasn.

COM

I.C.B.

I.F.G.B.

f(x,y)=1.

m.
$\{u_{\mu}\theta + a_{\mu}\theta = a^{3}\}$
24/4720 & 24/412 OCM 2/40TRUGE # 102
$g_{2} = g_{2} g_{2} - \frac{1}{g_{2} g_{2}}$ $g_{2} = \frac{1}{g_{2}} - \frac{1}{g_{2} g_{2}} + \frac{1}{g_{2} g_{2}}$
$\epsilon_{V} = \frac{\Theta_{200}^{2} - 1}{\Theta_{200}} \qquad \epsilon_{U} = \frac{\Theta_{200}^{2} + \Theta_{100}^{2}}{\Theta_{200}}$
$\frac{1}{\cos \Theta \sin \theta} = \alpha^3 \qquad \frac{\sin^2 \Theta}{\cos \Theta} = \alpha^3$
$\frac{1}{\partial c} = \frac{1}{\partial m \partial c \partial x}$
- HUL 24002239933 OUT 3HT WITHUN ●
$\frac{1}{\omega_{s}^{2}\omega_{s}} \approx \frac{\theta_{s}^{2}\omega_{s}}{\omega_{s}} \times \frac{1}{\theta_{s}^{2}\omega_{s}^{2}\omega_{s}}$
$\frac{1}{\cos^3 \Theta} = x^6 y^3$
$\omega z^2 \Theta = \frac{1}{\omega^2 y^2}$
$\frac{1}{2^2 y} = -\frac{1}{2^2 y}$
SUBSTITUE Who THE SECOND EXPUTICAN
$26c\theta - coa\theta = 3^3$
$a_{4}^{\mu}a_{\pi} - \frac{l}{a_{5}^{\mu}a_{\pi}} = g_{3}^{\mu}$
$a_{4}^{4}q^{2} - a_{7}^{2}q^{4} = 1$

Ths.com

17202

I.F.G.

I.F.G.B.

 $x^4 y^2 - y^4 x^2 = 1$

hs.com

Created by T. Madas

madasmaths,

COM

COM

(*****) Question 57

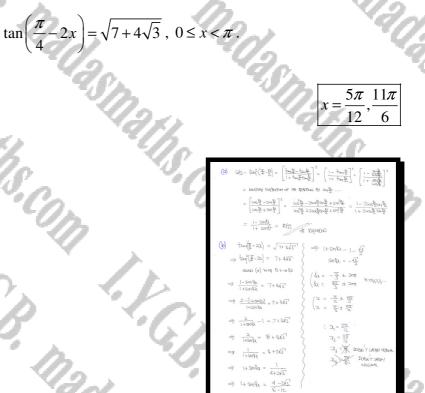
It is given that

I.V.G.B.

COM

I.F.G.B.

$$\tan^2\left(\frac{\pi}{4} - \frac{\theta}{2}\right) \equiv \frac{1 - \sin\theta}{1 + \sin\theta}, \ x \neq \frac{\pi}{2}(4n + 3), \ n \in \mathbb{Z}$$


- a) Prove the validity of the above trigonometric identity
- **b**) Hence solve the equation

.V.G.B.

I.Y.C.J

11202

00

2017

:0M

IS.COM

1. Y.G.

I.C.B

Question 58 (*****)

It is given that

>

K.G.B.

I.C.B.

2011

 $p = \sin^2 \theta$, $q = \tan 2\theta$.

is.com

 $=\frac{4p(1-p)}{(1-2p)^2}$

 $\frac{\frac{qp}{1-p}}{\left(\frac{1-2p}{1-p}\right)^2}$

adasm

Madasm

G

aths.com

I.C.B.

nn

Use trigonometric identities to find a simplified expression for q^2 in terms of p.

11₂₀₂

Created by T. Madas

2017

adasmana Marns

2017

Question 659 (****)

h.

 $\sin 2x - \sqrt{3}\cos 2x = \tan x, \ 0 \le x < 2\pi.$

Find the solutions of the above trigonometric equation, giving the answers terms of π .

· · · · · · · · · · · · · · · · · · ·		
L 'YA	S. C.	$x = \frac{\pi}{4}, \frac{\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{4\pi}{3}, \frac{7\pi}{4}$
	、 でか	$x = \frac{1}{4}, \frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{3}, \frac{1}{4}$
6.5 56	1 70	
SR C		· ///
	m 1	$ \begin{array}{l} \circ \ SW32 - 43\cos 2z = tana. \\ \Rightarrow \ SW32 - tana. = 13\cos 2z \\ \Rightarrow \ SW32 - 43\cos 2z \\ \Rightarrow \ SW32 - 43\cos 2z = tana \\ \end{array} $
- Ma	42.	$\Rightarrow \frac{2}{1+t^2} = \sqrt{3}\left(\frac{1-t^2}{1+t^2}\right) = \frac{2}{t}$
12.	·90/2	\Rightarrow $3m(2n\beta-1) = (2n\beta) = 7 \Rightarrow 2t - (5(1+1)) + (1+1)$
	do.	$\Rightarrow \tan \cos 22 = \sqrt{5} \cos 22$
de.	-0/22	$\begin{array}{c} \epsilon_{\text{L}} \\ \epsilon_{\text$
911 1000	121.	$(2x = \frac{T}{2} \pm 2\pi T)$ or $x = \frac{T}{2} \pm 2\pi T$
CD	· · · · · · · · · · · · · · · · · · ·	и=q1,2,5,···
18 40	6 40	$ \begin{array}{c c} \begin{array}{c} x = \frac{1}{2} + i \eta \\ z = \frac{1}{2}$
· (n. 4	8	$\Delta t_{q} = \frac{2\pi}{2}$
	Par 4	$ \begin{array}{c} \lambda_{1} = \frac{\pi}{2} \end{array} \\ \lambda_{2} = \frac{\pi}{2} \end{array} \\ \begin{array}{c} \lambda_{2} = \frac{\pi}{2} \end{array} \\ \begin{array}{c} \lambda_{1} = \frac{\pi}{2} \cdot $
	On	
		/ h.
1. 1.		No V
	a ser	AN.
1. A 19	$Q \to Q$	60
	```````````````````````````````````````````	· · · · ·
	12.	h 170
12.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100 dl
· "Oo	9.0	20 4
n. 90.	- m	42.
an on	4210	
×10. ×2	as the	12-
	6. 8	916
· ().		Co. Vo
- m	Co.	On Son
	- Un	~~ ~ Ox
		· · · · · · · · · · · · · · · · · · ·
	$\gamma \leq l_{r}$	10
co = 0	1 - C - C - C - C - C - C - C - C - C -	· · · · · · · · · · · · · · · · · · ·
- G A - 3	15 6	5 <i>5</i> 19
-0	1 . I .	
	m.	
10-	Created by T. Madas	
, Yan		Van T
42	482	-42.
C. 482	×17.	-98×
F // Y		S VIA

1

naths,

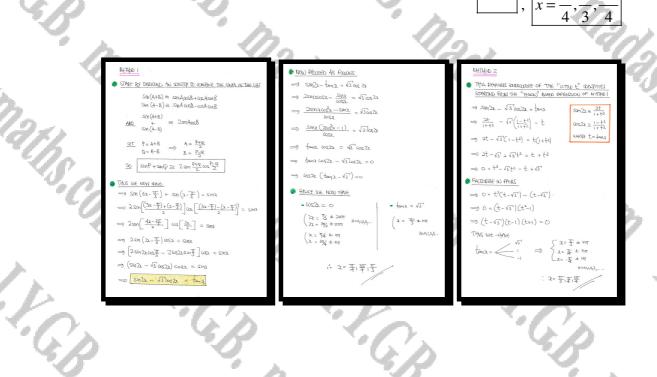
ths.co.

π π 3π

I.F.C.B.

G

Madasn


Question 60 (*****)

aths

I.F.G.B.

 $\sin\left(3x-\frac{\pi}{3}\right)+\sin\left(x-\frac{\pi}{3}\right)=\sin x\,,\quad 0\leq x<\pi\,.$ 

Determine the solutions of the above trigonometric equation, giving the answers in terms of  $\pi$ .

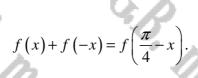


Created by T. Madas

I.R.

## Question 61 (*****)

The function f is defined as


$$f(x) = \sin\left(x + \frac{7\pi}{12}\right)\sin\left(x + \frac{\pi}{12}\right), \quad 0 \le x < 2\pi$$

Solve the equation

'aths.c.

SM3//IS-COM

I.C.p



ws22057 + 51422 SM7

COSZICOST + SINZX SINZ

652105 3 - SM22 5113

Emiz sime + Traver 200

.Y.G.

cos晋+ fauza sin晋 + fay 22 × (-12) - 13 tan 2a = aretur (2-15)= 7  $2x = \frac{11}{12} \pm hT$ = = = <u>1</u> 24 = <u>1</u>

Ins.com

 $\therefore \quad \mathfrak{A} = \frac{11}{24}, \frac{131}{24}, \frac{2517}{24}, \frac{3217}{24}$ 

The Com

 $\pi$  13 $\pi$  25 $\pi$  37 $\pi$ 

24

24

aths com

G

Madası

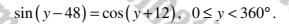
I.F.C.P.

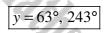
24'24

#### Question 62 (*****)

It is given that the three angles of a triangle  $\alpha$ ,  $\beta$  and  $\gamma$  satisfy the relationship

 $\tan\frac{\alpha}{2} = \left(1 + \tan^2\frac{\alpha}{2}\right)\sin\left(\beta - \gamma\right).$ 


Assuming that the triangle is not right angled, show that


 $3\tan\gamma = \tan\beta$ .

$$\begin{split} & \underbrace{SMR} \text{ IMMERSATION -LC FOLLOWE} \\ & \Rightarrow \frac{4m_X^2}{2} = \begin{bmatrix} 1 + 4m_X^2 + \frac{1}{2} \sin(\ell \cdot x) \\ \Rightarrow - 4m_X^2 = -5\kappa(\frac{2}{2} \sin(\ell \cdot x) \\ \Rightarrow - 4m_X^2 + \frac{5}{2} \sin(\ell \cdot x) \\ \Rightarrow - 4m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 4m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot x) \\ \Rightarrow - 5m_X^2 \cos(\frac{2}{2} - 5m_X(\ell \cdot$$

## Question 63 (*****) non calculator

Solve the trigonometric equation





proof

0 + 8200

3 tany = bub

AS REPUILIND

 $sm(\underline{\psi} - \underline{\psi})_{20} = (\underline{\psi} + \underline{\psi})_{20} = (\underline{\psi}$ 

- $\Rightarrow Go_{2}(138-y) = io_{2}(y+12)$ 
  - (138-y = y+12 ± 3600 (138-y = y+12 ± 3600
  - $(-2y = -126 \pm 360y)$
  - 9 = 63 ± 1804
  - ≤ y1 = 63°
     y2 = 243°

#### (*****) Question 64

aths.com

I.C.B.

Com I.Y.C.

The 2nd, 3rd and 4th terms of a geometric series are  $\cos\theta$ ,  $\sqrt{2}\sin\theta$  and  $\sqrt{3}\tan\theta$ , respectively, where  $0 < \theta < \frac{\pi}{2}$ .

Show clearly that the sum of the first 6 terms of the series is

# $\frac{43}{12}(6+\sqrt{6}).$ nadasm

asmaths.		$\begin{array}{c} U_{\mu} = (\alpha_{\mu} G) \\ U_{\mu} = \sqrt{2} \tan G \\ U_{\mu} = \sqrt{2} \tan G \\ U_{\mu} = \sqrt{2} \tan G \\ (c^{\mu} \rightarrow) \frac{U_{\mu}}{U_{\mu}} = \frac{U_{\mu}}{U_{\mu}} \\ \Rightarrow \frac{(c^{\mu}_{\mu}\alpha_{\mu})}{(c^{\mu}_{\mu}\beta)} = \frac{c^{\mu}_{\mu}\alpha_{\mu}}{(c^{\mu}_{\mu}\beta)} \\ \Rightarrow 2ac^{\mu}_{\mu}\beta = c^{\mu}_{\mu}\alpha_{\mu} \\ \Rightarrow ac^{\mu}_{\mu}\beta = c^{\mu}_{\mu}\alpha_{\mu} \\ \Rightarrow ac^{\mu}_{\mu}\alpha_{\mu} \\ \Rightarrow ac^{\mu}_{\mu}\alpha_{\mu} \\ \Rightarrow ac^{\mu}_{\mu}\alpha_{\mu}\alpha_{\mu} \\ \Rightarrow ac^{\mu}_{\mu}\alpha_{\mu}\alpha_{\mu}\alpha_{\mu} \\ \Rightarrow ac^{\mu}_{\mu}\alpha_{\mu}\alpha_{\mu}\alpha_{\mu}\alpha_{\mu} \\ \Rightarrow ac^{\mu}_{\mu}\alpha_{\mu}\alpha_{\mu}\alpha_{\mu}\alpha_{\mu} \\ \Rightarrow ac^{\mu}_{\mu}\alpha_{\mu}\alpha_{\mu}\alpha_{\mu}\alpha_{\mu}\alpha_{\mu}\alpha_{\mu}\alpha_{$	$\begin{array}{c c} u = \frac{1}{2R} & \frac{u}{n} + \frac{1}{12}, \\ \frac{1}{2R} & \frac{1}{n} + \frac{1}{12}, \\ \frac{1}{2R} & \frac{1}{n} + \frac{1}{12}, \\ \frac{1}{2R} & \frac{1}{n} + \frac{1}{2R}, \\ \frac{1}{2R} & \frac{1}{2R}, \\ \frac{1}{2R}, \\$
I. F. G.B.	1. y.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
135113115		S.COM	

Madasmarns.com

nadasm.

(.). (.).

proof

## Question 65 (*****)

It is given that  $\theta$  and  $\varphi$  satisfy the relationship

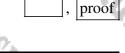
Y.G.B.

S.

 $\tan\theta = \frac{3\sin\varphi\cos\varphi}{1-3\sin^2\varphi}.$ 

Show clearly that

202


CO17

I.C.p

>

I.V.C.B.

 $\tan\left(\theta-\varphi\right)=2\tan\varphi.$ 



hs.com

S.Com

.G.p.



NET BY EXERCISING tomb



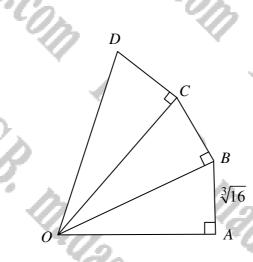
3trung - trub (1-2trugg)

aths com

I.F.G.

I.F.G.B.

- 3tout tout +2tougt
- 1 -2trugh + 3trugh = atomb + 2trugh
- 1+ tang
- = 2 Bud AS REPUB


nn

Created by T. Madas

madasmarns,

2017

Question 66 (*****)



The figure above shows three right angle triangles, OAB, OBC and OCD.

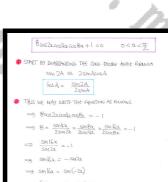
It is given that  $\measuredangle AOB = \measuredangle BOC = \measuredangle COD$  and |OD| = 2|OA|.

Given further that the length of AB is  $\sqrt[3]{16}$ , determine the length of DC.

DC  = 4
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
$\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$
$ \begin{array}{c} \longrightarrow  (\alpha xy) \leftarrow 2^{-\frac{1}{2}} \\ \hline \underline{\lambda} = - (\alpha xy) \\ \underline{\lambda} = - ($

21/2.8m

6


## Question 67 (*****)

.Y.G.J.

Solve the trigonometric equation

 $8\cos 2x\cos 4x\cos 8x + 1 = 0$ ,  $0 < x < \frac{\pi}{2}$ 

12/2



 $2\pi \pi$ 

9

3

 $5\pi$ 

14

 $4\pi$ 

9

- $= 9 \begin{pmatrix} I_{G,X} = -2\chi \pm 2\eta \pi & \eta = 0_{1} \\ I_{G,X} = (\pi + 2\chi) \pm 2\eta \pi & \eta = 0_{1} \end{pmatrix}$
- $\Rightarrow (18x = 0 \pm 2mT)$
- $= \int x = 0 \pm \frac{1}{2} \frac{1}{2}$

 $3\pi$ 

14

π

*x* =

π

14' 9

- $\begin{array}{l} \left( \begin{array}{c} x \\ x \end{array} \right) = \frac{\pi}{\mu} \pm \frac{m}{\gamma} \left( \begin{array}{c} = \frac{\pi}{\mu} \pm \frac{2\pi}{\mu} \\ = \frac{\pi}{\gamma} + \frac{2\pi}{\mu} \end{array} \right) \\ \begin{array}{c} \text{coutomby $\Pi$t $ advanta $ 2 = \frac{\pi}{\gamma} + \frac{2\pi}{\gamma} + \frac{\pi}{\mu} \\ = \frac{\pi}{\gamma} + \frac{2\pi}{\mu} \\ \end{array} \end{array} \right)$
- 11111111 11 9191319, (411F) 11F

## **Question 68** (*****)

I.G.B.

Find, in terms of  $\pi$ , the solutions of the equation

$$\sqrt{x} \frac{d}{dx} \left( \sqrt{x} + 2\cos\sqrt{x} \right) = 1, \quad 0 \le x < 4\pi^2$$

x=	$\frac{49\pi^2}{36},$	$\frac{121\pi^2}{36}$
$a^{\frac{1}{2}} + 2\cos a^{\frac{1}{2}} = 1$ $a^{\frac{1}{2}} + 2s \frac{1}{2} a^{\frac{1}{2}} a^{\frac$	0=-===================================	1991年1991年1991年1991年1991年1991年1991年199

G

## Question 69 (*****)

Find in terms of  $\pi$  the solutions of the trigonometric equation

i.C.p.

 $\cot\left(\frac{\pi}{2}\cos x\right) = 1, \ 0 \le x < 2\pi.$ 

	$\hat{\boldsymbol{\rho}}$	π	$5\pi$
V	л —	3	3
- 1		1	L

at(Fasa)=1 {	$\Rightarrow \cos x = \dots - \frac{2}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{5}{2} \cdot \dots$
== ( = ( = 200 = ) HP+ (=	-9 6032 = 1-
	$ \overrightarrow{\mathcal{T}} \begin{pmatrix} \mathcal{X} = \overrightarrow{\mathcal{T}} \pm 2\eta T \\ \mathcal{Q} = \overrightarrow{\mathcal{T}} \pm 2\eta T \\ \mathcal{Q} = \overrightarrow{\mathcal{T}} \pm 2\eta T \\ \end{array} $
$= \frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$	3
$\Rightarrow \cos \alpha = \frac{1}{2} \pm 2n$	: 2= <u>3</u> , <u>57</u>

## Question 70 (*****)

I.C.B.

KR

Solve the trigonometric equation

 $8\sin\left(\frac{\pi}{18}\right)\cos\left(\frac{\pi}{18}\right)\cos\left(\frac{\pi}{9}\right)\cos\left(\frac{2\pi}{9}\right) = \cos 3x, \qquad 0 \le x < \frac{\pi}{2}$ 

giving the answer in terms of  $\pi$ .

π x =54

2

in the

#### Ear = Error Fron Fron Frank

- STAT BY SUCCENT HARLATIONS OF  $Sin 2A \equiv 2sindexeA$   $\Rightarrow 4(2sint int_0)(attracts = cats)$   $\Rightarrow 4.sint cat as <math>as = cass$ 
  - 2(25MFCKF) Col开 = Col3a — 25M 开 Col平 = Col3a
- . Since  $\frac{M}{2}$  is a constant of the constant M is a constant of M , with M=cont M , with M=cont M , where M is a constant of M=cont
- $\begin{aligned} \mathrm{aff}_{\mathrm{S}} &= \left( \frac{\mathrm{TF}}{\theta} \frac{\mathrm{TF}}{2} \right) \mathrm{ad} \iff \\ \mathrm{aff}_{\mathrm{S}} &= \left( \frac{\mathrm{TF}}{\theta} \frac{\mathrm{TF}}{2} \right) \mathrm{ad} \iff \\ \end{array}$
- ∰ 200 = 26200 (≕ HOTWAR HABNAR) A 90 TR2 🚯
  - $\begin{cases} 3\mathfrak{A} = -\frac{m}{18} \pm 2\mathfrak{m}T \\ \mathfrak{d} \mathfrak{A} = \frac{m}{18} \pm 2\mathfrak{m}T \end{cases} \quad \mathsf{M} = \mathfrak{d}_{1/2}\mathfrak{a}_{1}.$
  - $\mathcal{L} = -\frac{1}{24} \pm \frac{2}{3} \operatorname{ML}^2$
  - Only sometion in symple 12 Th

The com

hs.com

## Question 71 (*****)

Solve the trigonometric equation

 $\sin\left(2\theta^{\circ}+20^{\circ}\right)+\cos\left(3\theta^{\circ}+50^{\circ}\right)=0\,,\ 0\leq\theta\leq360^{\circ}\,.$ 

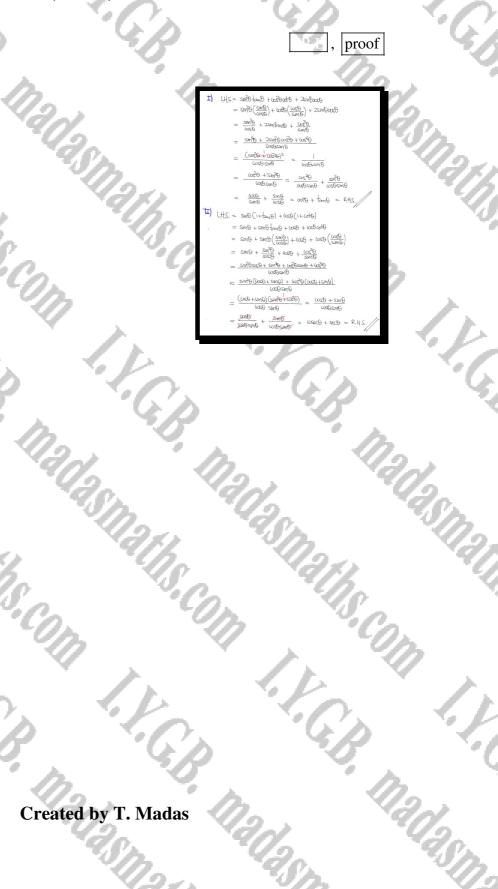
	$\theta = 40^{\circ}, 60^{\circ}, 112^{\circ}, 184^{\circ}, 256^{\circ}, 328^{\circ}$
V. S.O. SI	Children Children
	$\Rightarrow$ $\Im \eta (36+so) + \omega_{\pi}(36+so) = 0$
58 S.	$\begin{array}{c} (d+dS)   m^2 - \equiv (d+dS)   m^2 - \equiv (d+dS)   m^2 - \equiv (d+dS)   m^2 - \equiv (d+dS)   m^2 - (d+d+dS)   m^2 - (d+d+dS)   m^2 - (d+d+dS)   m^2 - (d+d+dS)   m^2 $
in no.	$\Rightarrow (\alpha(30+s_0) = (\alpha_1(10+20) + 300) + 300) = (\alpha_1(10+20) + 300) + (\alpha_1(10+20) + 300) + (\alpha_1(10+20) + 300) + (\alpha_1(10+20) + (\alpha_1(10) + (\alpha_1(10) + (\alpha_1(10+20) + (\alpha_1(10)) + (\alpha_1(10)) + (\alpha$
102 × 200	$ \begin{array}{l} \left( \begin{array}{c} \theta \end{array} = \begin{array}{c} 6 \circ \pm 3 G_{\text{CM}} \\ S \theta \end{array} \\ \left( \begin{array}{c} \theta \end{array} = \begin{array}{c} 6 \circ \pm 3 G_{\text{CM}} \\ \theta \end{array} \right) \end{array} \\ \left( \begin{array}{c} \theta \end{array} = \begin{array}{c} 6 \circ \pm 3 G_{\text{CM}} \\ \theta \end{array} \right) \end{array} \end{array} \\ \begin{array}{c} \vdots \end{array} \\ \left( \begin{array}{c} \theta \end{array} = \begin{array}{c} 6 \circ \pm 3 G_{\text{CM}} \\ \theta \end{array} \right) \end{array} \end{array} $
2 402 48A	in the
an Son Vo	- Mars Mh.
~()	
Question 72 (*****)	S. S. S.
A curve has equation	Con Con
$[(\sigma, \pi)]$	ππ
$y = \ln\left[\tan\left(x + \frac{\pi}{4}\right)\right],$	$-\frac{1}{4} < x < \frac{1}{4}$
the stand	the state of the
Show clearly that	a 'a' 'a'
dy a	62 38 30
$\frac{dy}{dx} = 2 \sec 2$	<i>x</i> .
100 . 201	n dan
e "00 "20.	proof
Con Son Of	
The april a	$\begin{aligned} \mathcal{Y} &= \ln(\operatorname{tri}_{X} \times \overline{X}) = \ln\left[ \frac{\operatorname{tri}_{X} \times \operatorname{tri}_{X}}{1 - \operatorname{trianb}_{X} \times \overline{X}} \right] = \ln\left[ \frac{\operatorname{trianb}_{X}}{1 - \operatorname{trianb}_{X}} \right] \\ & : \mathcal{Y} &= \ln\left(1 + \operatorname{trianb}_{X}\right) - \ln(1 - \operatorname{trianb}_{X}) \end{aligned}$
S.C. Chs	$ \frac{\partial_{a_{1}}}{\partial t} = \frac{1}{1+b_{m}} \times \operatorname{Mel}^{2}_{t} - \frac{1}{1-b_{m}} \frac{\sqrt{b_{m}}^{2}_{t}}{1+b_{m}} + \frac{w_{m}^{2}_{t}}{1+b_{m}} + \frac{w_{m}^{2}_{$
"Con "Son	$\frac{1 - \zeta_{a_1}\zeta_{a_2}}{\omega \alpha^2 - \omega \alpha^2 \omega_{a_1}^2} = \frac{2}{\omega \alpha^2 - \omega \alpha^2 \omega_{a_2}^2} = \frac{2}{\omega \alpha^2 - \omega^2 \zeta_{a_2}}$
- On	= touta = 25m22
	$\begin{array}{l} \underline{g} = h_{1} \left[ \frac{1}{2} \tan \left[ \frac{1}{2} $
/ r	$=\frac{\cos\left(\alpha+\frac{\pi}{2}\right)}{\sin\left(\alpha+\frac{\pi}{2}\right)}=\frac{1}{\sin\left(\alpha+\frac{\pi}{2}\right)}=\frac{1}{\sin\left(\alpha+\frac{\pi}{2}\right)\sin\left(\alpha+\frac{\pi}{2}\right)}=\frac{2}{2\sin\left(\alpha+\frac{\pi}{2}\right)\sin\left(\alpha+\frac{\pi}{2}\right)}$
"La "Ch "	$=\frac{1}{\Im n[2(n+\frac{\pi}{2})]}-\frac{2}{\Im n(n+\frac{\pi}{2})}=\frac{2}{\Im (2n+\frac{\pi}{2})}$
62 6	$=\frac{2}{60\pi}=2362$
	70 TA 5
Created by T.	Madag D (2)
Ureated by 1.	Iviauas

#### (*****) **Question 73**

I.V.G.B.

Prove the validity of each of the following trigonometric identities.

- i.  $\sin^2 \theta \tan \theta + \cos^2 \theta \cot \theta + 2\sin \theta \cos \theta \equiv \tan \theta + \cot \theta$ .
- ii.  $\sin \theta (1 + \tan \theta) + \cos \theta (1 + \cot \theta) \equiv \sec \theta + \csc \theta$ .


I.G.B.

1.1.61

I.V.C.B. Madasn

2017

Y.G.B.



1.4.6.

#### (****) **Question 74**

	and the second second
$\left[\tan\theta, \tan\varphi\right] = \left[2, \frac{1}{2}\right]$	$\left[\frac{2}{3},\frac{3}{2}\right]$
42	

Ths.com

maths.com

Given the simultaneous equa	tions
	$3\tan\theta + 4\tan\varphi = 8$
in the	$\theta + \varphi = \frac{\pi}{2},$
find the possible values of ta	$\ln \theta$ and $\tan \varphi$ .
	$\left[\tan\theta,\tan\varphi\right] = \left[2,\frac{1}{2}\right] = \left[\frac{2}{3},\frac{3}{2}\right]$
Snaths Co. Snath	$\frac{3 \tan \theta + 4 \tan \phi = \theta}{\theta + \phi = \frac{\pi}{2}} \implies \frac{3 \tan \theta + \frac{4}{16} = \theta}{3 \ln \theta - 4 \pm \frac{\pi}{2}} \implies \frac{3 \ln \theta + \frac{4}{16} = \theta}{3 \ln \theta - 4 \pm \theta - \theta}$ $\frac{3 \ln \theta - 6 \ln \theta + 4 = 0}{3 \ln \theta - 2} = 0$ $\frac{3 \ln \theta - 2}{16} = \frac{1}{2}$ $\frac{4 \ln \theta + 2}{16} = \frac{1}{2}$ $\frac{4 \ln \theta + 2}{16} = \frac{1}{2}$ $\frac{4 \ln \theta + 2}{16} = \frac{1}{2}$
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
dasm nada.	Madas Madas
Alls Con Man	
I.V.C.	
	Created by T. Madas
<b>TUN VN</b>	V2- V2- V2-

 $y^2 x^2 \left(x^{\frac{2}{3}} + y^{\frac{2}{3}}\right)^3 = 1.$ 

### Question 75 (*****)

A relationship between x and y is given by the equations

 $x = \csc \theta - \sin \theta$ ,  $0 < \theta < \frac{\pi}{2}$ 

 $y = \sec \theta - \cos \theta$ ,  $0 < \theta < \frac{\pi}{2}$ .

Use trigonometric identities to show that

I.G.B.

I.C.

I.F.G.B.

13ths.Com

I.C.p

aths com

K.C.A

£5.

LY.C.

Madasn,

nadasm.

proof

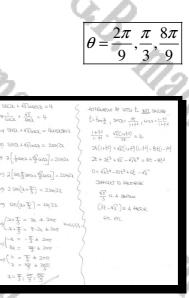
23SMaths.com

I.F.C.B.

ths.com

F.G.B.

Created by T. Madas


nadasmana Inalias Com

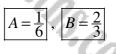
### Question 76 (*****)

Solve the trigonometric equation

 $\sec x + \sqrt{3} \csc x = 4$ ,  $0 \le \theta < \pi$ ,

giving the answers in terms of  $\pi$ .




Question 77 (*****)

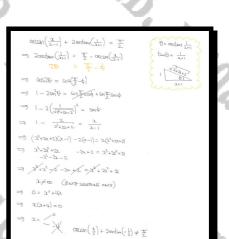
It is given that

 $\cos\left(\frac{\pi}{12}\right) \equiv \cos\left(\frac{\pi}{4}\right) \left[\cos\left(A\pi\right) + \cos\left(B\pi\right)\right],$ 

where A and B are constants such that 0 < A < 1 and 0 < B < 1.

Determine the value of A and the value of B.




1

(モーデ)= Santaras- (モーデ)	
を生きます。 それの手200 =	
= 205年[205至-501天]	
= (as = - sm) = - sm) = - sm)	
= w= = [w= + w(+-+)] = w= +==)	
= 605 \$F [ 605 \$F + 605 \$F ]	

### Question 78 (*****)

Find the only finite solution of the trigonometric equation

 $\operatorname{arcsin}\left(\frac{x}{x-1}\right) + 2 \arctan\left(\frac{1}{x+1}\right) = \frac{\pi}{2}$ 



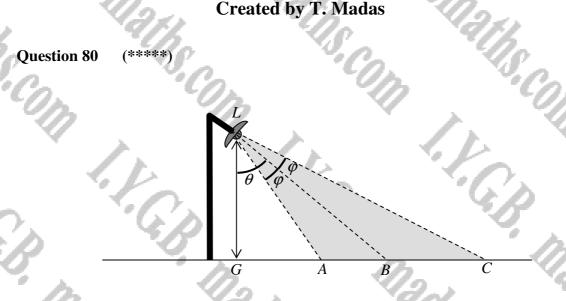
1. 2=0

x = 0

### Question 79 (*****)

N.C.

Prove the validity of the following trigonometric identity


$$\sin^4\theta + \cos^4\theta \equiv \frac{1}{2} (2 - \sin^2 2\theta).$$

$\begin{split} & \tilde{f}_{(g_{2},g_{2})} + \tilde{f}_{(g_{1},g_{2})} = \Theta_{g_{2}}^{g_{2}} + \tilde{\theta}_{f_{1}}^{g_{1}} = 2 H \\ & \tilde{f}_{(g_{2},g_{2})} + \frac{1}{2} \\ & \tilde{f}_{(g_{2},g_{2})} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ & \tilde{f}_{(g_{2},g_{2})} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ & \tilde{f}_{(g_{2},g_{2})} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ & \tilde{f}_{(g_{2},g_{2})} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ & \tilde{f}_{(g_{2},g_{2})} + \frac{1}{2} \\ & \tilde{f}_{(g_{2},g_{2})} + \frac{1}{2} + \frac{1}{2} \\ & \tilde{f}_{(g_{2},g_{2})} + \frac{1}{2} + \frac{1}{2} \\ & \tilde{f}_{(g_{2},g_{2})} + $	$\begin{array}{c c} \bullet & (\delta_{13}^{-1} \oplus 2\omega_{13}^{-1} \oplus 1) \\ (1 + \omega_{12}^{-1} \oplus 2\omega_{13}^{-1} \oplus$
$= \frac{1}{2} + \frac{1}{2}(1 - s_{1}^{2}2\theta) = \frac{1}{2} + \frac{1}{2} - \frac{1}{2}s_{1}^{2}$	$\partial S_{\eta}^{Z} = 1 - \frac{1}{2} s_{\eta}^{Z} s_{\theta}$
$= \frac{1}{2} \left( 2 - Su_1^2 2 \theta \right) = \mathcal{R} \mathcal{H} \mathcal{S}$	
ALTRENATIVE	
(45) $(45)$ $=$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45)$ $(45$	ito + 60;40)-25miDiciso
$= \left[ \left( S m^2 \theta \right)^2 - S m^2 \theta \omega z^2 \theta + \left( \phi z^2 \theta \right)^2 \right] =$	- 2 (SM(0 6080)2

1

#### $= \left( s_{\text{M}}^2 \theta + \omega s^2 \theta \right)^2 - 2 \left[ -\frac{1}{2} \times 2 s_{\text{M}} \theta \omega s \theta \right]^2$

- $= 1^{2} 2 \times \left(\frac{1}{2} \sin 2\theta\right)^{2} = 1 2 \times \frac{1}{4} \sin^{2}\theta$
- $= (-\frac{1}{2} \sin 2\theta = \frac{1}{2} (2 \sin 2\theta) = RHJ$

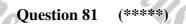


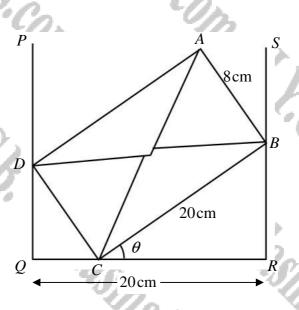
The figure above shows a spotlight L, beaming down on level ground, where L is mounted at a height of 12 metres and the point G is directly below L.

The bulb emits light in the shape of a cone whose axis of symmetry LB is angled at  $\theta^{\circ}$ to the vertical.

The beam is  $\varphi^{\circ}$  wide all the way round the axis of symmetry of the light cone.

a) Show that the length of *AB* is


$$|AB| = \frac{12\sec^2\theta}{\cot\varphi + \tan\theta}.$$

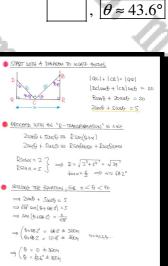

The lengths of LG and AB are  $8\sqrt{3}$  metres and 8 metres, respectively.

**b**) Show further that  $\tan \varphi = \frac{1}{11} \left( 6 + \sqrt{3} \right)$ 

a) <u>Detwinis 4 mas Differty</u>	= (4B) = two - toub-toub	[] [LB] = 813 & [AB] =	- B
The second secon	$\implies \frac{1181}{12} = \frac{4x0 + tay^20 \tan \phi - bx0 + tay}{1 + tay 0 \tan \phi}.$	· FIND & FRET	• $ 4g\rangle = \frac{ (B) ^2}{ 2g(t++bug) }$
12 3	= Hel = temp(temp6+1) 12 = temp6temp	$\lambda =  LB  = 12 \text{ Sec} \Theta$ $\implies \Re \mathbb{F} = 12 \text{ Sec} \Theta$	$\Rightarrow B = \frac{(8\sqrt{5})^2}{12((dt + busid))}$
G A B C	- LABL = tant seto 12 - tant seto	$\implies \delta c c \theta = \frac{2}{3} c c c$ $\implies \delta c c \theta = \frac{3}{2} c c c$	=> 8×12 = 8×8×3 ath+ 5-130
CONTINUE AT LES	Drubt Top & BOTTON" OF THE REACTION	$\rightarrow 0^{2}\theta = \frac{5\sqrt{2}}{3\sqrt{2}}$	$\Rightarrow \frac{1}{2} = \frac{1}{6t\phi + by30}$
$ \Rightarrow \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} $	$\rightarrow \frac{ AB }{ 2} = \frac{seco}{soly + bayo}$	- 6050 = <u>343</u>	=> 2 = 0,t+ b-130
$\implies \mathcal{I} = \frac{12}{(ab)} \qquad \qquad$	= (48) = <u>12.5ecto</u> ato + touto	$rac{1}{2}$ $cos \theta = \frac{\sqrt{2}}{2}$ $rac{1}{2}$ $\theta = 30^{\circ}$ (AUTH)	$= 2 = \text{utp} + \frac{1}{13}$
A DE LEGE	$\Rightarrow$ $ ^{4}S  = \frac{1443629}{12(646 + bour B)}$		$\Rightarrow 2 - \frac{1}{\sqrt{2}} = \alpha t \Rightarrow$
10-1 *• (AB) = (GB)-) GA	-> [AB] = (LB) ² 12(atp+true)		$\Rightarrow  \text{(it} \Rightarrow = \frac{1}{2 - \frac{1}{\sqrt{3}}} = \frac{\sqrt{3}}{2(3 - 1)}$
$\implies (\mathcal{AB} \mid = 12 \operatorname{torr}(0-1)$	/ tz 2401860		
			me. I (ands)

proof






The figure above shows the cross section of a letter inside a filling slot.

The letter ABCD is modelled as a rectangle with |AB| = 8 cm and |BC| = 20 cm.

The width of the filling slot QR is also 20 cm and the angle BCR is  $\theta$ .

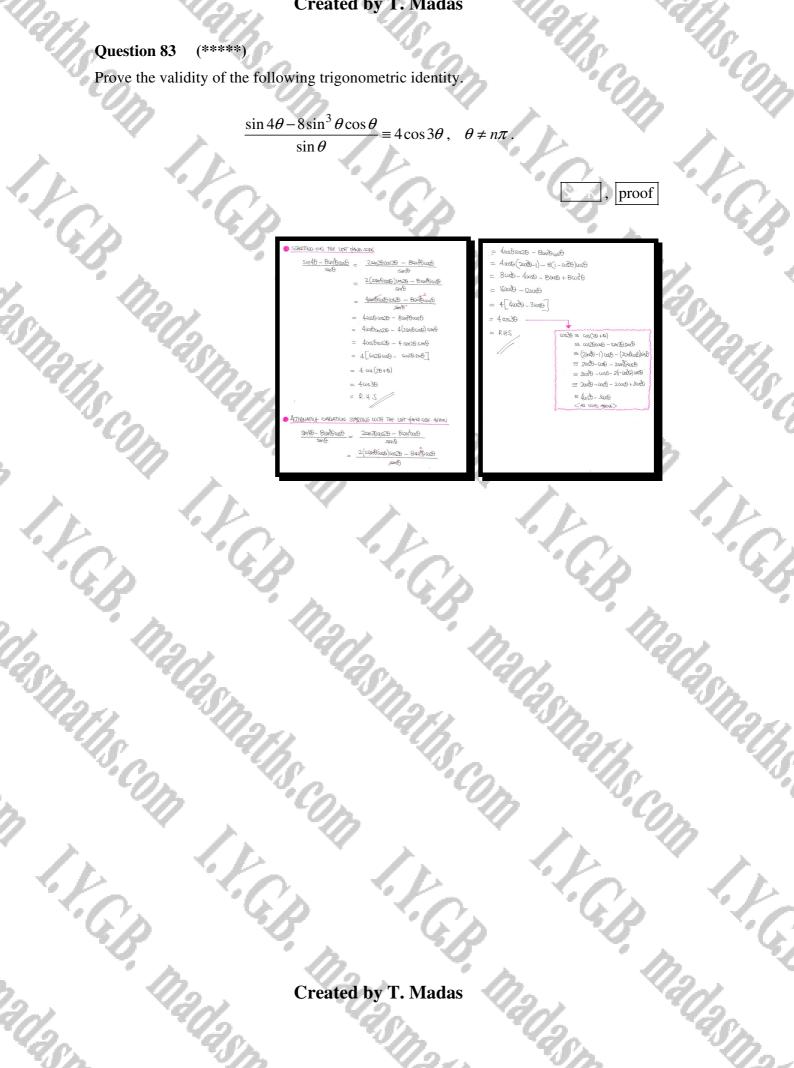
Determine the value of  $\theta$ .




: ONLY PHYSICAL MUGLE IS 42.6

maths.com

#### (*****) **Question 82**

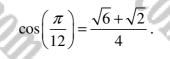

Solve the following trigonometric equation





#### Question 83 (*****)

Prove the validity of the following trigonometric identity.




### Question 84 (*****)

The three angles of a triangle are denoted by  $\alpha$ ,  $\beta$  and  $\gamma$ .

a) Show clearly that ...

- i.  $\ldots \sin(\alpha + \beta) = \sin \gamma$ .
- **ii.** ...  $\sin\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\gamma}{2}\right)$ .
- **iii.** ...  $\sin \alpha + \sin \beta + \sin (\alpha + \beta) = 2\sin \left(\frac{\alpha + \beta}{2}\right) \left[\cos \left(\frac{\alpha + \beta}{2}\right) + \cos \left(\frac{\alpha \beta}{2}\right)\right].$
- iv. ...  $\sin \alpha + \sin \beta + \sin \gamma = 4\cos \frac{\alpha}{2}\cos \frac{\beta}{2}\cos \frac{\gamma}{2}$ .
- **b)** By using (iv) with suitable values for  $\alpha$ ,  $\beta$  and  $\gamma$ , show that



(11) (31)  $(+k + \xi_1 = \pi)$   $\rightarrow 5h(4k \theta) = 5\pi n(\pi - \chi)$   $\Rightarrow 5h(4k \theta) = 5m(\pi - \chi)$   $\Rightarrow 5h(4k \theta) = 5m(\pi - \chi)$   $\Rightarrow 5m(4k \theta) = 5m(\pi - \chi)$   $\Rightarrow 5m(\pi - \chi) = \pi - \chi$   $\Rightarrow 5m(\pi - \chi) = 5m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 5m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$   $= 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi) = 2m(\pi - \chi)$  $= 2m(\pi - \chi) = 2m(\pi$  , proof

$$\begin{split} & \text{ABUNANG THE (AST 3 EXERTS} \\ & \text{SINK + SING +(SIN X) = SINK + SING +(SIN (n+6)) \\ & = 2\text{SIN}(\frac{n+6}{2}) \int_{-\infty}^{\infty} \log(\frac{n+6}{2}) + \log(\frac{n+6}{2}) \\ & = 2\text{SIN}(\frac{n+6}{2}) \int_{-\infty}^{\infty} \log$$

 $= 2 \log \left(\frac{\chi}{2}\right) \times 2 \log \left(\frac{\chi_{-\frac{1}{2}}}{2}, \frac{\chi_{+\frac{1}{2}}}{2}}{2}\right) \log \left(\frac{\chi_{-\frac{1}{2}}}{2}, \frac{\chi_{+\frac{1}{2}}}{2}}{2}\right)$ 

=  $2(\omega_{\frac{1}{2}} \times 2(\omega_{\frac{1}{2}}) (\omega_{\frac{1}{2}}) + (\omega_{\frac{1}{2}}) + (\omega_{\frac{1}{2}}) + (\omega_{\frac{1}{2}})$ 

= \$ COS \$ COS \$ COS \$ AS REFUTED

$$\begin{split} & 3n \frac{T}{2} + 3n \frac{T}{2} + 5m \frac{T}{2} = \frac{4}{4} \operatorname{con} \frac{T}{4} \operatorname{con} \frac{T}{4$$

 $\begin{aligned}
& \log \frac{\pi}{2} = \frac{3\sqrt{c} + \sqrt{g}}{12} = \frac{3\sqrt{c} + 3\sqrt{2}}{12} \\
& \log \frac{\pi}{12} = \frac{\sqrt{c} + \sqrt{2}}{4}
\end{aligned}$ 

_____

Question 85 (*****)

Simplify, showing all steps in the calculation, the expression

 $\arctan\frac{4}{3} + \arctan 2 - \arctan 3$ ,

giving the answer in terms of  $\pi$ .

I.V.G.B.

COM

I.C.p

I.C.

 $\begin{cases} t_{\text{DM}}(A+b) = \frac{t_{\text{DM}}A+t_{\text{DM}}B}{1-t_{\text{DM}}A+t_{\text{DM}}B} & \text{if } (t_{\text{DM}}(A-b) = \frac{t_{\text{DM}}A-t_{\text{DM}}B}{1+t_{\text{DM}}A+t_{\text{DM}}B} \\ \vdots & t_{\text{DM}}[(A+b)-C] = \frac{t_{\text{DM}}A+t_{\text{DM}}B}{1+t_{\text{DM}}A+t_{\text{DM}}B} - t_{\text{DM}}C \\ \hline (+ (\frac{t_{\text{DM}}A+t_{\text{DM}}B}{1+t_{\text{DM}}A+t_{\text{DM}}B}) t_{\text{DM}}C \\ \hline \\ \text{DAVING TWO STATUS BY (-t_{\text{DM}}t_{\text{DM}}B) \\ \end{cases}$ 

 $\begin{array}{l} \label{eq:list} \begin{array}{l} \mbox{List} A = acbut{l} & \Longrightarrow & bmA = \frac{a}{2} \\ B = orthup 2 & \Longrightarrow & tamB = 2 \\ c = orthu3 & \Longrightarrow & tamC = 3 \end{array}$ 

小A+B-C = antan [ 4+B-C = 王 contany f + antan2 - antan3 = 王

lasmaths,

nn,

 $\frac{10}{(3+6)4\mu^{1/2}} = \frac{10}{-2+12!} = \frac{10}{3+6!} + \frac{10}{1-8!} = \frac{10}{-2+10!} = \frac{10}{5} = \frac{10}{5} = \frac{10}{5} + \frac{10}{2!} = \frac{10}{(1+2!)(1-2!)}$ 

hs.com

 $\frac{\pi}{4}$ 

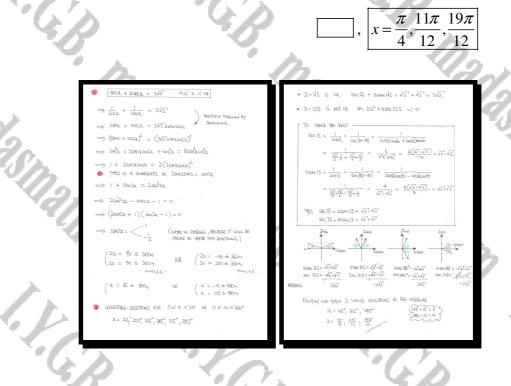
202.Sm

mada

1. Y.G.

The com

I.F.G.B.


·C.I.

### Question 86 (*****)

Solve the trigonometric equation

 $\sec x + \csc x = 2\sqrt{2}, \qquad 0 \le x < 2\pi,$ 

giving the answers in terms of  $\pi$ .



### **Question 87** (*****)

Prove the validity of the trigonometric identity

$$\tan^{2}\left(\frac{3\pi}{4} - 2x\right) \equiv \frac{1 + \sin 4x}{1 - \sin 4x}, \quad x \neq \frac{\pi}{3}(4n+1), \ n \in \mathbb{Z}$$

do

### proof

G



naths.com

#### (*****) **Question 88**

Use algebra to find, in terms of  $\pi$ , the solution of the trigonometric equation

 $x^2 - 8\pi x + 2 - 2\cos x + 16\pi^2 = 0, x \in \mathbb{R}.$ 



#### (*****) **Question 89**

The piecewise continuous function f is given below

 $0 \le x < 360$  $\sin x^{\circ}$  $360 \le x < 720^{\circ}$  $\sin 2x^{\circ}$  $f(x) \equiv \langle$  $\sin 3x^{\circ}$  $720 \le x < 1080$ 

- **a**) Sketch the graph of f(x).
- **b**) Solve the equation ...

JL = 330° , 210

**i.** ...  $f(x) = -\frac{1}{2}$ . ii. ...  $f(x) = \cos x$ .

> x = 210, 330, 465, 525, 645, 705, 790, 830, 910, 950, 1030, 1070*x* = 45, 225, 390, 450, 510, 630, 735, 742.5, 832.5, 915, 922.5, 1012.5

> > fa) = 0052

to the shi to the the rule / cons  $\xi(a) = -\frac{1}{2}$ Na=-1 0424360} ● SM2L=-12 360 ≤ 2 ≤ 720 € SM2L=-12 720 ≤ 2 < 080 (-<u>1</u>)=-80°  $\alpha Rsin\left(-\frac{1}{2}\right) = -30^{\circ}$  $\operatorname{Origina}\left(-\frac{1}{2}\right) = -3\sigma$  $\begin{pmatrix} \mathfrak{A}_{-}=-30 \pm 360 y \\ \mathfrak{A}_{-}=\mathfrak{A}_{0} \pm 360 y \\ \mathfrak{A}_{-}=\mathfrak{A}_{0} \pm 360 y \\ \end{pmatrix} \overset{\eta=0}{\rightarrow} \mathfrak{h}_{1}\mathfrak{h}_{2}\mathfrak{h}_{3}.$  $\binom{22}{24} = -30 \pm 3604$  $(22 = 210 \pm 3604)$ 

 $\begin{pmatrix} x = -15 \pm 100 \\ y = 105 \pm 1604 \end{pmatrix}$ 

2 = 525° 705° 465° 645

(SIM2 = (052, 0 < 2 < 360') • (SIM22 = 622, 360' = (SIM21 = 662, 78' = x = 10 louix=1 aricteu l = 45° a= 45" ± 1804 M=91,231. x=45° 2250 (30, = -30 ± 3604 32 = 210 ± 3604 H=9123  $\begin{pmatrix} x = -10 \pm 1204 \\ x = 70 \pm 1204 \end{pmatrix}$ 3. = \$30,950, 1070, 7%, 910, 1030 USTING IN ORDER 2107, 3309, 4657, 525°,645°, 705°, 790°, 830, 910°, 950°, 1030, 1070 COUSCING ALL THE REPUTS IN ORDER

2 = 45,225°, 396,450,510, 630, 7425,-

122 = 662

Sm 22 = Sm(90-2)

 $\begin{pmatrix} 3x = 90 \pm 360n \\ x = 90 \pm 360n \end{pmatrix}$ 

 $\begin{pmatrix}
3L = 30 \pm 120n \\
3L = 90 \pm 360n
\end{pmatrix}$ 

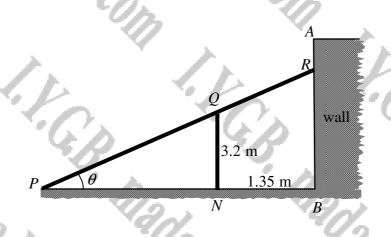
JL= 390" S10" 630,450"

 $\begin{pmatrix} 2\lambda = 9D - \lambda \pm 3604 \\ 2\lambda = 180 - (90 - 3) \pm 3606 \end{pmatrix}$   $4\pi 91/35.$ 

SINZA = 6052

SM32 = _9m(90-2)

 $\begin{pmatrix} 3a_{-} = 9_{0} - a_{-} \pm 360_{9} \\ 3a_{-} = 180_{-}(9_{0} - x) \pm 360_{9} \end{pmatrix}$ 


 $\begin{pmatrix} \chi = 22.5 \pm 904 \\ \chi = 45 \pm 1804 \end{pmatrix}$ 

D.= 742.5° 832.5° 922.5° 1012.5° 765° 845°

F.G.B.

G

**Question 90** (*****)



The figure above shows the wall AB of a certain structure, which is supported by a straight rigid beam PR, where P is on level ground and R is at some point on the wall.

In order to increase the rigidity of the support, the beam is rested on a steady pole NQ, of height 3.2 metres.

The pole is placed at a distance of 1.35 metres from the bottom of the wall B.

The beam *PR* is forming an acute angle  $\theta$  with the horizontal ground *PNB*.

The angle  $\theta$  is chosen so that the length of the beam *PR*, is least.

Determine the least value for the length of the beam PR, assuming that R lies on the wall, fully justifying that this is indeed the minimum value.



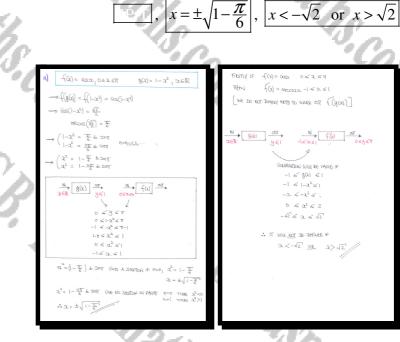
= (0.8x5)+

-1+ 0.320 (8:320 70

3-2 3-2			-0-4	
N B	gia si	2 ИФ	M2 = 1.35	
N B	.91 = 3.2	Casec O	$y_2 = 1.35 \text{sec} \Theta$	
$= 9 = 9_1 + 9_2$	[	→ 1:35ta	n ³ θ = 3·2	
9-2 005ec 9 + 1-32 55c 9		$\Rightarrow \forall aq^3 \! \theta$	$=\frac{3\cdot 2}{1\cdot 35}=\frac{320}{135}=\frac{64}{27}$	
-3.2 cosec Darto + 1.35 sect	temo	⇒ tou8=	4	
$\frac{\theta_{\text{MR},2E^{-1}}}{\theta_{\text{res}}^2} + \frac{\theta_{\text{RM},E}}{\theta_{\text{rM}}^2} - \frac{1}{2}$		4	$sm\theta = \frac{1}{2} \Rightarrow cos$ $cos\theta = \frac{3}{2} \Rightarrow cos$	zd c0
$-\frac{\theta_{202}}{\theta_{203}} + \frac{\theta_{202}}{\theta_{102}} + \frac{\theta_{202}}{\theta_{102}} - \frac{\theta_{202}}{\theta_{102}} - \frac{\theta_{202}}{\theta_{102}} + \frac{\theta_{202}}{\theta_{102}}$		=> (PR (= y	$= 3.2 \times \frac{5}{4} + 1.35 \times \frac{5}{3} + 2.25 = 6.25 \text{ m}$	
- 3.20039 + 1.355030	6		·日二子 g (PD)=3	
-3.2 + 1.35 taugo (w		41 0 ->c	PRI-ra (BECAU	se e

### Question 91 (*****)

The functions f and g are defined by


$$f(x) \equiv \cos x, \ x \in \mathbb{R}, \ 0 \le x \le \pi$$

$$g(x) \equiv 1 - x^2, \ x \in \mathbb{R}.$$

a) Solve the equation

 $fg(x)=\frac{1}{2}.$ 

**b**) Determine the values of x for which  $f^{-1}g(x)$  is **not** defined.



C.p.

6

Question 92 (*****)

 $f(x) \equiv \cos^2 x + \sin^2 x, \ x \in \mathbb{R}.$ 

- a) Determine an expression for f'(x) and find the value of  $f(\frac{1}{2}\pi)$
- **b**) By using the results of part (**a**) only, show that

 $\cos^2 x + \sin^2 x \equiv 1.$ 

f'(x) = 0<u> +</u>π)

Question 93 (*****)

Prove the validity of each of the following trigonometric identities.

**a**)  $\frac{\sqrt{2-2\cos x}}{\sin x} \equiv \sec \frac{x}{2}$ .

**b**)  $\sin^2 \theta \tan \theta + \cos^2 \theta \cot \theta + 2\sin \theta \cos \theta \equiv \tan \theta + \cot \theta$ .



1.

- $= \frac{145m^{2}\Xi^{-1}}{2m^{2}\cos^{2}\Xi} = \frac{25m^{2}\Xi}{2sm^{2}\cos^{2}\Xi} = \frac{1}{cq^{2}\Xi}$
- $= 36c\overline{5} = 517\overline{2}$
- $\begin{aligned} \text{Justanser} + \frac{\mathcal{G}_{122}}{\mathcal{G}_{223}} + \frac{\mathcal{G}_{122}}{\mathcal{G}_{223}} &= \mathcal{G}_{223}\mathcal{H}_{222} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} \\ &= \frac{\mathcal{G}_{123}\mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} \mathcal{G}_{223}\mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} \\ &= \frac{\mathcal{G}_{123}\mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} \\ &= \frac{\mathcal{G}_{123}\mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} \\ &= \frac{\mathcal{G}_{123}\mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} \\ &= \frac{\mathcal{G}_{123}\mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} \\ &= \frac{\mathcal{G}_{123}\mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223}\mathcal{G}_{223} + \mathcal{G}_{223} + \mathcal{G}_{223}$ 
  - $=\frac{1}{32000} = \frac{1}{32000} = \frac{1}{320000} = \frac{1}{320000} = \frac{1}{3200000} = \frac{1}{320000000}$
  - $\frac{g_{M2}}{1} = g_{M2} + g_{M2} = -\frac{g_{M2}}{g_{N2}} + \frac{g_{N2}}{g_{N2}} = -\frac{g_{M2}}{g_{N3}g_{M2}} + \frac{g_{N2}}{g_{N3}g_{M2}} = -\frac{g_{N2}}{g_{N3}g_{M2}} + \frac{g_{N2}}{g_{N3}g_{M2}} + \frac{g_{N3}}{g_{N3}g_{M2}} = -\frac{g_{N3}}{g_{N3}g_{M2}} + \frac{g_{N3}}{g_{N3}g_{M2}} + \frac{g_{N3}}{g$

#### (****) **Question 94**

Solve the trigonometric equation

aths.com The Com  $2 \arctan(x-2) + \arcsin\left(\frac{1-x}{1+x}\right)$  $\frac{\pi}{2}$ x = 4 $\frac{-x^2+l\alpha-3}{\alpha^2-4\alpha+5} = \frac{1-\alpha}{1+\alpha}$  $\psi_{2O} = \frac{\varepsilon}{2} \left( \frac{1}{2h} \right) \left( \frac{1}{2h} \right) \leq \frac{1}{2} \sqrt{\frac{1}{2}} \left( \frac{1}{2} \right) \leq \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}$  $2 \operatorname{and}_{\operatorname{and}}(x-2) + \operatorname{and}_{\operatorname{and}}(\frac{1-x}{1+x}) = \frac{\pi}{2}$  $\frac{1-x}{1+x} = \frac{2+x+x^2-x}{2+x+x^2-x}$  $\varphi = \frac{3}{2} \times \frac{4}{5} + \frac{4}{5} \times \frac{3}{5} = \cos \varphi$ 6 FILSTLY REWRITE THE INDERSE TRU neic FUNCTIONS AS ANOLES 0 = \$200 C  $\Rightarrow$   $(x+i)(x^2-ix+3) = (x-i)(x^2-ix+5)$ 0 = arty (2-2)  $\phi = \alpha \operatorname{RSM}\left(\frac{1-\alpha}{l+\alpha}\right)$  $\Rightarrow \begin{array}{rcl} 3^3 - 4\lambda^2 + 3\lambda & = & 3^3 - 4\lambda^2 + 5\lambda \\ \lambda^2 - 4\lambda + 3 & = & -\lambda^2 + 4\lambda - 5 \end{array}$ = 4=E tomθ = 2-2  $sm\phi = \frac{1-\infty}{(+\infty)}$ 1F 2=1 AN BAS  $x^2 - 3x^2 - x + 3 = x^3 - 5x^2 + 9x - 5$  $2 \operatorname{and}_{4}(-1) + \operatorname{and}_{5}(0) = 2(-\frac{11}{4}) + 0$ ( to is DEFINITELY NOT + WITH SOLAN THE HYDERNUL WILL BE  $\sqrt{|Q|-2|^2+|^2} = \sqrt{2^2-4\chi+1}$  $2a^2 - bx + 8 = 0$ . ONLY SOUTION IS 2=4  $x^2 - 5x + 4 = 0$  $\Rightarrow (x - 1)(x - 4) = 0$ HENCE WE MAY DEWRITE THE EQUATION AS POLLOWS \$= I GLECKING THE SOUT 1F X=4  $\cos 2\theta = \cos \left(\frac{\pi}{2} - \phi\right)$  $\begin{array}{l} \Rightarrow 2 \operatorname{ausb}_{2} 2 + \operatorname{ausm}\left(-\frac{3}{2}\right) = & \psi \\ \Rightarrow 2 \operatorname{ausb}_{4} 2 - \operatorname{ausm}_{5} = & \psi \\ \Rightarrow 2 \operatorname{ausb}_{4} 2 - \operatorname{ausm}_{5} = & \psi \\ \Rightarrow 0 - \phi = & \psi \\ \Rightarrow (\operatorname{ausb}_{4} - \phi) = & (\operatorname{ausb}_{4} \psi) \end{array}$  $\Rightarrow 2\omega^2 \Theta - 1 = Sm \phi$  $\Rightarrow 2\left(\frac{1}{\chi^{\lambda}-4\chi+2}\right) = 1 - \left(\frac{1}{\chi^{\lambda}-4\chi+2}\right) \leq \Leftrightarrow$  $\implies \frac{2}{\chi^2 - 4\chi + 5} - 1 = \frac{1 - \chi}{1 + \chi}$  $\implies \frac{2}{\chi^2 - 4\chi + 5} = \frac{1 - \chi}{1 + \chi}$  $\Rightarrow \cos(2\theta) = \frac{1}{2} \cos(2\theta) + \sin(2\theta) \sin(\theta)$ I.F.G.B. nadasm. SMaths. The COM 2017 COM I.C.B. I.C.p 10 G Madasn Created by T. Madas

### Question 95 (*****)

ŀ.G.B.

I.C.P.

By considering the solution of trigonometric equation

 $\sin(x-30)^\circ = \cos(x-45)^\circ,$ 

find, in degrees, the exact value of  $\arctan\left[\frac{1+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\right]$ 



82.5°

 $SmA \equiv cos(90^{\circ}-A)$ 

 $(2\mu - x)_{20} = (0E - x)_{MC}$ 

 $(2\mu - \kappa) 2\alpha = [(\alpha \epsilon - \kappa) - \alpha P] 2\alpha$ 

-165 ± 360 n 182:5 ± 180 n 14

- 45 - 4 360 m

MF PRINCIPAL VALUE FOR GOSING [0,180]

I.C.p

G

Mada

 $(2\psi - E)_{2N} \simeq (x - gg)_{2N}$ 

 $(x - 2\delta) nc = (\sigma c - x) nc$ s-2.) ± 3604

```
⇒ 22 = 165 ± 360 NUT
```

### Question 96 (*****)

Simplify, showing all steps in the calculation, the expression

 $\arctan 8 + \arctan 2 + \arctan \frac{2}{3}$ ,

COM

,  $\pi$ 

202.Sm

madasn,

G

20

F.G.B.

Com

200

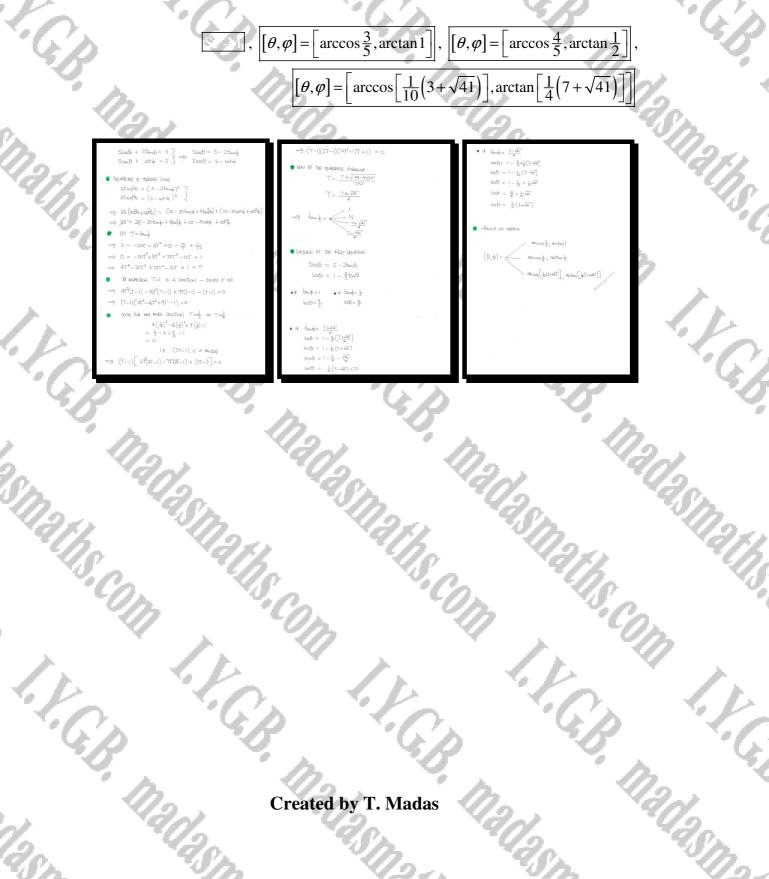
 $++B+C < \frac{3\pi}{2}$ 

giving the answer in terms of  $\pi$ .

F.G.B.

I.C.B.

COMPOUND THUGLE IE AtBto han (A+B) = tanA + tanB I - tanA hanB archu8 + archu EXTRACT THE LOGITICS 45 A.B.C  $tun (A+B+C) = tun (A+B)+C = - \frac{tun (A+B) + tun C}{1 - tun (A+B) tun C}$  $\frac{1}{2} + \frac{1}{2} = \pi$ -band + tore + tore C 1- 544 648 × 64C TOP & BOTTON" OF THE PLACTION BY CONSCIDER THE FOLLO hund + tour B + tour C (1 - tour A tour B) 1 - tour tour B - (tour A + tour B) tour C  $Z = \left(1 + 8i\right)\left(1 + 2i\right)\left(3 + 2i\right) = \left(1 + 8i\right)\left(3 + 2i + 6i - 4i\right)$ Z=(1+81)(-(+81) tou(A+B+C) = <u>Land + touB + touC - touAtouBtouC</u> I - touAtouB - touBtouC - touC.touA 2= -1+81-81-04 TAKING ARGUMAN IN THE FOULD NOW LET A = arctan 8 -> fan A = 8  $B = \operatorname{orcbul}_2 \implies \operatorname{tau}_B = 2$   $C = \operatorname{orcbul}_2 \implies \operatorname{tau}_B = 2$   $C = \operatorname{orcbul}_2 \implies \operatorname{tau}_B = 2$ (1+8i)(1+2i)(3+2i) = -65 $\Rightarrow \operatorname{ang}(i+Bi)(i+2i)(3+2i)] = \operatorname{ang}(-65)$ autheral (1+81) + autheral (1+21) + autheral (1+81) = autheral (1+81) + autheral (1+81) = autheral (1+81) + autheral (1+81) = autheral (1+81) + autheral (1+81) + autheral (1+81) = autheral (1+81) + autheral (1+81) + autheral (1+81) = autheral (1+81) + autheral (1+81) + autheral (1+81) + autheral (1+81) = autheral (1+81) + autheral (≥ Kan (A+B+C) =  $\frac{8 + 2 + \frac{2}{3} - 8 \times 2 \times \frac{2}{3}}{1 - (8 \times 2) - (8 \times \frac{2}{3}) - (2 \times \frac{2}{3})}$  $\operatorname{ontar}(\frac{p}{T}) + \operatorname{ontar}(\frac{2}{T}) + \operatorname{ontar}(\frac{2}{3}) = T$  $\frac{10 + \frac{a}{3} - \frac{32}{3}}{1 - 16 - \frac{16}{3} - \frac{4}{3}}$ ntay8 + antay2 + antay = 30 + 2. - 32. 3 - 48 - 14 - 4


maths,

Question 97 (*****)

Given that  $0 < \theta < \frac{1}{2}\pi$ ,  $0 < \varphi < \frac{1}{2}\pi$ , solve the following simultaneous equations.

 $5\cos\theta + 2\tan\varphi = 5$  and  $5\sin\theta + \cot\varphi = 5$ .

Give the answers in exact form in terms of inverse trigonometric functions.



### Question 98 (*****)

Solve the trigonometric equation

$$\sqrt{3}\cos\left(x+\frac{\pi}{5}\right) = \sin\left(x+\frac{\pi}{5}\right), \quad 0 \le \theta < 2\pi$$

2025

Ma

00

K.C.

COM

 $\frac{2\pi}{15}, \frac{17\pi}{15}$ 

 $\begin{array}{c} \frac{1}{2} - \frac{11}{36} = \frac{2}{36} - \frac{1}{36} \\ \frac{1}{2} - \frac{1}{36} = \frac{11}{36} - \frac{1}{36} \\ \frac{1}{2} - \frac{11}{36} = \frac{1}{36} \\ \frac{1}{2} - \frac{11}{36} = \frac{1}{36} \\ \frac{1}{2} - \frac{1}{3$ 

20

I.C.B.

COM

Madasn

G

nadasn.

x =

$$\begin{split} & (\Xi_{T}, \mathbf{x}) \text{ so } \mathbf{x} = \left( \Xi_{T}, \mathbf{x} \right) 20 \left( \overline{\mathbf{x}} + \underline{\mathbf{x}} \right) 20 \left( \overline{\mathbf{x}} + \mathbf{x} \right) 20 \left( \overline{\mathbf{x}$$

· 于 ± 207

F.G.B.

27

·C.A

giving the answers in terms of  $\pi$ .

>

I.F.G.p

I.C.p

207

aths com

The Com

 $= -82^{2} + 1$ 

吸生 = 至+至 = 至

 $cos\left(-\frac{1}{2}\right) = -\frac{\pi}{2} + \frac{\pi}{2} = -\frac{1}{2}$ 

11202SD

COM

 $x = \frac{1}{2}$ 

nadasm.

aths.com

K.C.B. Madasn

I.V.G.

#### Question 99 (*****)

11202

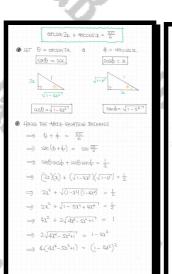
madasn

2ths.com

I.F.G.B.

Smaths.com

I.F.G.p


I.V.G.B.

>

Solve the following trigonometric equation

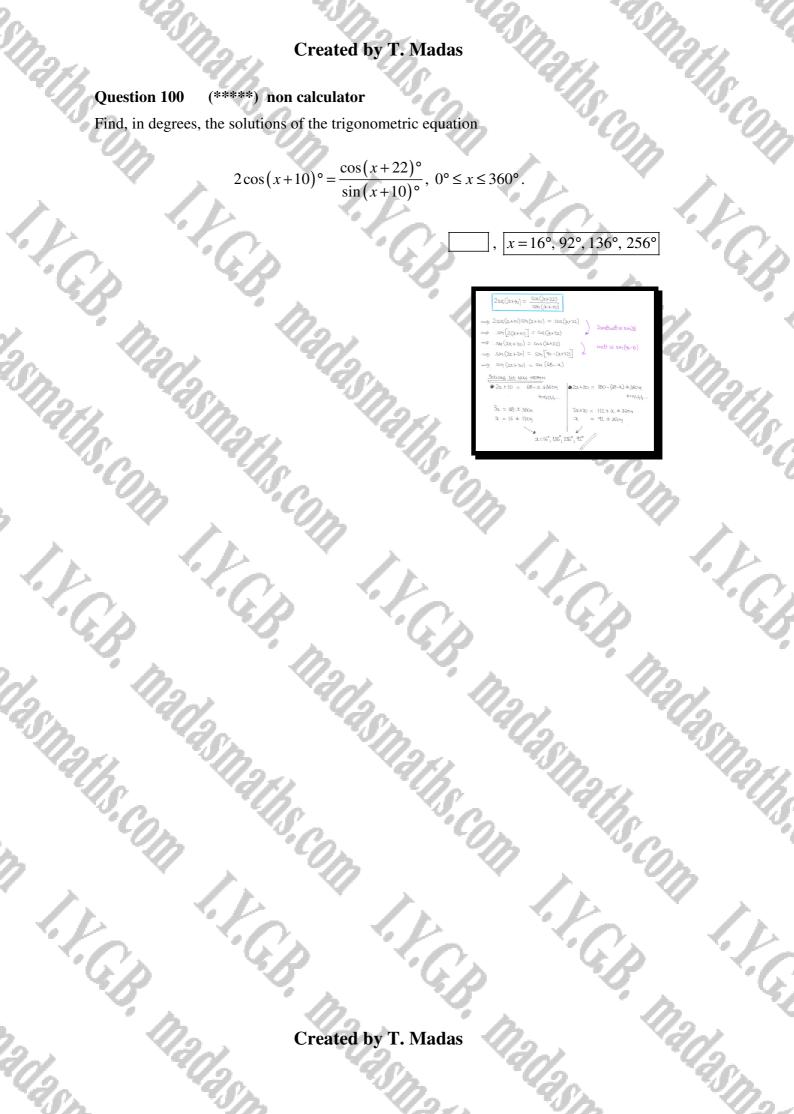
I.C.J

 $\frac{5\pi}{6}$ .  $\arcsin 2x + \arccos x =$ 



Created by T. Madas

madasmaths,


COM

[.Y.C.]

#### (*****) non calculator **Question 100**

Ì

Find, in degrees, the solutions of the trigonometric equation



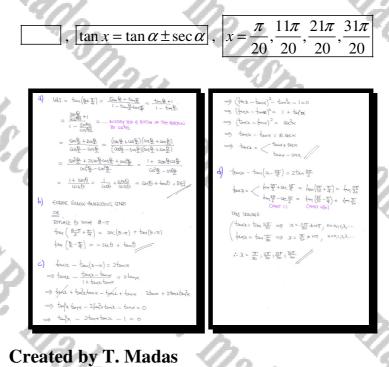
Question 101 (*****)

It is given that for  $\theta \neq (4k+1)\frac{\pi}{2}, k \in \mathbb{Z}$ ,

$$\tan\left(\frac{\theta}{2} + \frac{\pi}{4}\right) \equiv \tan\theta + \sec\theta$$

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence find a similar expression for  $\tan\left(\frac{\theta}{2} \frac{\pi}{4}\right)$

You are now given the equation


$$\tan x - \tan \left( x - \alpha \right) = 2 \tan x \,,$$

where  $\alpha$  is a constant.

- c) Express  $\tan x$  in terms of trigonometric functions involving  $\alpha$  only.
- d) Hence solve the trigonometric equation

 $\tan x - \tan\left(x - \frac{3\pi}{5}\right) = 2\tan\frac{3\pi}{5}, \quad 0 \le x < 2\pi,$ 

giving the answers in terms of  $\pi$ .



1

### Question 102 (*****)

It is given that  $\theta$  and  $\varphi$  satisfy the simultaneous equations

 $\frac{\sin 2\theta}{1+\sin \theta} = 1 - \sin \varphi,$ 

 $\theta + \varphi = \pi$ 

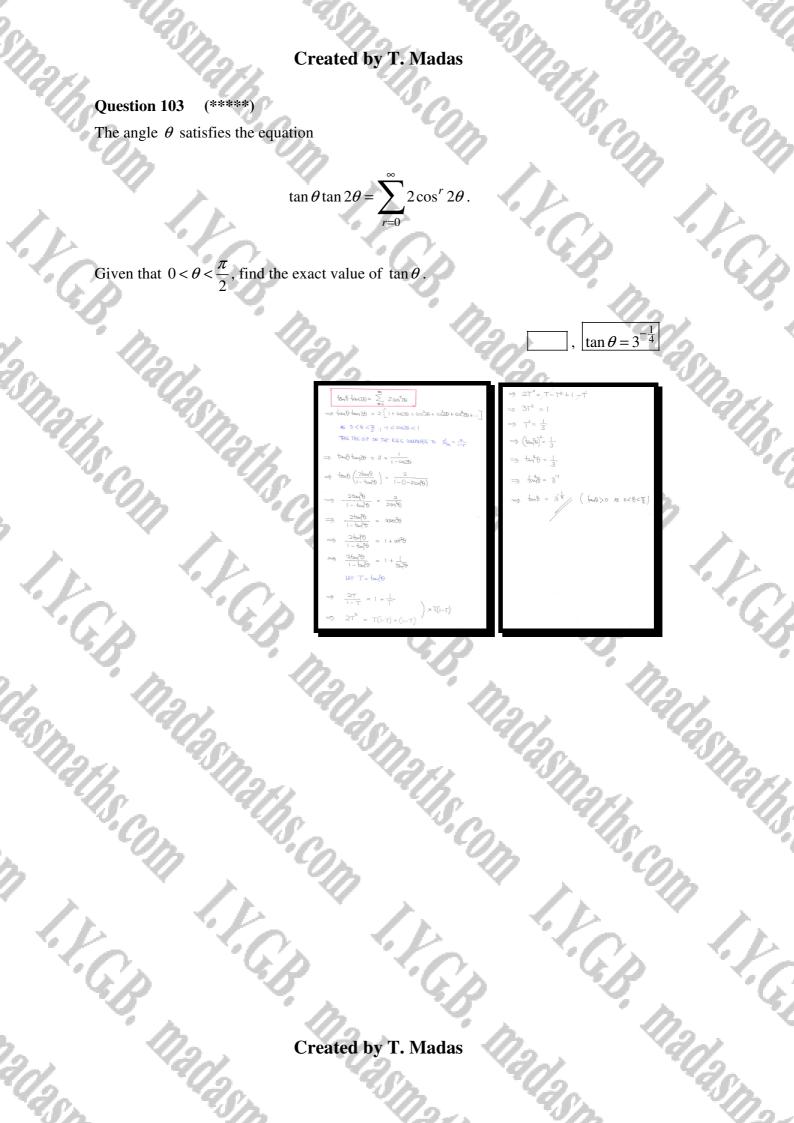
# where $0 < \theta < \pi$ , $\theta \neq \frac{\pi}{2}$ , $0 < \varphi < \pi$ .

- **a**) Determine the value of  $\tan \theta$ .
- **b**) Show clearly that

C.P.

P.C.P.

 $\tan\left(3\theta+5\varphi\right)=-\frac{1}{2}$ 


(c)  $\frac{Sin XQ}{(4 + Sn)G^{-}} = 1 - Sin \frac{1}{Q} \qquad \Rightarrow \frac{Sin ZQ}{(1 + Sn)G^{-}} = 1 - Sin \frac{1}{Q} = \frac{1}{(1 + Sn)G^{-}} = 1 - Sin \frac{1}{Q} = \frac{1}{(1 + Sn)G^{-}} = 1 - Sin \frac{1}{Q} = \frac{1}{(1 + Sn)G^{-}} = 1 - Sin \frac{1}{Q} = \frac{1}{(1 + Sn)G^{-}} = 1 - Sin \frac{1}{Q} = \frac{1}{(1 + Sn)G^{-}} = \frac{1}{($ 

 $\tan \theta =$ 

·G.B.

G

21/201



#### (****) **Question 104**

Use trigonometric algebra to fully simplify

$$\arctan\left[\frac{\sqrt{1+\sin x} - \sqrt{1-\sin x}}{\sqrt{1+\sin x} + \sqrt{1-\sin x}}\right], \ 0 < x < \frac{\pi}{4}$$

nadasm.

giving the final answer in terms of x.

2112.51

I.G.B.

K.C.

aths com

COM

I.V.G.p

 $0 < \alpha < \prod_{\pm}$  $\frac{(1+sm_{2})-2\sqrt{1-sm_{2}^{2}}\sqrt{1+sm_{2}^{2}}+(1-sm_{2})}{(1+sm_{2})-(1+sm_{2})}$  $\left[\frac{2-2\sqrt{(-s_{1}\eta^{2})}}{2}\right]$  $z \tan \left[ \frac{2 - 2\sqrt{\cos^2 x^2}}{2} \right]$ an (1 - casa)

ths.com

aths com

K.C.A

1.G.B.

I.F.G.

202.sm

$$= \operatorname{anbs}_{h} \begin{bmatrix} \frac{1}{2} - \frac{1}{2sw_{\frac{3}{2}}sm_{\frac{3}{2}}sw_{\frac{3}{2}}}{2sw_{\frac{3}{2}}sw_{\frac{3}{2}}sw_{\frac{3}{2}}} \end{bmatrix} \begin{bmatrix} \operatorname{cell}_{h} \\ \operatorname{cell}_{h} \\$$

dasmaths.com

I.C.B. Madasm

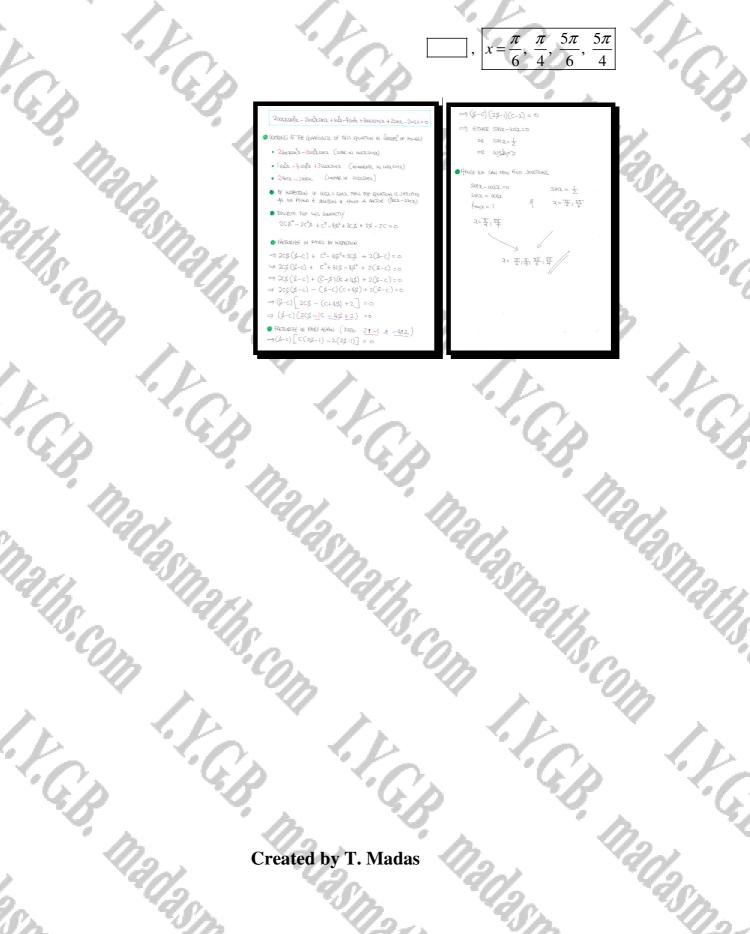
$$= \arctan\left(\tan \frac{\pi}{2}\right)$$

KCP

Madasmaths.com

Created by T. Madas

COM


#### (****) **Question 105**

I.V.G.B.

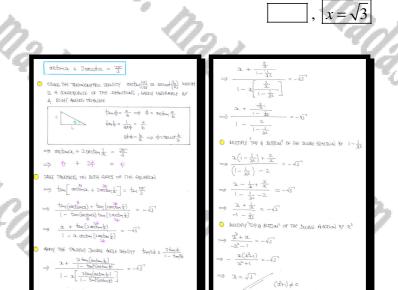
Solve the following trigonometric equation, for  $0 \le x < 2\pi$ .

 $2\cos x \sin^2 x - 2\cos^2 x \sin x + \cos^2 x - 4\sin^2 x + 3\cos x \sin x + 2\sin x - 2\cos x = 0.$ 

nn



### Question 106 (*****)


R,

E.

Use trigonometric algebra to solve the equation

 $\arctan x + 2 \operatorname{arccot} x = \frac{2\pi}{3}.$ 

You may assume that  $\operatorname{arccot} x$  is the inverse function for the part of  $\operatorname{cot} x$  for which  $0 \le x \le \pi$ .

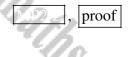


F.C.B.

G

Question 107 (*****)

The distinct acute angles  $\theta$  and  $\varphi$ ,  $\theta > \varphi$  satisfy the equation


 $f(\theta, \varphi) = g(\theta, \varphi) \tan \varphi,$ 

where the functions f and g are defined as

 $f(\theta, \varphi) \equiv \sin(\theta - \varphi)$  and  $g(\theta, \varphi) \equiv \cos(\theta - \varphi) - 2\tan\varphi\sin(\theta - \varphi)$ .

Use trigonometric identities to show that

 $\tan\theta=2\tan\varphi\,.$ 



G

$\begin{array}{l} \left( f(\theta, \phi) \equiv \ sw(\theta - \phi) \\ \theta(\theta, \phi) \equiv \ \omega t(\theta - \phi) - 2 \frac{1}{2} w_{t} \phi \ sm(\theta - \phi) \end{array} \right) \end{array}$
We tree given that $f(\theta,\phi) = g(\theta,\phi)$ tang
$\implies$ Sin( $\theta - \phi$ ) = [ $\cos(\theta - \phi) - 2\tan\phi \sin(\theta - \phi)$ ] but
$\implies \frac{sm(\theta-\phi)}{coc(\theta-\phi)} = \left[\frac{coc(\theta-\phi)}{coc(\theta-\phi)} - 2baud \frac{sm(\theta-\phi)}{coc(\theta-\phi)}\right]turb$
= tan(0-4) = [1 - 2but tan (0-4)] tant
= tan (0-4) = tan & - start tan (0-4)
== tan(0-\$) + 2tarity tan(0-\$) = tan\$
→ tau(0-q) [1+2tunp] = trung
= $\left(\frac{4u\theta - 4uub}{1 + 4uub luub}\right)(1 + 24uip) = 4uup$
=> (ten 0 - tent)(1+ 2tenza) = tenze (1+tenotenne)
= tant + 2tant tant - tant - 2tant = tant + tant tant
= tant + tangt tant = 2tout + 2tout
=> tomo(1+tant) = 2tunt(1+tant) (1+tunt)
- tano = 2 tamp

===m(0-4) = [ (al (0-4) - 2 tout = m(0-4)] tout
$ \Rightarrow \sin(\theta-\phi) = \left[ (\cos(\theta-\phi) - 2\frac{\sin(\phi-m)(\theta-\phi)}{\cos(\phi-\phi)} \right] + \frac{2}{\cos(\phi-\phi)} = \frac{2}{\cos(\phi-\phi-\phi)} = \frac{2}{\cos(\phi-\phi-\phi-\phi)} = \frac{2}{\cos(\phi-\phi-\phi-\phi-\phi-\phi)} = \frac{2}{\cos(\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-\phi-$
= Sm(0-4) = $\frac{1}{(acp)} (acb - (acb $
$\Rightarrow$ $\exists n(\theta-\psi) = \frac{\psi u \psi}{\cos \psi} \left[ \frac{\cos \psi (u(\theta-\psi) - u \psi \sin(\theta-\psi) - u \psi \sin(\theta-\psi)}{\cos \psi} - \frac{\psi (u-\psi)}{\cos \psi} \right]$
$\left[(\phi-\theta)n2\phi n2 - \left[(\phi-\theta) + \phi\right] x \right] \frac{\phi m^2}{\phi^2 u} = (\phi-\theta)m^2 \in$
$\left[ (4-0)me \neq me - \theta = 0 \right] \frac{dme}{dm} = (4-0)me \in \mathbb{R}$
$\Rightarrow \cos\phi \sin(\phi - \phi) = \sin\phi \cos\phi - \sin\phi \sin(\phi - \phi)$
0 200 \$ M12 = \$ M12 (\$-0) m2 + \$ 200 (\$-0) m2 =
$\Rightarrow sim(\theta-\phi)[(a\phi+ship)] = sim\phi(a\theta)$
O acidime = fimebrai - facilitie =
⇒ sm∂wst = 2sindwe0
$\implies \frac{\sin\theta}{\cos\theta} = \frac{2\sin\phi}{\cos\phi}$
=) tan & = 2 truck
-the BirRoot-

## Question 108 (*****)

I.V.C.

l.V.C.I

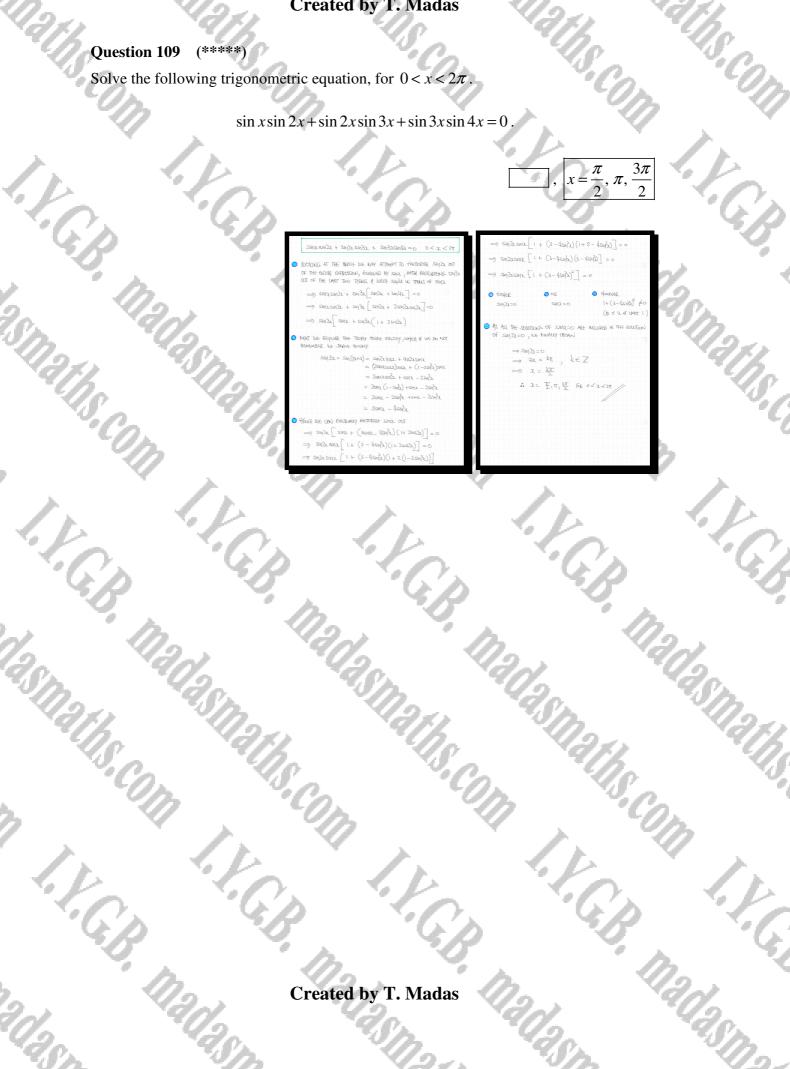
Solve the following trigonometric equation, for  $0 \le \theta < 2\pi$ .

 $3\cos^2\theta - \sin^2\theta - \sqrt{3}\cos\theta - \sin\theta = 0.$ 

ths.com

N.

K.C.		$\boxed{\qquad}, \qquad \theta = \frac{\pi}{6}, \frac{2\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{5\pi}{3}, 5$	$\frac{\pi}{3}$
1120	10303SD2	$\begin{array}{c} 3\omega \delta^{2}\theta - sM^{2}\theta - b\omega \delta^{2}\omega - \theta\omega \delta^{2}\omega - \theta$	2.50
aths Con	211, 311,21	$\implies \qquad \qquad$	alls.
	Com	$\Theta = \frac{\partial U}{\partial t} + \frac{\partial U}{\partial t}$ $\Theta = \frac{\partial U}{\partial t} + \frac{\partial U}$	
Cp '	GB I.	C.B.	G.
madas		112020	1303SM2-
alls.Com	alls all	s.con alls	
1. 1.			
·GB	Created by T. Ma	adas	172.
· · · · · · · · · · · · · · · · · · ·	Created by 1. Ma		


aths.com

### Question 109 (*****)

>

Solve the following trigonometric equation, for  $0 < x < 2\pi$ .

 $\sin x \sin 2x + \sin 2x \sin 3x + \sin 3x \sin 4x = 0.$ 



maths.com

The Com

#### Question 110 (*****)

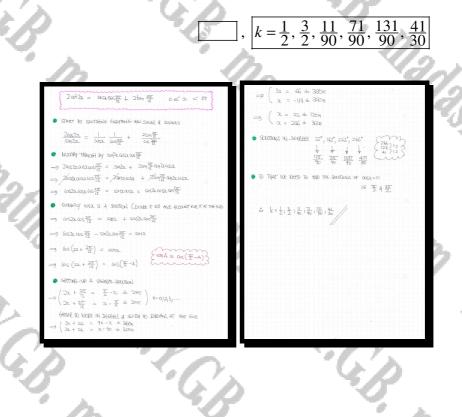
12

Solve the following trigonometric equation, for  $0 < x < \frac{1}{2}\pi$ 

 $4\cos x\cos 2x\cos 5x+1=0.$ 

I.Y.G.B.  $x = \frac{1}{8}\pi$ ,  $\pi, \frac{3}{2}\pi,$  $\frac{2}{5}\pi$ 0≤1<₹ 11202 'smaths.com ON (I.E SINZ=0) 王 21 31 31 <u> 辛, 温, 圣, 条</u> 1(4x-5x) = sim the costs - costsMQz + SM(-2) = 2.51M432005.550 Sintacossa = 25m2 - 25m2  $\frac{1}{2}$ -sm·9x -  $\frac{1}{2}$ -sm2 = -sm  $\frac{1}{2}\sin qx = -\frac{1}{2}\sin qx$ = sin(-x)I.F.G.B. madasmaths.com Madasm. Madasm 11202SD Smarns.com naths.com COM I.V.C.B. Madasm I.F.G.B. I.F.G. K.C. Created by T. Madas

### Question 111 (*****)


F.G.B.

I.C.B.

Solve the following trigonometric equation.

 $2\cot 2x = \sec x \sec\left(\frac{2\pi}{15}\right) + 2\tan\left(\frac{2\pi}{15}\right), \quad 0 \le x < 2\pi.$ 

Give the answers in the form  $k\pi$ , where k is rational.



2017

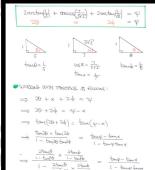
2112.51

he,

I.F.G.B.

Com

17202


LY.C.

#### (****) **Question 112**

Use trigonometric algebra to fully simplify

 $2 \arctan\left(\frac{1}{5}\right) + \arccos\left(\frac{7}{5\sqrt{2}}\right) + \arctan\left(\frac{1}{8}\right),$ 

giving the final answer in terms of  $\pi$ .



mp - 1-1+ tun Vx+

5

1211s

I.C.B.

7 + tomp  $1 = \frac{10}{25-1} \times \frac{16}{64-1}$  $\frac{l - \frac{l5}{2} \times \frac{e2}{l6}}{\frac{l5}{2} + \frac{e3}{l6}}$ 7 + tomp  $= \frac{591 + 21E}{08 - 327}$ 75mp -1  $\frac{3}{4} = \frac{7 \tan \psi - 1}{7 + \tan \psi}$ 

= 28+ w = 25

 $\frac{10}{25-1} + \frac{16}{66-1}$ 

tany = 1 Ψ=∓//

AUTI-RINATIVE BY COMPLEX NUMBERS

LADIZEDARY SHIT SHELLAND

- $\left(\mathbb{Z}_{n+1}^{+1}\right)^{2}\left(\mathbb{T}_{n+1}^{+1}\right)\left(\mathbb{B}_{n+1}^{+1}\right)^{2}$ = (25 + 10i - 1)(7 + i)(64 + 16i - 1)
- = (24 + 101)(1+1)(63 + 161)

84+121+351-5)(63+161) 2(79+47i)(63+16i)= 2 ( 49TT + 1264i + 2961i - 752) = 2 (4225 + 4225°) (*++) (*+ =

 $\arg\left[(\underline{z}+i)^{2}(1+i)(\underline{w}+i)^{2}\right] = \arg\left[\underline{w}_{50}(1+i)\right]$  $\arg(z+i)^{2} + \arg(1+i) + \arg(\theta+i)^{2} = \arg(\theta+i) + \arg(1+i)$ 2ang(5+i) + ang(7+i) + 2ang (8+i) = ang 6450 + ang (1+i)  $2 \arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{2}\right) + 2 \arctan\left(\frac{1}{2}\right) = 0 + \arctan\left(\frac{1}{2}\right)$ Zantau 1 + antau 1 + Zantau 1 = #

Ins.com

 $\frac{\pi}{4}$ 

20

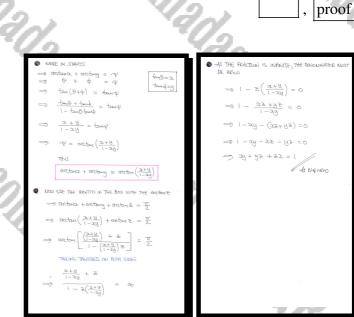
I.F.G.

11202

I.F.G.B.

Question 113 (*****)

It given that


I.V.G.B.

I.C.p

 $\arctan x + \arctan y + \arctan z = \frac{\pi}{2}$ .

Show that x, y and z satisfy the relationship

xy + yz + zx = 1.



207

hs.com

20

I.C.B.

Com

M2(12)

I.F.G.

24

Created by T. Madas

10

haths.com

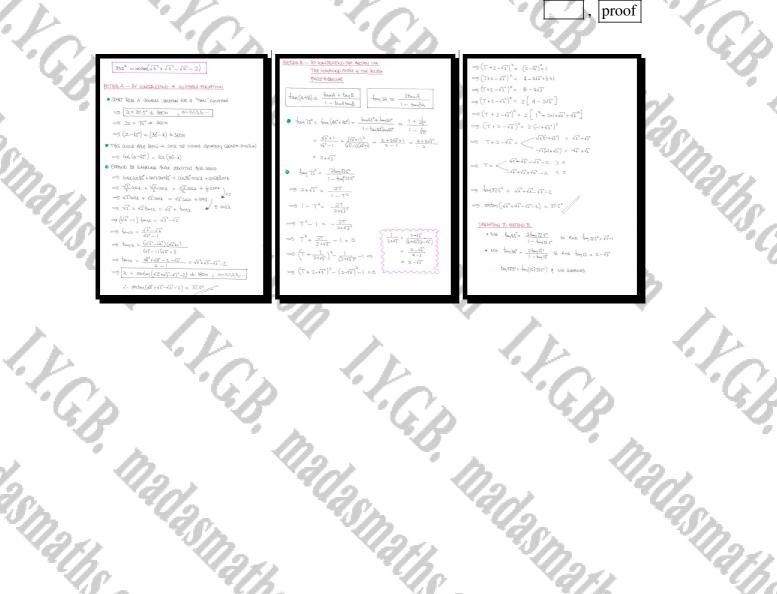
madasm.

1.4

I.V.C.B. Madasm

Madasmaths.com

Ths.com


### (****) Question 114

Smaths.com

l.Y.G.p.

Use a fully detailed method to show that

 $\arctan\left[\sqrt{6} + \sqrt{3} - \sqrt{2} - 2\right] = 37.5^{\circ}$ .



madasmaths.com

Created by T. Madas

2017

I.V.C.J

112112

ths.com

ic.

ths.com

x = -1

A+A-I

aths com

1.Y.G.

mada,

I.F.G.B.

### (*****) **Question 115**

211251

I.G.p.

The Com

I.V.G.B.

COM

I.C.B.

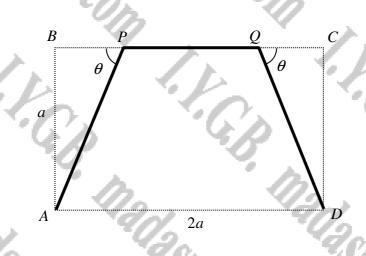
Use a trigonometric algebra to solve the following equation

 $(\arctan x)^2 + (\operatorname{arccot} x)^2 = \frac{5\pi^2}{8}.$ 

You may assume that  $y = \operatorname{arccot} x$  is the inverse function of  $y = \cot x$ ,  $0 \le x \le \pi$ 

nadasn

Created by T. Madas


2017

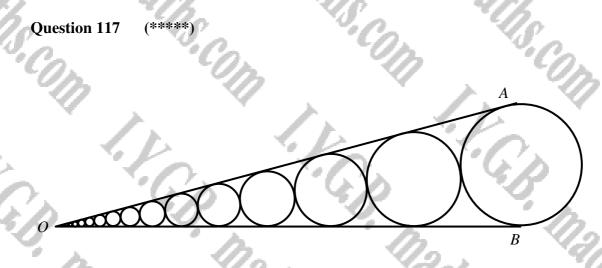
Y.C.H

nadasmans.com

12.80






The figure above shows a network *APQD* inside a rectangle *ABCD*, where |AB| = a and |BC| = 2a. The endpoints of the network *A* and *D* are fixed. The points *P* and *Q* are variable so that they always lie on *BC* with |AP| = |QD|. The angles *BPA* and *CQD* are both equal to  $\theta$ . A particle travels with constant speed *v* on the sections *AP* and *QD*, and with constant speed  $\frac{5}{3}v$  on the section *PQ*.

Let T be the total time for the journey APQD.

Given that the positions of the points P and Q can be varied as appropriate, show that the minimum value of T is  $\frac{14a}{5v}$ , fully justifying that this is the minimum value.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} a \\ d \\ d \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \\ d \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} a \\ d \end{array} \end{array} \\ \begin{array}{c} a \\ d \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} a \\ a \\ \end{array} \end{array} \\ \begin{array}{c} a \\ d \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} a \\ a \\ \end{array} \end{array} \\ \begin{array}{c} a \\ a \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} a \\ a \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} a \\ a \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} a \\ a \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} a \\ a \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} a \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array}$$

proof



The figure above shows a infinite sequence of circles of decreasing radius, the radius of the larger circle being  $\frac{4}{3}$ .

The centres of these circles lie on a straight line. The straight lines OA and OB are tangents to every circle in the sequence, the angle AOB denoted by  $2\theta$ .

Given that the total area of these circles is  $2\pi$ , determine the value of  $\theta$ .

1-5006

· SIME WITH & GOD DHARMAN . LOOKING AT THE "R" DENCEY I'M  $Sim\theta = \frac{\Gamma_{H+}}{2}$ 3+2+2 2 + sin + + Psin = 1 SmB = 1-SmB 1-.5100 1+5100  $\Gamma_{n} \sin \theta + \Gamma_{n} \sin \theta = \Gamma_{n}$ 

AT THE RADII ROLL & G.P. WHICH CONVERCES SO WILL THE ARMS OF THE GRILLS  $\Rightarrow q\left[\frac{1+2sm\theta+sm\theta-1+2sm\theta-sm\theta}{(1+sm\theta)^2}=\right]$  $\Rightarrow \frac{\partial \Theta \cdot 36 \sin \theta}{(1+\sin \theta)^2} = \theta$  $\pi\alpha^2+\pi\eta^2+\pi\eta^2+\pi\eta^2+\pi\eta^2+\eta\eta^2+.$  $\Re hA = \pi \left[ \alpha^{2} + (\alpha R)^{2} + (\alpha R^{2})^{2} + (\alpha R^{3})^{2} + (\alpha R^{4})^{2} + \dots \right]$  $\Rightarrow \frac{9 \text{sm}\theta}{(+2 \text{sm}\theta + \text{sm}^2\theta)}$  $ARM = \overline{u} \left[ a^{2} + a^{2} \overline{v}^{2} + a^{2} \overline{v}^{4} + a^{2} \overline{v}^{6} + a^{2} \overline{v}^{8} + \dots \right]$  $-\pi q_{a}^{2} \left[ 1 + P_{a}^{2} + D_{a}^{4} + P_{a}^{6} + P_{a}^{8} + \dots \right]$  $\Rightarrow 2\pi = \pi \left(\frac{4}{5}\right)^2 \left(\frac{1}{1-p_2}\right) \Leftrightarrow - \frac{s_{10}}{s_{10}} = \frac{\pi}{\frac{1}{1-p_1}}$ => 25m9 - Ssint + 2 =0 0=(c_ Ame)(1-Ame2) - $\Rightarrow 2 = \frac{16}{9} \left( \frac{1}{1-2^2} \right)$  $\Rightarrow q = 8\left(\frac{1}{1-R^2}\right)$  $\Rightarrow 9(1-2^2) = 8$ ⇒ 0= Ţ  $9(1-(\frac{1-SM\theta}{1+SM\theta}))$ 

 $\theta = \frac{1}{6}\pi$ 

maths.com

.G.B.

nadasm.

1.4.6

haths.com

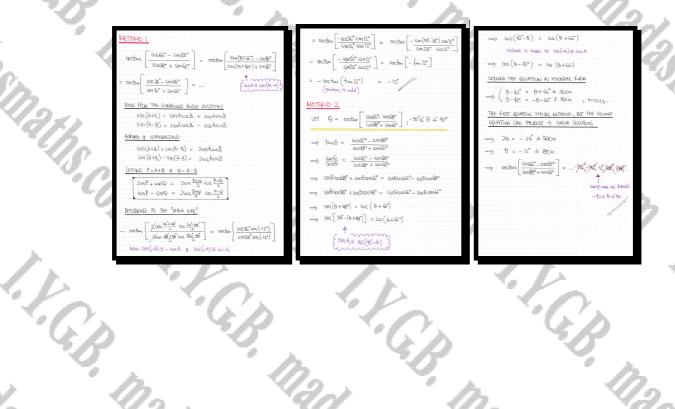
I.V.C.B. Madasm

Ths.com

proof

Question 118 (****)

> $\cos 66^\circ - \sin 48^\circ$  $\theta$  = arctan  $\cos 48^\circ - \sin 66^\circ$


Show by detailed working that  $\theta = -12^{\circ}$ 

11₂₀₂51

Ina_{da}

SM3//IS-COM

I.F.G.p



Created by T. Madas

COM

I.Y.C.J

adasmaths.com

11202SD

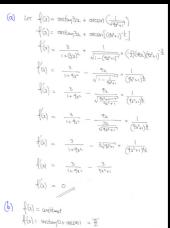
Question 119 (*****)

$$f(x) = \arctan(3x) + \arcsin\left(\frac{1}{\sqrt{9x^2 + 1}}\right), x \in \mathbb{R}.$$

K.C.

Show clearly that ...

I.F.G.B.


I.C.B.

**a**) ... f'(x) = 0.

I.G.B.

I.C.

**b**) ...  $\arctan(3x) + \arcsin\left(\frac{1}{\sqrt{9x^2+1}}\right) \equiv k\pi$ , stating the value of the constant k.



 $\therefore \text{ arcsin3e + arcsin}\left(\frac{1}{\sqrt{q_{\lambda^2+1}}}\right) = \frac{\pi}{2}$ 

I.C.B.

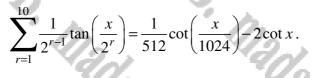
 $k = \frac{1}{2}$ 

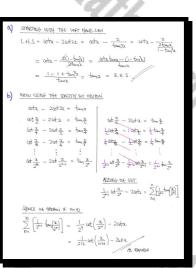
COM

I.V.G.

K.C.J.

Question 120 (*****)


It is given that


I.G.B.

I.C.B.

 $\cot x - 2\cot 2x \equiv \tan x \, .$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Hence, or otherwise, show that





F.G.B.

I.F.G.

Mana,

proof

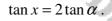
Created by T. Madas

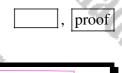
5

### Question 121 (*****)

Given the trigonometric equation

$$\frac{\sin(x-\alpha)}{\cos(x-\alpha)-2\tan\alpha\sin(x-\alpha)}=\tan\alpha,$$


show clearly that


>

I.Y.G.B.

I.C.p

277





m

i G.B.



- $SIN(x-\alpha) = tux cos(x-\alpha) 2tay^2 a sin(x-\alpha)$
- DINDE THOUGH BY acs(2-∞) ⇒ tau(2-∞) = taux - 2 but w (2-∞)
- => tay (2-a) + 2taya tay (2-a) = taya
- = tou(a-w)[1+2tayar] = toux
- = tunz tunx [1+2tutin] = tunx
- $= (t_{MX} t_{MX})(1 + 2t_{MX}^2) = t_{MX} [1 + t_{MX} + t_{MX}]$   $= t_{MX} + 2t_{MX} + \dots + t_{MX} + t_{M$
- = taya taya 2taya + taya 2taya = 0
- = tung (tung 2 tung) + (tung 2 tung) = 0
- = (tay 2 2 tay or) (tay or +1) =0
- ⇒ tay2-2tayx=0 Etyir+1+0

20

F.G.B.

COM

madasn.

G

tanx = 2ton 9 \$ 250,000

277

Created by T. Madas

0

2

Smaths.com

I.V.C.B

naths.com

 $\frac{\pi}{6}, \frac{5\pi}{18}, \frac{17\pi}{18}$ 

#### (*****) **Question 122**

Solve the trigonometric equation

 $\sin x \cos x + \frac{1}{2} = \cos^2\left(\frac{x}{2} - \frac{\pi}{6}\right), \ 0 \le x < \pi,$ erms of  $\pi$ .

hadasmana L

I.V.G.B. giving the answers in terms of  $\pi$ .

III 2023 III 2018 COM I. Y. C.P. III 2023 III 2018 COM I.Y. C.P. III 2023 III 2018 COM I.Y. C. SIRAINS CORP. I. Y. C.B. MARIASIRAINS CORP. I. Y. C.B. MARIASIRA

### Question 123 (*****)

The Com

I.V.G.p

Com

I.F.G.B.

Prove the validity of the following trigonometric identities.

**a**)  $\cos^4 \theta + \sin^4 \theta \equiv \frac{1}{4} (3 + 4\cos 4\theta).$ 

I.G.P.

I.C.

**b**)  $32\sin^2 x \cos^4 x \equiv 2 + \cos 2x - 2\cos 4x - \cos 6x$ .



nadasn.

 $= \frac{1}{4} (3 + \log 4\theta) = 12445$   $= \frac{1}{4} (3 + \log 4\theta) = 1245$   $= \frac{1}{4} (3$ 

to REQUE

nn,

 $= \omega_{s}^{4}\theta + sm^{4}\theta = (\omega_{s}^{4}\theta + 2sm^{2}\theta\omega_{s}^{2}\theta + sm^{4}\theta) - 2sm^{2}\theta\omega_{s}^{2}\theta$ 

 $= \left(\cos^2\theta + \sin^2\theta\right)^2 - 2\sin^2\theta\cos^2\theta = \left(\sin^2 - \frac{1}{2}\left(2\sin\theta\cos\theta\right)^2\right)$ 

 $= 1 - \frac{1}{2} \sin^2 2\Theta$ 

3++60540

 $= 1 - \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} \cos 4 \theta \right)$ 

hs.com

proof

60524=1-2014

SN7 = 1 - 2 - 2 60524

The

I.F.G.B.

COM

mada

I.Y.G.

 $2sm^{2}A = 1-$ 

ŀ.G.B.



#### Question 124 (*****)

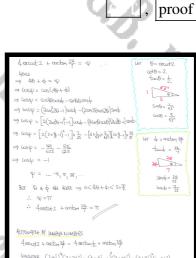
madasmaths.com

I.F.C.B

1121125

Show clearly that

I.V.G.B.


asmaths.com

12

SMaths.com

I.F.C.B.

4 arccot 2 + arctan



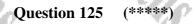
naths.com

naths.com

F.G.B.

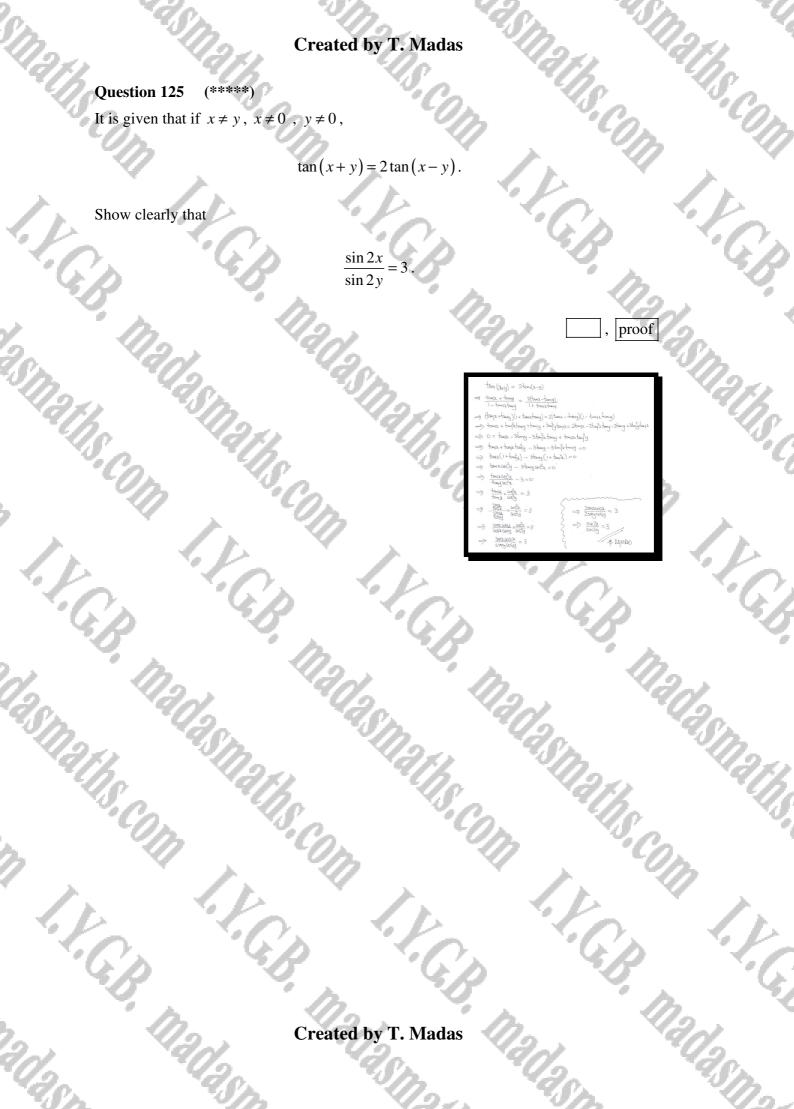
Ż

l.y.


madasma

L.C.B. Mada

$$\begin{split} \dot{+}i] &= (4 + 4i - 1)^{2}(7 + 24i) = (3 + 4i)^{2}(7 + 24i) \\ &= (9 + 24i - 16)(7 + 24i) = (-7 + 24i)(7 + 24i) \end{split}$$
I.C.B. Madasman


Madasmaths.com

Smarns.com



It is given that if  $x \neq y$ ,  $x \neq 0$ ,  $y \neq 0$ ,

$$\tan(x+y) = 2\tan(x-y).$$



 $\frac{1}{4}(2+\sqrt{3})$ 

### Question 126 (*****)

A triangle *ABC* is such so that  $\measuredangle BAC = \frac{1}{6}\pi$  and |BC| = 1.

Show that the maximum value of the area of the triangle ABC is

STARING WITH A DIAGRAM	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
B	
6	9
A The h	C C
LOCKING AT BDC	LOOKING AT ABD
In Inconfi - A Lunderford	$\Rightarrow \frac{h}{3} = \frac{1}{100} \frac{T}{5}$
	$\Rightarrow \frac{x}{r} = \frac{\sqrt{2}}{r}$
	= a = vs sunt
HENCE THE AREA OF THE TRIANOLY +	A BC
-> then = flac  BDI	
$= AltA = \frac{1}{2}(x+y)b$	
$\Rightarrow A2tA = \frac{1}{2} (\sqrt{3} \sin \theta + \cos \theta) \sin \theta$	
$\Rightarrow$ ARFA = $\left(\frac{\sqrt{3}}{2}\sin\theta + \frac{1}{2}\cos\theta\right)\sin\theta$	
40(0005.412 + QMZ.322) = HYAM ==	9

) `	1
W INFRESTUATION	
$ \begin{array}{l} (\overline{\Xi}_{\tau}g)\cos(\theta m z = f(g)) \\ (\overline{\Xi}_{\tau}g)\cos(\theta m z = f(g)) \\ (\overline{\Xi}_{\tau}g)\cos(\theta m z = f(g)) \\ ((\overline{\Xi}_{\tau}g) + g)\cos(z = f(g)) \\ (\overline{\Xi}_{\tau}gz)\sin(z = f(g)) \\ (\overline{\Xi}_{\tau}gz)\sin(z = f(g)) \end{array} $	
SOLUNG FOR ZENO, ONLY LOCKING FOR 8>0	
$\begin{array}{rcl} 2\Theta+\frac{v_{1}}{2}&=&O_{1}\cdot\pi\tau_{1}\cdot\pi\tau_{2}\cdot\dots\\ 2\Theta&=&\frac{v_{1}}{2}\cdot\frac{v_{1}}{2}\cdot\frac{v_{2}}{2}\cdot\dots\\ \Theta&=&\frac{v_{1}}{2}\cdot\frac{v_{1}}{2}\cdot\frac{v_{2}}{2}\cdot\dots\end{array}$	
$\frac{1}{10}$	
$= Sin \frac{\pi}{12} Sin \frac{\pi}{12}$ $= Sin \frac{\pi}{12} Sin \frac{\pi}{12} \left\{ Sin \frac{\pi}{12} = Sin \frac{\pi}{12} \right\}$	
= m ² E	
$= \frac{1}{2} - \frac{1}{2} \log \left(2 \pi \frac{m}{2}\right) \qquad \qquad$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$= \frac{1}{2} - \frac{1}{2} \left( -\frac{\sqrt{2}}{2} \right)$ $= \frac{1}{2} + \frac{\sqrt{2}}{4}$	
$= \frac{1}{4} \left( \left( \lambda + \sqrt{\xi_1} \right) \right)$	

1.486A = .5mQ 5im(0+7	<u>F)</u>
COOLENG AT THE COMP	POONID ONDIE WASTITHS FOR WE(A±1)
	(#10)nzGra - (#10)2000200
$\cos\left[(\overline{\vartheta}+\theta)-\theta\right]=$	(374)MaBae + (3740)200(920)
SUBTRACTING UPWARDS	
35)200 -(F-)200 🥧	+ (1) 二 25mの55m((1)+)(1)
=> ± los(+=) - ± los	(20+玉)= 211(10211(10+年)
⇒ 2m0 sm(0+₽) :	三 〒 (老) - 〒104501年)
⇒ ARA = ⊈_ ;	<u>1</u> -605(28+長)
- ALIA = 15	- 12(-1) {-1< a(20+E)<1}
$\rightarrow ALHA_{MAX} = \frac{\sqrt{3}}{4}$	+ 1/2
-> ARAAMAN = + (	2+51

F.C.P.

G

, proof

#### (****) Question 127

It is given that the angles A, B and C are the three angles of a triangle ABC with  $B \neq 90^{\circ}$ .

Given further that

 $\cos(B-C)$  $\sin A - \sin (B - C) =$ tan B

show that the triangle *ABC* is right angled.





- nC = CosBcosC + sinBs COSR COSC - SURROW C
- cos(B+C) = O

6

#### (****) **Question 128**

I.Y.C.B. Madasmaths.Com

I.F.G.B.

I.F.G.B.

Solve the following trigonometric equation

 $\arctan\left[x\cos\left(2\arcsin\frac{1}{x}\right)\right] = \frac{1}{4}\pi$ .



Madasmaths Com

I.K.C.B. Mada

The Com

|, x = -1, x = 2

maths.com

C.b.

23

1.1.6

Madasma

Question 129 (*****)

Sketch the graph of

>

 $y = (\arcsin x)^2 \arccos x, \ -1 \le x \le 1$ 

Ins.com



### Question 130 (*****)

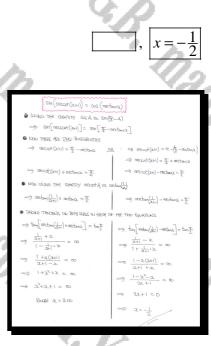
F.G.B.

I.C.B.

23

Solve the following trigonometric equation

 $\sin\left[\operatorname{arccot}(x+1)\right] = \cos\left(\arctan x\right).$ 


.C.P

20

You may assume that  $y = \operatorname{arccot} x$  is the inverse function for  $y = \cot x$ ,  $0 \le x \le \pi$ .

Madas

na



21/2.517

00

Madasn,

G

F.G.B.

ths.com

### Question 131 (*****)

The function f is defined in the largest possible real domain, contained in the interval  $(-2\pi, 2\pi)$ , and its equation is

$$f(x) \equiv \ln\left[\tan\left(\frac{1}{8}\pi - \frac{1}{2}x\right)\right]$$

**a**) Find the domain of f.

I.C.B.

**b**) Show that  $f'(x) \equiv \frac{k}{\sqrt{1 - \sin 2x}}$ , for some constant k.

b) CAREY OUT

 $\frac{d}{dx} \left[ h_0 \left( \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} x \right) \right) \right]$ 

			A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY A REAL PRO
a)	FOR THE FUNCTION TO BE NUMT BE NON NEGATIVE -	- SHFWHD I THE AROS - (OODWR AT THE	art) of the Warentyy fiction on tours.
	tana>o ⇒	o< 2 < ₹ T< 2 < ₹	$-\pi < \alpha < -\frac{\pi}{2}$ $-2\pi < \alpha_{-} < -\frac{\pi}{2}$
	CONTIMUSED AND DUILD		
	$\tau \mapsto \pi * \overline{k}$	$a \mapsto \frac{1}{2}a$	a. ⊨→ −a.
	+ar(x12) -1-2 <x-2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2 -2-2-2 -2-2 -2-2 -2-2 -2-2 -2-2-2 -2-2-2 -2-2-2 -2-2-2 -2-2-2-2</x-2-2 	$-\frac{4\pi}{2} - \frac{5\pi}{2} - \frac{5\pi}{2}$	π+₩<-x<2π+₹ -π+₩<-x<0+₽
	SIMPLIPLICE THEFE DA	<del>(E</del>	
	-27 -27 -27		( ) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	: DOMAN (	-m'-#)n(-#'#	) ∪ (∰ ¹ 24)

6DA

<47년		the outlide will a 3.
x < 27 +∓ a < 0+₽ c < 27 +∓	ų	$=\frac{2}{\sqrt{\frac{1}{2}-\frac{1}{2}\cos(\frac{\pi}{2}-2\kappa)^2}}$
r+£)		$=\frac{2\sqrt{2}}{\sqrt{1-\cos\left(\frac{\pi}{2}-3\lambda\right)^{2}}}$
		BOT GOS(J-A) = Sin
		$=\frac{2\sqrt{2}}{\sqrt{1-\sin^2 2}}$
6		

KC.

 $\left(-2\pi,-\frac{7}{4}\pi\right)\cup\left(-\frac{3}{4}\pi,\frac{1}{4}\pi\right)\cup\left(\frac{5}{4}\pi,2\pi\right)$ 

 $= \frac{1}{\sin(\overline{g} - \frac{1}{2}x)\cos(\overline{g} - \frac{1}{2}x)}$ 

2sm(晋-芝)(m(晋-芝)

F.G.B.

6

### Question 132 (*****)

The positive solution of the quadratic equation  $x^2 - x - 1 = 0$  is denoted by  $\phi$ , and is commonly known as the golden section or golden number.

It can be shown, and you **may assume in this question**, that  $\cos(\frac{1}{5}\pi) = \frac{1}{2}\phi$ 

Use trigonometric identities to show that

 $\tan\left(\frac{1}{5}\pi\right)\tan\left(\frac{2}{5}\pi\right)\tan\left(\frac{3}{5}\pi\right)\tan\left(\frac{4}{5}\pi\right) = 5.$ 

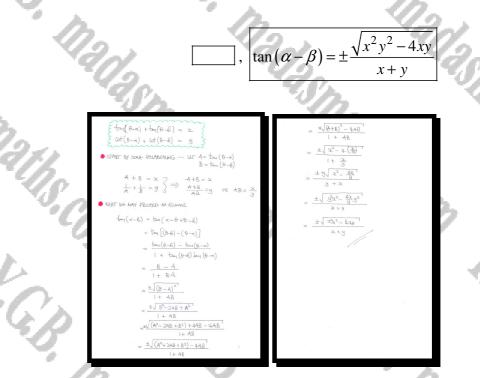
You may not use complex numbers in this question.

	F. alte
	angent = "grainer"
SUF-312 2	au (5) = - tay (5)
$\begin{split} & \left\{ \begin{array}{l} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
$\frac{46601}{(6+1)-26+1} = \frac{10-56}{2-6} = \frac{5(2-6)}{2-6}$	=5

proof

Question 133 (*****)

F.C.B.


I.C.B.

It is given that  $\theta$ ,  $\alpha$  and  $\beta$  are distinct real numbers which satisfy.

$$\tan(\theta - \alpha) + \tan(\theta - b) = x$$

$$\cot(\theta - \alpha) + \cot(\theta - b) = y$$

Find, in exact simplified form, an expression for  $tan(\alpha - \beta)$ , in terms of x and y.



200

20

I.C.p

Com

M2(12)

G

### (****) Question 134

Jh.

By considering the trigonometric identity for tan(A-B), with A = arctan(n+1) and  $B = \arctan(n)$ , sum the following series た

$$\sum_{n=1}^{\infty} \arctan\left(\frac{1}{n^2 + n + 1}\right).$$
or may assume the series converges.  

$$\left( - , \frac{\pi}{4} \right)$$

$$\left( - , \frac{$$

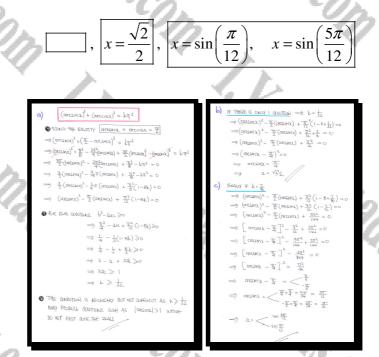
25

C.p.

G

Question 135 (*****)

It is given that


 $(\arcsin x)^3 + (\arccos x)^3 = k\pi^3, |x| \le 1,$ 

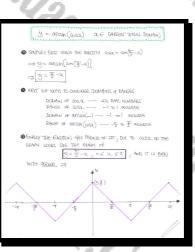
for some constant k.

a) Show that a necessary but not sufficient condition for the above equation to have solutions is that

 $k \geq \frac{1}{32}$ .

- **b**) Solve the equation given that it only has one solution.
- c) Given instead that that  $k = \frac{7}{96}$ , find the two solutions of the equation, giving the answers in the form  $x = \sin(a\pi)$ , where  $a \in \mathbb{Q}$ .




Question 136 (*****)

Sketch the graph of

 $f(x) = \arcsin(\cos x),$ 

in the largest domain that the function is defined.

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusps of the curve.



graph

1.+

Question 137 (*****)

It is given that

 $\arctan 2 + \arctan A + \arctan B = \pi$ .

It is further given that A and B are distinct positive real numbers other than unity.

Determine a pair of possible values for A and B.

A THE RELAY IS NOT ONLOSE, ST A = 5arbitrary in the formula is NOT ONLOSE, ST A = 5arbitrary in the formula is the fo

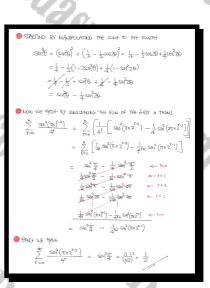
5 &

 $\frac{7}{9}$ 

G

Question 138 (*****)

Find the value of


>

F.G.B.

I.C.p

$$\sum_{r=0}^{\infty} \left[ \frac{\sin^4 \left( \pi \times 2^{r-2} \right)}{4^r} \right].$$

Hint: Express  $\sin^4 \theta$  in terms of  $\sin^2 \theta$  and  $\sin^2 2\theta$  only.



 $\frac{1}{2}$ 

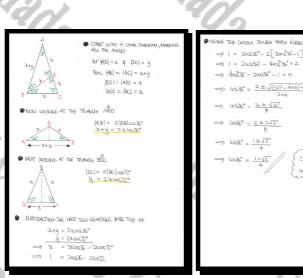
20

F.G.B.

G

Madasn,

### Question 139 (*****)


I.C.B.

The triangle ABC is isosceles with |AB| = |AC| and  $\measuredangle BAC = 36^{\circ}$ .

The angle bisector of  $\measuredangle ABC$  meets AC at the point D.

By using trigonometry in the above construction, or otherwise, show that

 $\cos 36^\circ = \frac{1}{2} \left( 1 + \sqrt{5} \right).$ 



proof

F.C.B.

G

madasn.

Question 140 (*****)

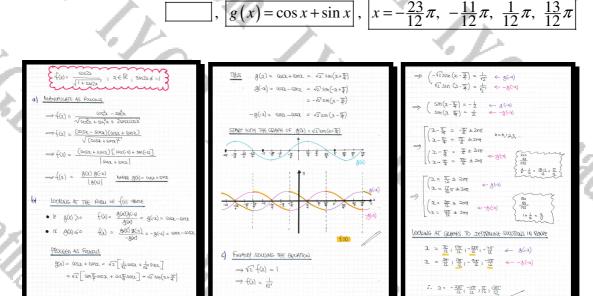
I.G.B.

 $f(x) = \frac{\cos 2x}{\sqrt{1 + \sin 2x}}, x \in \mathbb{R}, \sin 2x \neq -1.$ 

a) Express f(x) in the form

$$f(x) = \frac{g(x)g(-x)}{|g(x)|},$$

Manas,


G

M2012

where g(x) is a function to be found.

- **b**) Sketch the graph of f(x) for  $-2\pi \le x \le 2\pi$ .
- c) Hence solve the trigonometric equation

 $\sqrt{2}f(x) = 1, \quad -2\pi \le x \le 2\pi.$ 



asmans.com

### (*****) **Question 141**

Prove that for all x such that  $-1 \le x \le 1$ 

naths.com  $\arccos x + \arccos\left[\frac{1}{2}\left(x + \sqrt{3 - 3x^2}\right)\right] = \frac{\pi}{3}.$ 



#### (****) **Question 142**

F.G.B.

I.F.C.P.

The function f is defined as

 $f(x) \equiv \sin x + \cos x + \tan x + \cot x + \sec x + \csc x,$ 

 $x \in \left(0, \frac{1}{2}\pi\right)$ .

<u>.</u>

(1052 -SINZ = 0

6052 = 5117 fam/2 = (

W NOT THAT 0 ← 2 + 00 ← (1)+ (Into 10 could a firet)

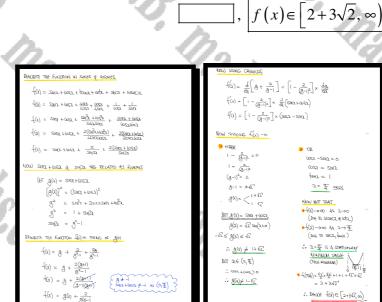
a= I mour

f(x)→∞ 4x 2→F (but TO SECI, funcx)

CTEVE MINIMUM

 $f_{n} \in \mathbb{P}_{P(N)} ( f_{n}(t) \in \left[ 2 + 3\sqrt{2} \right]_{\infty} )$ 

•  $\int_{1}^{1} (\pi_{4}^{2}) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + 1 + 1$ =  $2 + 3\sqrt{2}^{2}$ 


20

G

17202

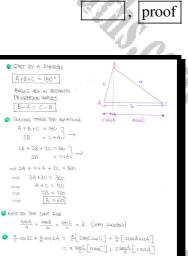
I.C.p.

Determine with full justification the range of f



Created by T. Madas

N.


### Question 143 (*****)

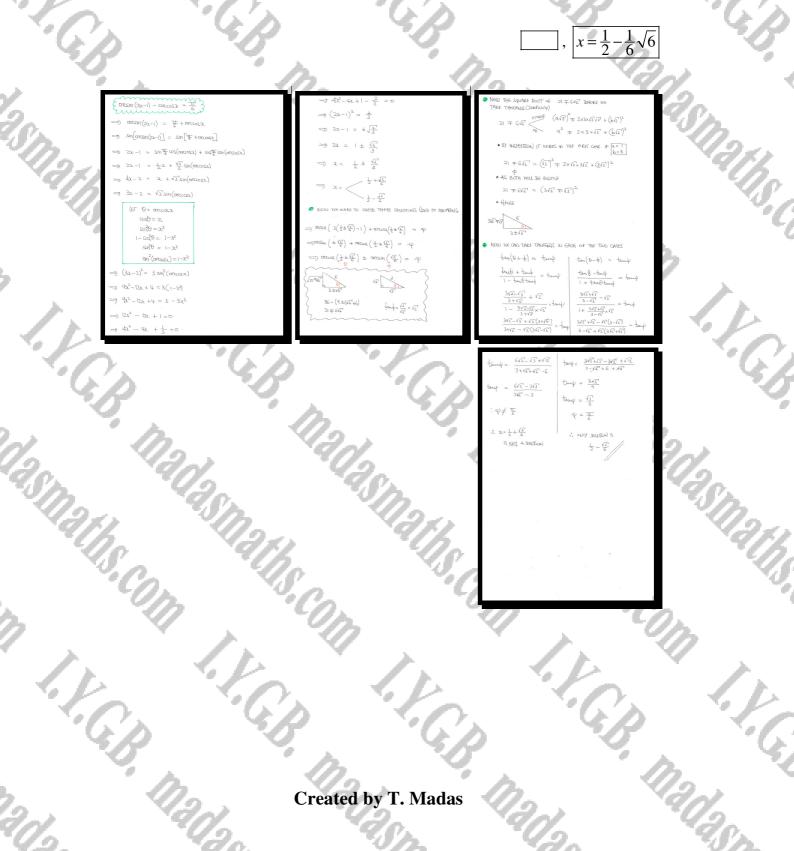
It is given that

- the angles A, B and C are the three angles of a triangle ABC.
- the angles A, B and C are in an increasing arithmetic progression, in that order.
- The lengths of the triangle ABC, opposite each of the angles A, B and C are denoted by a, b and c.

Show that

 $\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A = \sqrt{3}.$ 




6

### Question 144 (*****)

Find, in exact surd form, the only real solution of the following trigonometric equation

 $\arcsin(2x-1) - \arccos x = \frac{\pi}{6}$ .

The rejection of any additional solutions must be fully justified.



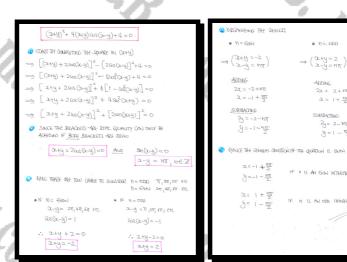
### Question 145 (*****)

Given that n is an integer such that n > 3, use a detailed method to solve the following trigonometric equation.



#### (****) Question 146

ŀ.G.p.


I.C.p

200

Find, in terms of  $\pi$ , the general solution of the equation

 $(x+y)^{2} + 4(x+y)\cos(x-y) + 4 = 0.$ 

#### $-1+\frac{k\pi}{2}$ , $(x, y) = \left(1 + \frac{k\pi}{2}, 1 - \frac{k\pi}{2}\right), k = \text{odd}$ $(-1-\frac{k\pi}{2}), k = \text{even}$ (x, y) =,



C.J.

200

I.C.p

The Com

• N= ODD

 $\frac{dDDING}{2x} = 2 + h \pi$  $\partial_{x} = 1 + \frac{m \pi}{2}$ 

2y= 2-m y=1-m

nadasn.

nadasn.

G

SUBTRACTING

Created by T. Madas

2.

### Question 147 (*****)

Find the general solution of the following equation



TRAILSCORT F.Y.C.P. IRREASINGHISCORT F.Y.C.P. IRREASINGHISCORT F.Y.C.P. IRREASINGHISCORT F.Y.C.P. IRREASINGHISCORT

T. Y.C.B. MARINERINE IN T.Y.C.B. MARINERINE ON TANK STRAITS COM L.Y.C.P. MARASHARIS COM